Home | History | Annotate | Download | only in jpeg-6b
      1 /*
      2  * jccoefct.c
      3  *
      4  * Copyright (C) 1994-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the coefficient buffer controller for compression.
      9  * This controller is the top level of the JPEG compressor proper.
     10  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
     11  */
     12 
     13 #define JPEG_INTERNALS
     14 #include "jinclude.h"
     15 #include "jpeglib.h"
     16 
     17 
     18 /* We use a full-image coefficient buffer when doing Huffman optimization,
     19  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
     20  * step is run during the first pass, and subsequent passes need only read
     21  * the buffered coefficients.
     22  */
     23 #ifdef ENTROPY_OPT_SUPPORTED
     24 #define FULL_COEF_BUFFER_SUPPORTED
     25 #else
     26 #ifdef C_MULTISCAN_FILES_SUPPORTED
     27 #define FULL_COEF_BUFFER_SUPPORTED
     28 #endif
     29 #endif
     30 
     31 
     32 /* Private buffer controller object */
     33 
     34 typedef struct {
     35   struct jpeg_c_coef_controller pub; /* public fields */
     36 
     37   JDIMENSION iMCU_row_num;	/* iMCU row # within image */
     38   JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
     39   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     40   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     41 
     42   /* For single-pass compression, it's sufficient to buffer just one MCU
     43    * (although this may prove a bit slow in practice).  We allocate a
     44    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
     45    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
     46    * it's not really very big; this is to keep the module interfaces unchanged
     47    * when a large coefficient buffer is necessary.)
     48    * In multi-pass modes, this array points to the current MCU's blocks
     49    * within the virtual arrays.
     50    */
     51   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
     52 
     53   /* In multi-pass modes, we need a virtual block array for each component. */
     54   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     55 } my_coef_controller;
     56 
     57 typedef my_coef_controller * my_coef_ptr;
     58 
     59 
     60 /* Forward declarations */
     61 METHODDEF(boolean) compress_data
     62     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     63 #ifdef FULL_COEF_BUFFER_SUPPORTED
     64 METHODDEF(boolean) compress_first_pass
     65     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     66 METHODDEF(boolean) compress_output
     67     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     68 #endif
     69 
     70 
     71 LOCAL(void)
     72 start_iMCU_row (j_compress_ptr cinfo)
     73 /* Reset within-iMCU-row counters for a new row */
     74 {
     75   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     76 
     77   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     78    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     79    * But at the bottom of the image, process only what's left.
     80    */
     81   if (cinfo->comps_in_scan > 1) {
     82     coef->MCU_rows_per_iMCU_row = 1;
     83   } else {
     84     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
     85       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     86     else
     87       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     88   }
     89 
     90   coef->mcu_ctr = 0;
     91   coef->MCU_vert_offset = 0;
     92 }
     93 
     94 
     95 /*
     96  * Initialize for a processing pass.
     97  */
     98 
     99 METHODDEF(void)
    100 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
    101 {
    102   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    103 
    104   coef->iMCU_row_num = 0;
    105   start_iMCU_row(cinfo);
    106 
    107   switch (pass_mode) {
    108   case JBUF_PASS_THRU:
    109     if (coef->whole_image[0] != NULL)
    110       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    111     coef->pub.compress_data = compress_data;
    112     break;
    113 #ifdef FULL_COEF_BUFFER_SUPPORTED
    114   case JBUF_SAVE_AND_PASS:
    115     if (coef->whole_image[0] == NULL)
    116       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    117     coef->pub.compress_data = compress_first_pass;
    118     break;
    119   case JBUF_CRANK_DEST:
    120     if (coef->whole_image[0] == NULL)
    121       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    122     coef->pub.compress_data = compress_output;
    123     break;
    124 #endif
    125   default:
    126     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    127     break;
    128   }
    129 }
    130 
    131 
    132 /*
    133  * Process some data in the single-pass case.
    134  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    135  * per call, ie, v_samp_factor block rows for each component in the image.
    136  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    137  *
    138  * NB: input_buf contains a plane for each component in image,
    139  * which we index according to the component's SOF position.
    140  */
    141 
    142 METHODDEF(boolean)
    143 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    144 {
    145   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    146   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    147   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    148   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    149   int blkn, bi, ci, yindex, yoffset, blockcnt;
    150   JDIMENSION ypos, xpos;
    151   jpeg_component_info *compptr;
    152 
    153   /* Loop to write as much as one whole iMCU row */
    154   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    155        yoffset++) {
    156     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
    157 	 MCU_col_num++) {
    158       /* Determine where data comes from in input_buf and do the DCT thing.
    159        * Each call on forward_DCT processes a horizontal row of DCT blocks
    160        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
    161        * sequentially.  Dummy blocks at the right or bottom edge are filled in
    162        * specially.  The data in them does not matter for image reconstruction,
    163        * so we fill them with values that will encode to the smallest amount of
    164        * data, viz: all zeroes in the AC entries, DC entries equal to previous
    165        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
    166        */
    167       blkn = 0;
    168       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    169 	compptr = cinfo->cur_comp_info[ci];
    170 	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    171 						: compptr->last_col_width;
    172 	xpos = MCU_col_num * compptr->MCU_sample_width;
    173 	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
    174 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    175 	  if (coef->iMCU_row_num < last_iMCU_row ||
    176 	      yoffset+yindex < compptr->last_row_height) {
    177 	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    178 					 input_buf[compptr->component_index],
    179 					 coef->MCU_buffer[blkn],
    180 					 ypos, xpos, (JDIMENSION) blockcnt);
    181 	    if (blockcnt < compptr->MCU_width) {
    182 	      /* Create some dummy blocks at the right edge of the image. */
    183 	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
    184 			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
    185 	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
    186 		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
    187 	      }
    188 	    }
    189 	  } else {
    190 	    /* Create a row of dummy blocks at the bottom of the image. */
    191 	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
    192 		      compptr->MCU_width * SIZEOF(JBLOCK));
    193 	    for (bi = 0; bi < compptr->MCU_width; bi++) {
    194 	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
    195 	    }
    196 	  }
    197 	  blkn += compptr->MCU_width;
    198 	  ypos += DCTSIZE;
    199 	}
    200       }
    201       /* Try to write the MCU.  In event of a suspension failure, we will
    202        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
    203        */
    204       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    205 	/* Suspension forced; update state counters and exit */
    206 	coef->MCU_vert_offset = yoffset;
    207 	coef->mcu_ctr = MCU_col_num;
    208 	return FALSE;
    209       }
    210     }
    211     /* Completed an MCU row, but perhaps not an iMCU row */
    212     coef->mcu_ctr = 0;
    213   }
    214   /* Completed the iMCU row, advance counters for next one */
    215   coef->iMCU_row_num++;
    216   start_iMCU_row(cinfo);
    217   return TRUE;
    218 }
    219 
    220 
    221 #ifdef FULL_COEF_BUFFER_SUPPORTED
    222 
    223 /*
    224  * Process some data in the first pass of a multi-pass case.
    225  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    226  * per call, ie, v_samp_factor block rows for each component in the image.
    227  * This amount of data is read from the source buffer, DCT'd and quantized,
    228  * and saved into the virtual arrays.  We also generate suitable dummy blocks
    229  * as needed at the right and lower edges.  (The dummy blocks are constructed
    230  * in the virtual arrays, which have been padded appropriately.)  This makes
    231  * it possible for subsequent passes not to worry about real vs. dummy blocks.
    232  *
    233  * We must also emit the data to the entropy encoder.  This is conveniently
    234  * done by calling compress_output() after we've loaded the current strip
    235  * of the virtual arrays.
    236  *
    237  * NB: input_buf contains a plane for each component in image.  All
    238  * components are DCT'd and loaded into the virtual arrays in this pass.
    239  * However, it may be that only a subset of the components are emitted to
    240  * the entropy encoder during this first pass; be careful about looking
    241  * at the scan-dependent variables (MCU dimensions, etc).
    242  */
    243 
    244 METHODDEF(boolean)
    245 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    246 {
    247   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    248   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    249   JDIMENSION blocks_across, MCUs_across, MCUindex;
    250   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
    251   JCOEF lastDC;
    252   jpeg_component_info *compptr;
    253   JBLOCKARRAY buffer;
    254   JBLOCKROW thisblockrow, lastblockrow;
    255 
    256   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    257        ci++, compptr++) {
    258     /* Align the virtual buffer for this component. */
    259     buffer = (*cinfo->mem->access_virt_barray)
    260       ((j_common_ptr) cinfo, coef->whole_image[ci],
    261        coef->iMCU_row_num * compptr->v_samp_factor,
    262        (JDIMENSION) compptr->v_samp_factor, TRUE);
    263     /* Count non-dummy DCT block rows in this iMCU row. */
    264     if (coef->iMCU_row_num < last_iMCU_row)
    265       block_rows = compptr->v_samp_factor;
    266     else {
    267       /* NB: can't use last_row_height here, since may not be set! */
    268       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    269       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    270     }
    271     blocks_across = compptr->width_in_blocks;
    272     h_samp_factor = compptr->h_samp_factor;
    273     /* Count number of dummy blocks to be added at the right margin. */
    274     ndummy = (int) (blocks_across % h_samp_factor);
    275     if (ndummy > 0)
    276       ndummy = h_samp_factor - ndummy;
    277     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
    278      * on forward_DCT processes a complete horizontal row of DCT blocks.
    279      */
    280     for (block_row = 0; block_row < block_rows; block_row++) {
    281       thisblockrow = buffer[block_row];
    282       (*cinfo->fdct->forward_DCT) (cinfo, compptr,
    283 				   input_buf[ci], thisblockrow,
    284 				   (JDIMENSION) (block_row * DCTSIZE),
    285 				   (JDIMENSION) 0, blocks_across);
    286       if (ndummy > 0) {
    287 	/* Create dummy blocks at the right edge of the image. */
    288 	thisblockrow += blocks_across; /* => first dummy block */
    289 	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
    290 	lastDC = thisblockrow[-1][0];
    291 	for (bi = 0; bi < ndummy; bi++) {
    292 	  thisblockrow[bi][0] = lastDC;
    293 	}
    294       }
    295     }
    296     /* If at end of image, create dummy block rows as needed.
    297      * The tricky part here is that within each MCU, we want the DC values
    298      * of the dummy blocks to match the last real block's DC value.
    299      * This squeezes a few more bytes out of the resulting file...
    300      */
    301     if (coef->iMCU_row_num == last_iMCU_row) {
    302       blocks_across += ndummy;	/* include lower right corner */
    303       MCUs_across = blocks_across / h_samp_factor;
    304       for (block_row = block_rows; block_row < compptr->v_samp_factor;
    305 	   block_row++) {
    306 	thisblockrow = buffer[block_row];
    307 	lastblockrow = buffer[block_row-1];
    308 	jzero_far((void FAR *) thisblockrow,
    309 		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
    310 	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
    311 	  lastDC = lastblockrow[h_samp_factor-1][0];
    312 	  for (bi = 0; bi < h_samp_factor; bi++) {
    313 	    thisblockrow[bi][0] = lastDC;
    314 	  }
    315 	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
    316 	  lastblockrow += h_samp_factor;
    317 	}
    318       }
    319     }
    320   }
    321   /* NB: compress_output will increment iMCU_row_num if successful.
    322    * A suspension return will result in redoing all the work above next time.
    323    */
    324 
    325   /* Emit data to the entropy encoder, sharing code with subsequent passes */
    326   return compress_output(cinfo, input_buf);
    327 }
    328 
    329 
    330 /*
    331  * Process some data in subsequent passes of a multi-pass case.
    332  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    333  * per call, ie, v_samp_factor block rows for each component in the scan.
    334  * The data is obtained from the virtual arrays and fed to the entropy coder.
    335  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    336  *
    337  * NB: input_buf is ignored; it is likely to be a NULL pointer.
    338  */
    339 
    340 METHODDEF(boolean)
    341 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    342 {
    343   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    344   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    345   int blkn, ci, xindex, yindex, yoffset;
    346   JDIMENSION start_col;
    347   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    348   JBLOCKROW buffer_ptr;
    349   jpeg_component_info *compptr;
    350 
    351   /* Align the virtual buffers for the components used in this scan.
    352    * NB: during first pass, this is safe only because the buffers will
    353    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
    354    */
    355   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    356     compptr = cinfo->cur_comp_info[ci];
    357     buffer[ci] = (*cinfo->mem->access_virt_barray)
    358       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    359        coef->iMCU_row_num * compptr->v_samp_factor,
    360        (JDIMENSION) compptr->v_samp_factor, FALSE);
    361   }
    362 
    363   /* Loop to process one whole iMCU row */
    364   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    365        yoffset++) {
    366     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
    367 	 MCU_col_num++) {
    368       /* Construct list of pointers to DCT blocks belonging to this MCU */
    369       blkn = 0;			/* index of current DCT block within MCU */
    370       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    371 	compptr = cinfo->cur_comp_info[ci];
    372 	start_col = MCU_col_num * compptr->MCU_width;
    373 	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    374 	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    375 	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    376 	    coef->MCU_buffer[blkn++] = buffer_ptr++;
    377 	  }
    378 	}
    379       }
    380       /* Try to write the MCU. */
    381       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    382 	/* Suspension forced; update state counters and exit */
    383 	coef->MCU_vert_offset = yoffset;
    384 	coef->mcu_ctr = MCU_col_num;
    385 	return FALSE;
    386       }
    387     }
    388     /* Completed an MCU row, but perhaps not an iMCU row */
    389     coef->mcu_ctr = 0;
    390   }
    391   /* Completed the iMCU row, advance counters for next one */
    392   coef->iMCU_row_num++;
    393   start_iMCU_row(cinfo);
    394   return TRUE;
    395 }
    396 
    397 #endif /* FULL_COEF_BUFFER_SUPPORTED */
    398 
    399 
    400 /*
    401  * Initialize coefficient buffer controller.
    402  */
    403 
    404 GLOBAL(void)
    405 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
    406 {
    407   my_coef_ptr coef;
    408 
    409   coef = (my_coef_ptr)
    410     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    411 				SIZEOF(my_coef_controller));
    412   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
    413   coef->pub.start_pass = start_pass_coef;
    414 
    415   /* Create the coefficient buffer. */
    416   if (need_full_buffer) {
    417 #ifdef FULL_COEF_BUFFER_SUPPORTED
    418     /* Allocate a full-image virtual array for each component, */
    419     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    420     int ci;
    421     jpeg_component_info *compptr;
    422 
    423     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    424 	 ci++, compptr++) {
    425       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    426 	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
    427 	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    428 				(long) compptr->h_samp_factor),
    429 	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    430 				(long) compptr->v_samp_factor),
    431 	 (JDIMENSION) compptr->v_samp_factor);
    432     }
    433 #else
    434     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    435 #endif
    436   } else {
    437     /* We only need a single-MCU buffer. */
    438     JBLOCKROW buffer;
    439     int i;
    440 
    441     buffer = (JBLOCKROW)
    442       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    443 				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    444     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
    445       coef->MCU_buffer[i] = buffer + i;
    446     }
    447     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
    448   }
    449 }
    450