Home | History | Annotate | Download | only in jpeg-6b
      1 /*
      2  * jcsample.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains downsampling routines.
      9  *
     10  * Downsampling input data is counted in "row groups".  A row group
     11  * is defined to be max_v_samp_factor pixel rows of each component,
     12  * from which the downsampler produces v_samp_factor sample rows.
     13  * A single row group is processed in each call to the downsampler module.
     14  *
     15  * The downsampler is responsible for edge-expansion of its output data
     16  * to fill an integral number of DCT blocks horizontally.  The source buffer
     17  * may be modified if it is helpful for this purpose (the source buffer is
     18  * allocated wide enough to correspond to the desired output width).
     19  * The caller (the prep controller) is responsible for vertical padding.
     20  *
     21  * The downsampler may request "context rows" by setting need_context_rows
     22  * during startup.  In this case, the input arrays will contain at least
     23  * one row group's worth of pixels above and below the passed-in data;
     24  * the caller will create dummy rows at image top and bottom by replicating
     25  * the first or last real pixel row.
     26  *
     27  * An excellent reference for image resampling is
     28  *   Digital Image Warping, George Wolberg, 1990.
     29  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
     30  *
     31  * The downsampling algorithm used here is a simple average of the source
     32  * pixels covered by the output pixel.  The hi-falutin sampling literature
     33  * refers to this as a "box filter".  In general the characteristics of a box
     34  * filter are not very good, but for the specific cases we normally use (1:1
     35  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
     36  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
     37  * advised to improve this code.
     38  *
     39  * A simple input-smoothing capability is provided.  This is mainly intended
     40  * for cleaning up color-dithered GIF input files (if you find it inadequate,
     41  * we suggest using an external filtering program such as pnmconvol).  When
     42  * enabled, each input pixel P is replaced by a weighted sum of itself and its
     43  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
     44  * where SF = (smoothing_factor / 1024).
     45  * Currently, smoothing is only supported for 2h2v sampling factors.
     46  */
     47 
     48 #define JPEG_INTERNALS
     49 #include "jinclude.h"
     50 #include "jpeglib.h"
     51 
     52 
     53 /* Pointer to routine to downsample a single component */
     54 typedef JMETHOD(void, downsample1_ptr,
     55 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
     56 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
     57 
     58 /* Private subobject */
     59 
     60 typedef struct {
     61   struct jpeg_downsampler pub;	/* public fields */
     62 
     63   /* Downsampling method pointers, one per component */
     64   downsample1_ptr methods[MAX_COMPONENTS];
     65 } my_downsampler;
     66 
     67 typedef my_downsampler * my_downsample_ptr;
     68 
     69 
     70 /*
     71  * Initialize for a downsampling pass.
     72  */
     73 
     74 METHODDEF(void)
     75 start_pass_downsample (j_compress_ptr cinfo)
     76 {
     77   /* no work for now */
     78 }
     79 
     80 
     81 /*
     82  * Expand a component horizontally from width input_cols to width output_cols,
     83  * by duplicating the rightmost samples.
     84  */
     85 
     86 LOCAL(void)
     87 expand_right_edge (JSAMPARRAY image_data, int num_rows,
     88 		   JDIMENSION input_cols, JDIMENSION output_cols)
     89 {
     90   register JSAMPROW ptr;
     91   register JSAMPLE pixval;
     92   register int count;
     93   int row;
     94   int numcols = (int) (output_cols - input_cols);
     95 
     96   if (numcols > 0) {
     97     for (row = 0; row < num_rows; row++) {
     98       ptr = image_data[row] + input_cols;
     99       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
    100       for (count = numcols; count > 0; count--)
    101 	*ptr++ = pixval;
    102     }
    103   }
    104 }
    105 
    106 
    107 /*
    108  * Do downsampling for a whole row group (all components).
    109  *
    110  * In this version we simply downsample each component independently.
    111  */
    112 
    113 METHODDEF(void)
    114 sep_downsample (j_compress_ptr cinfo,
    115 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
    116 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
    117 {
    118   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    119   int ci;
    120   jpeg_component_info * compptr;
    121   JSAMPARRAY in_ptr, out_ptr;
    122 
    123   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    124        ci++, compptr++) {
    125     in_ptr = input_buf[ci] + in_row_index;
    126     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
    127     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
    128   }
    129 }
    130 
    131 
    132 /*
    133  * Downsample pixel values of a single component.
    134  * One row group is processed per call.
    135  * This version handles arbitrary integral sampling ratios, without smoothing.
    136  * Note that this version is not actually used for customary sampling ratios.
    137  */
    138 
    139 METHODDEF(void)
    140 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    141 		JSAMPARRAY input_data, JSAMPARRAY output_data)
    142 {
    143   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
    144   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
    145   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    146   JSAMPROW inptr, outptr;
    147   INT32 outvalue;
    148 
    149   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
    150   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
    151   numpix = h_expand * v_expand;
    152   numpix2 = numpix/2;
    153 
    154   /* Expand input data enough to let all the output samples be generated
    155    * by the standard loop.  Special-casing padded output would be more
    156    * efficient.
    157    */
    158   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    159 		    cinfo->image_width, output_cols * h_expand);
    160 
    161   inrow = 0;
    162   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    163     outptr = output_data[outrow];
    164     for (outcol = 0, outcol_h = 0; outcol < output_cols;
    165 	 outcol++, outcol_h += h_expand) {
    166       outvalue = 0;
    167       for (v = 0; v < v_expand; v++) {
    168 	inptr = input_data[inrow+v] + outcol_h;
    169 	for (h = 0; h < h_expand; h++) {
    170 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
    171 	}
    172       }
    173       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    174     }
    175     inrow += v_expand;
    176   }
    177 }
    178 
    179 
    180 /*
    181  * Downsample pixel values of a single component.
    182  * This version handles the special case of a full-size component,
    183  * without smoothing.
    184  */
    185 
    186 METHODDEF(void)
    187 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    188 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
    189 {
    190   /* Copy the data */
    191   jcopy_sample_rows(input_data, 0, output_data, 0,
    192 		    cinfo->max_v_samp_factor, cinfo->image_width);
    193   /* Edge-expand */
    194   expand_right_edge(output_data, cinfo->max_v_samp_factor,
    195 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
    196 }
    197 
    198 
    199 /*
    200  * Downsample pixel values of a single component.
    201  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
    202  * without smoothing.
    203  *
    204  * A note about the "bias" calculations: when rounding fractional values to
    205  * integer, we do not want to always round 0.5 up to the next integer.
    206  * If we did that, we'd introduce a noticeable bias towards larger values.
    207  * Instead, this code is arranged so that 0.5 will be rounded up or down at
    208  * alternate pixel locations (a simple ordered dither pattern).
    209  */
    210 
    211 METHODDEF(void)
    212 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    213 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    214 {
    215   int outrow;
    216   JDIMENSION outcol;
    217   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    218   register JSAMPROW inptr, outptr;
    219   register int bias;
    220 
    221   /* Expand input data enough to let all the output samples be generated
    222    * by the standard loop.  Special-casing padded output would be more
    223    * efficient.
    224    */
    225   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    226 		    cinfo->image_width, output_cols * 2);
    227 
    228   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    229     outptr = output_data[outrow];
    230     inptr = input_data[outrow];
    231     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
    232     for (outcol = 0; outcol < output_cols; outcol++) {
    233       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
    234 			      + bias) >> 1);
    235       bias ^= 1;		/* 0=>1, 1=>0 */
    236       inptr += 2;
    237     }
    238   }
    239 }
    240 
    241 
    242 /*
    243  * Downsample pixel values of a single component.
    244  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    245  * without smoothing.
    246  */
    247 
    248 METHODDEF(void)
    249 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    250 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    251 {
    252   int inrow, outrow;
    253   JDIMENSION outcol;
    254   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    255   register JSAMPROW inptr0, inptr1, outptr;
    256   register int bias;
    257 
    258   /* Expand input data enough to let all the output samples be generated
    259    * by the standard loop.  Special-casing padded output would be more
    260    * efficient.
    261    */
    262   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    263 		    cinfo->image_width, output_cols * 2);
    264 
    265   inrow = 0;
    266   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    267     outptr = output_data[outrow];
    268     inptr0 = input_data[inrow];
    269     inptr1 = input_data[inrow+1];
    270     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
    271     for (outcol = 0; outcol < output_cols; outcol++) {
    272       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    273 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
    274 			      + bias) >> 2);
    275       bias ^= 3;		/* 1=>2, 2=>1 */
    276       inptr0 += 2; inptr1 += 2;
    277     }
    278     inrow += 2;
    279   }
    280 }
    281 
    282 
    283 #ifdef INPUT_SMOOTHING_SUPPORTED
    284 
    285 /*
    286  * Downsample pixel values of a single component.
    287  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    288  * with smoothing.  One row of context is required.
    289  */
    290 
    291 METHODDEF(void)
    292 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    293 			JSAMPARRAY input_data, JSAMPARRAY output_data)
    294 {
    295   int inrow, outrow;
    296   JDIMENSION colctr;
    297   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    298   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
    299   INT32 membersum, neighsum, memberscale, neighscale;
    300 
    301   /* Expand input data enough to let all the output samples be generated
    302    * by the standard loop.  Special-casing padded output would be more
    303    * efficient.
    304    */
    305   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    306 		    cinfo->image_width, output_cols * 2);
    307 
    308   /* We don't bother to form the individual "smoothed" input pixel values;
    309    * we can directly compute the output which is the average of the four
    310    * smoothed values.  Each of the four member pixels contributes a fraction
    311    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
    312    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
    313    * output.  The four corner-adjacent neighbor pixels contribute a fraction
    314    * SF to just one smoothed pixel, or SF/4 to the final output; while the
    315    * eight edge-adjacent neighbors contribute SF to each of two smoothed
    316    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
    317    * factors are scaled by 2^16 = 65536.
    318    * Also recall that SF = smoothing_factor / 1024.
    319    */
    320 
    321   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
    322   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
    323 
    324   inrow = 0;
    325   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    326     outptr = output_data[outrow];
    327     inptr0 = input_data[inrow];
    328     inptr1 = input_data[inrow+1];
    329     above_ptr = input_data[inrow-1];
    330     below_ptr = input_data[inrow+2];
    331 
    332     /* Special case for first column: pretend column -1 is same as column 0 */
    333     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    334 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    335     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    336 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    337 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
    338 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    339     neighsum += neighsum;
    340     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
    341 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    342     membersum = membersum * memberscale + neighsum * neighscale;
    343     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    344     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    345 
    346     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    347       /* sum of pixels directly mapped to this output element */
    348       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    349 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    350       /* sum of edge-neighbor pixels */
    351       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    352 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    353 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
    354 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
    355       /* The edge-neighbors count twice as much as corner-neighbors */
    356       neighsum += neighsum;
    357       /* Add in the corner-neighbors */
    358       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
    359 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
    360       /* form final output scaled up by 2^16 */
    361       membersum = membersum * memberscale + neighsum * neighscale;
    362       /* round, descale and output it */
    363       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    364       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    365     }
    366 
    367     /* Special case for last column */
    368     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    369 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    370     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    371 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    372 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
    373 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    374     neighsum += neighsum;
    375     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
    376 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    377     membersum = membersum * memberscale + neighsum * neighscale;
    378     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    379 
    380     inrow += 2;
    381   }
    382 }
    383 
    384 
    385 /*
    386  * Downsample pixel values of a single component.
    387  * This version handles the special case of a full-size component,
    388  * with smoothing.  One row of context is required.
    389  */
    390 
    391 METHODDEF(void)
    392 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    393 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
    394 {
    395   int outrow;
    396   JDIMENSION colctr;
    397   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    398   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
    399   INT32 membersum, neighsum, memberscale, neighscale;
    400   int colsum, lastcolsum, nextcolsum;
    401 
    402   /* Expand input data enough to let all the output samples be generated
    403    * by the standard loop.  Special-casing padded output would be more
    404    * efficient.
    405    */
    406   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    407 		    cinfo->image_width, output_cols);
    408 
    409   /* Each of the eight neighbor pixels contributes a fraction SF to the
    410    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
    411    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
    412    * Also recall that SF = smoothing_factor / 1024.
    413    */
    414 
    415   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
    416   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
    417 
    418   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    419     outptr = output_data[outrow];
    420     inptr = input_data[outrow];
    421     above_ptr = input_data[outrow-1];
    422     below_ptr = input_data[outrow+1];
    423 
    424     /* Special case for first column */
    425     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
    426 	     GETJSAMPLE(*inptr);
    427     membersum = GETJSAMPLE(*inptr++);
    428     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    429 		 GETJSAMPLE(*inptr);
    430     neighsum = colsum + (colsum - membersum) + nextcolsum;
    431     membersum = membersum * memberscale + neighsum * neighscale;
    432     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    433     lastcolsum = colsum; colsum = nextcolsum;
    434 
    435     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    436       membersum = GETJSAMPLE(*inptr++);
    437       above_ptr++; below_ptr++;
    438       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    439 		   GETJSAMPLE(*inptr);
    440       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
    441       membersum = membersum * memberscale + neighsum * neighscale;
    442       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    443       lastcolsum = colsum; colsum = nextcolsum;
    444     }
    445 
    446     /* Special case for last column */
    447     membersum = GETJSAMPLE(*inptr);
    448     neighsum = lastcolsum + (colsum - membersum) + colsum;
    449     membersum = membersum * memberscale + neighsum * neighscale;
    450     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    451 
    452   }
    453 }
    454 
    455 #endif /* INPUT_SMOOTHING_SUPPORTED */
    456 
    457 
    458 /*
    459  * Module initialization routine for downsampling.
    460  * Note that we must select a routine for each component.
    461  */
    462 
    463 GLOBAL(void)
    464 jinit_downsampler (j_compress_ptr cinfo)
    465 {
    466   my_downsample_ptr downsample;
    467   int ci;
    468   jpeg_component_info * compptr;
    469   boolean smoothok = TRUE;
    470 
    471   downsample = (my_downsample_ptr)
    472     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    473 				SIZEOF(my_downsampler));
    474   cinfo->downsample = (struct jpeg_downsampler *) downsample;
    475   downsample->pub.start_pass = start_pass_downsample;
    476   downsample->pub.downsample = sep_downsample;
    477   downsample->pub.need_context_rows = FALSE;
    478 
    479   if (cinfo->CCIR601_sampling)
    480     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
    481 
    482   /* Verify we can handle the sampling factors, and set up method pointers */
    483   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    484        ci++, compptr++) {
    485     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
    486 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    487 #ifdef INPUT_SMOOTHING_SUPPORTED
    488       if (cinfo->smoothing_factor) {
    489 	downsample->methods[ci] = fullsize_smooth_downsample;
    490 	downsample->pub.need_context_rows = TRUE;
    491       } else
    492 #endif
    493 	downsample->methods[ci] = fullsize_downsample;
    494     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    495 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    496       smoothok = FALSE;
    497       downsample->methods[ci] = h2v1_downsample;
    498     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    499 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
    500 #ifdef INPUT_SMOOTHING_SUPPORTED
    501       if (cinfo->smoothing_factor) {
    502 	downsample->methods[ci] = h2v2_smooth_downsample;
    503 	downsample->pub.need_context_rows = TRUE;
    504       } else
    505 #endif
    506 	downsample->methods[ci] = h2v2_downsample;
    507     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
    508 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
    509       smoothok = FALSE;
    510       downsample->methods[ci] = int_downsample;
    511     } else
    512       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    513   }
    514 
    515 #ifdef INPUT_SMOOTHING_SUPPORTED
    516   if (cinfo->smoothing_factor && !smoothok)
    517     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
    518 #endif
    519 }
    520