Home | History | Annotate | Download | only in jpeg-6b
      1 /*
      2  * jmemmgr.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the JPEG system-independent memory management
      9  * routines.  This code is usable across a wide variety of machines; most
     10  * of the system dependencies have been isolated in a separate file.
     11  * The major functions provided here are:
     12  *   * pool-based allocation and freeing of memory;
     13  *   * policy decisions about how to divide available memory among the
     14  *     virtual arrays;
     15  *   * control logic for swapping virtual arrays between main memory and
     16  *     backing storage.
     17  * The separate system-dependent file provides the actual backing-storage
     18  * access code, and it contains the policy decision about how much total
     19  * main memory to use.
     20  * This file is system-dependent in the sense that some of its functions
     21  * are unnecessary in some systems.  For example, if there is enough virtual
     22  * memory so that backing storage will never be used, much of the virtual
     23  * array control logic could be removed.  (Of course, if you have that much
     24  * memory then you shouldn't care about a little bit of unused code...)
     25  */
     26 
     27 #define JPEG_INTERNALS
     28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
     29 #include "jinclude.h"
     30 #include "jpeglib.h"
     31 #include "jmemsys.h"		/* import the system-dependent declarations */
     32 
     33 #ifndef NO_GETENV
     34 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
     35 extern char * getenv JPP((const char * name));
     36 #endif
     37 #endif
     38 
     39 
     40 /*
     41  * Some important notes:
     42  *   The allocation routines provided here must never return NULL.
     43  *   They should exit to error_exit if unsuccessful.
     44  *
     45  *   It's not a good idea to try to merge the sarray and barray routines,
     46  *   even though they are textually almost the same, because samples are
     47  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     48  *   in machines where byte pointers have a different representation from
     49  *   word pointers, the resulting machine code could not be the same.
     50  */
     51 
     52 
     53 /*
     54  * Many machines require storage alignment: longs must start on 4-byte
     55  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     56  * always returns pointers that are multiples of the worst-case alignment
     57  * requirement, and we had better do so too.
     58  * There isn't any really portable way to determine the worst-case alignment
     59  * requirement.  This module assumes that the alignment requirement is
     60  * multiples of sizeof(ALIGN_TYPE).
     61  * By default, we define ALIGN_TYPE as double.  This is necessary on some
     62  * workstations (where doubles really do need 8-byte alignment) and will work
     63  * fine on nearly everything.  If your machine has lesser alignment needs,
     64  * you can save a few bytes by making ALIGN_TYPE smaller.
     65  * The only place I know of where this will NOT work is certain Macintosh
     66  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     67  * Doing 10-byte alignment is counterproductive because longwords won't be
     68  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
     69  * such a compiler.
     70  */
     71 
     72 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
     73 #define ALIGN_TYPE  double
     74 #endif
     75 
     76 
     77 /*
     78  * We allocate objects from "pools", where each pool is gotten with a single
     79  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     80  * overhead within a pool, except for alignment padding.  Each pool has a
     81  * header with a link to the next pool of the same class.
     82  * Small and large pool headers are identical except that the latter's
     83  * link pointer must be FAR on 80x86 machines.
     84  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
     85  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
     86  * of the alignment requirement of ALIGN_TYPE.
     87  */
     88 
     89 typedef union small_pool_struct * small_pool_ptr;
     90 
     91 typedef union small_pool_struct {
     92   struct {
     93     small_pool_ptr next;	/* next in list of pools */
     94     size_t bytes_used;		/* how many bytes already used within pool */
     95     size_t bytes_left;		/* bytes still available in this pool */
     96   } hdr;
     97   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
     98 } small_pool_hdr;
     99 
    100 typedef union large_pool_struct FAR * large_pool_ptr;
    101 
    102 typedef union large_pool_struct {
    103   struct {
    104     large_pool_ptr next;	/* next in list of pools */
    105     size_t bytes_used;		/* how many bytes already used within pool */
    106     size_t bytes_left;		/* bytes still available in this pool */
    107   } hdr;
    108   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    109 } large_pool_hdr;
    110 
    111 
    112 /*
    113  * Here is the full definition of a memory manager object.
    114  */
    115 
    116 typedef struct {
    117   struct jpeg_memory_mgr pub;	/* public fields */
    118 
    119   /* Each pool identifier (lifetime class) names a linked list of pools. */
    120   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    121   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    122 
    123   /* Since we only have one lifetime class of virtual arrays, only one
    124    * linked list is necessary (for each datatype).  Note that the virtual
    125    * array control blocks being linked together are actually stored somewhere
    126    * in the small-pool list.
    127    */
    128   jvirt_sarray_ptr virt_sarray_list;
    129   jvirt_barray_ptr virt_barray_list;
    130 
    131   /* This counts total space obtained from jpeg_get_small/large */
    132   long total_space_allocated;
    133 
    134   /* alloc_sarray and alloc_barray set this value for use by virtual
    135    * array routines.
    136    */
    137   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
    138 } my_memory_mgr;
    139 
    140 typedef my_memory_mgr * my_mem_ptr;
    141 
    142 
    143 /*
    144  * The control blocks for virtual arrays.
    145  * Note that these blocks are allocated in the "small" pool area.
    146  * System-dependent info for the associated backing store (if any) is hidden
    147  * inside the backing_store_info struct.
    148  */
    149 
    150 struct jvirt_sarray_control {
    151   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
    152   JDIMENSION rows_in_array;	/* total virtual array height */
    153   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
    154   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
    155   JDIMENSION rows_in_mem;	/* height of memory buffer */
    156   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    157   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    158   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    159   boolean pre_zero;		/* pre-zero mode requested? */
    160   boolean dirty;		/* do current buffer contents need written? */
    161   boolean b_s_open;		/* is backing-store data valid? */
    162   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
    163   backing_store_info b_s_info;	/* System-dependent control info */
    164 };
    165 
    166 struct jvirt_barray_control {
    167   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
    168   JDIMENSION rows_in_array;	/* total virtual array height */
    169   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
    170   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
    171   JDIMENSION rows_in_mem;	/* height of memory buffer */
    172   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    173   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    174   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    175   boolean pre_zero;		/* pre-zero mode requested? */
    176   boolean dirty;		/* do current buffer contents need written? */
    177   boolean b_s_open;		/* is backing-store data valid? */
    178   jvirt_barray_ptr next;	/* link to next virtual barray control block */
    179   backing_store_info b_s_info;	/* System-dependent control info */
    180 };
    181 
    182 
    183 #ifdef MEM_STATS		/* optional extra stuff for statistics */
    184 
    185 LOCAL(void)
    186 print_mem_stats (j_common_ptr cinfo, int pool_id)
    187 {
    188   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    189   small_pool_ptr shdr_ptr;
    190   large_pool_ptr lhdr_ptr;
    191 
    192   /* Since this is only a debugging stub, we can cheat a little by using
    193    * fprintf directly rather than going through the trace message code.
    194    * This is helpful because message parm array can't handle longs.
    195    */
    196   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    197 	  pool_id, mem->total_space_allocated);
    198 
    199   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    200        lhdr_ptr = lhdr_ptr->hdr.next) {
    201     fprintf(stderr, "  Large chunk used %ld\n",
    202 	    (long) lhdr_ptr->hdr.bytes_used);
    203   }
    204 
    205   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    206        shdr_ptr = shdr_ptr->hdr.next) {
    207     fprintf(stderr, "  Small chunk used %ld free %ld\n",
    208 	    (long) shdr_ptr->hdr.bytes_used,
    209 	    (long) shdr_ptr->hdr.bytes_left);
    210   }
    211 }
    212 
    213 #endif /* MEM_STATS */
    214 
    215 
    216 LOCAL(void)
    217 out_of_memory (j_common_ptr cinfo, int which)
    218 /* Report an out-of-memory error and stop execution */
    219 /* If we compiled MEM_STATS support, report alloc requests before dying */
    220 {
    221 #ifdef MEM_STATS
    222   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
    223 #endif
    224   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    225 }
    226 
    227 
    228 /*
    229  * Allocation of "small" objects.
    230  *
    231  * For these, we use pooled storage.  When a new pool must be created,
    232  * we try to get enough space for the current request plus a "slop" factor,
    233  * where the slop will be the amount of leftover space in the new pool.
    234  * The speed vs. space tradeoff is largely determined by the slop values.
    235  * A different slop value is provided for each pool class (lifetime),
    236  * and we also distinguish the first pool of a class from later ones.
    237  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    238  * machines, but may be too small if longs are 64 bits or more.
    239  */
    240 
    241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    242 {
    243 	1600,			/* first PERMANENT pool */
    244 	16000			/* first IMAGE pool */
    245 };
    246 
    247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    248 {
    249 	0,			/* additional PERMANENT pools */
    250 	5000			/* additional IMAGE pools */
    251 };
    252 
    253 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
    254 
    255 
    256 METHODDEF(void *)
    257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    258 /* Allocate a "small" object */
    259 {
    260   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    261   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    262   char * data_ptr;
    263   size_t odd_bytes, min_request, slop;
    264 
    265   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    266   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
    267     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
    268 
    269   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    270   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    271   if (odd_bytes > 0)
    272     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    273 
    274   /* See if space is available in any existing pool */
    275   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    276     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    277   prev_hdr_ptr = NULL;
    278   hdr_ptr = mem->small_list[pool_id];
    279   while (hdr_ptr != NULL) {
    280     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
    281       break;			/* found pool with enough space */
    282     prev_hdr_ptr = hdr_ptr;
    283     hdr_ptr = hdr_ptr->hdr.next;
    284   }
    285 
    286   /* Time to make a new pool? */
    287   if (hdr_ptr == NULL) {
    288     /* min_request is what we need now, slop is what will be leftover */
    289     min_request = sizeofobject + SIZEOF(small_pool_hdr);
    290     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    291       slop = first_pool_slop[pool_id];
    292     else
    293       slop = extra_pool_slop[pool_id];
    294     /* Don't ask for more than MAX_ALLOC_CHUNK */
    295     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    296       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    297     /* Try to get space, if fail reduce slop and try again */
    298     for (;;) {
    299       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    300       if (hdr_ptr != NULL)
    301 	break;
    302       slop /= 2;
    303       if (slop < MIN_SLOP)	/* give up when it gets real small */
    304 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    305     }
    306     mem->total_space_allocated += min_request + slop;
    307     /* Success, initialize the new pool header and add to end of list */
    308     hdr_ptr->hdr.next = NULL;
    309     hdr_ptr->hdr.bytes_used = 0;
    310     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    311     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    312       mem->small_list[pool_id] = hdr_ptr;
    313     else
    314       prev_hdr_ptr->hdr.next = hdr_ptr;
    315   }
    316 
    317   /* OK, allocate the object from the current pool */
    318   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
    319   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
    320   hdr_ptr->hdr.bytes_used += sizeofobject;
    321   hdr_ptr->hdr.bytes_left -= sizeofobject;
    322 
    323   return (void *) data_ptr;
    324 }
    325 
    326 
    327 /*
    328  * Allocation of "large" objects.
    329  *
    330  * The external semantics of these are the same as "small" objects,
    331  * except that FAR pointers are used on 80x86.  However the pool
    332  * management heuristics are quite different.  We assume that each
    333  * request is large enough that it may as well be passed directly to
    334  * jpeg_get_large; the pool management just links everything together
    335  * so that we can free it all on demand.
    336  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    337  * structures.  The routines that create these structures (see below)
    338  * deliberately bunch rows together to ensure a large request size.
    339  */
    340 
    341 METHODDEF(void FAR *)
    342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    343 /* Allocate a "large" object */
    344 {
    345   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    346   large_pool_ptr hdr_ptr;
    347   size_t odd_bytes;
    348 
    349   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    350   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
    351     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
    352 
    353   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    354   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    355   if (odd_bytes > 0)
    356     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    357 
    358   /* Always make a new pool */
    359   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    360     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    361 
    362   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    363 					    SIZEOF(large_pool_hdr));
    364   if (hdr_ptr == NULL)
    365     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
    366   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
    367 
    368   /* Success, initialize the new pool header and add to list */
    369   hdr_ptr->hdr.next = mem->large_list[pool_id];
    370   /* We maintain space counts in each pool header for statistical purposes,
    371    * even though they are not needed for allocation.
    372    */
    373   hdr_ptr->hdr.bytes_used = sizeofobject;
    374   hdr_ptr->hdr.bytes_left = 0;
    375   mem->large_list[pool_id] = hdr_ptr;
    376 
    377   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
    378 }
    379 
    380 
    381 /*
    382  * Creation of 2-D sample arrays.
    383  * The pointers are in near heap, the samples themselves in FAR heap.
    384  *
    385  * To minimize allocation overhead and to allow I/O of large contiguous
    386  * blocks, we allocate the sample rows in groups of as many rows as possible
    387  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    388  * NB: the virtual array control routines, later in this file, know about
    389  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    390  * object so that it can be saved away if this sarray is the workspace for
    391  * a virtual array.
    392  */
    393 
    394 METHODDEF(JSAMPARRAY)
    395 alloc_sarray (j_common_ptr cinfo, int pool_id,
    396 	      JDIMENSION samplesperrow, JDIMENSION numrows)
    397 /* Allocate a 2-D sample array */
    398 {
    399   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    400   JSAMPARRAY result;
    401   JSAMPROW workspace;
    402   JDIMENSION rowsperchunk, currow, i;
    403   long ltemp;
    404 
    405   /* Calculate max # of rows allowed in one allocation chunk */
    406   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    407 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
    408   if (ltemp <= 0)
    409     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    410   if (ltemp < (long) numrows)
    411     rowsperchunk = (JDIMENSION) ltemp;
    412   else
    413     rowsperchunk = numrows;
    414   mem->last_rowsperchunk = rowsperchunk;
    415 
    416   /* Get space for row pointers (small object) */
    417   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    418 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
    419 
    420   /* Get the rows themselves (large objects) */
    421   currow = 0;
    422   while (currow < numrows) {
    423     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    424     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    425 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    426 		  * SIZEOF(JSAMPLE)));
    427     for (i = rowsperchunk; i > 0; i--) {
    428       result[currow++] = workspace;
    429       workspace += samplesperrow;
    430     }
    431   }
    432 
    433   return result;
    434 }
    435 
    436 
    437 /*
    438  * Creation of 2-D coefficient-block arrays.
    439  * This is essentially the same as the code for sample arrays, above.
    440  */
    441 
    442 METHODDEF(JBLOCKARRAY)
    443 alloc_barray (j_common_ptr cinfo, int pool_id,
    444 	      JDIMENSION blocksperrow, JDIMENSION numrows)
    445 /* Allocate a 2-D coefficient-block array */
    446 {
    447   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    448   JBLOCKARRAY result;
    449   JBLOCKROW workspace;
    450   JDIMENSION rowsperchunk, currow, i;
    451   long ltemp;
    452 
    453   /* Calculate max # of rows allowed in one allocation chunk */
    454   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    455 	  ((long) blocksperrow * SIZEOF(JBLOCK));
    456   if (ltemp <= 0)
    457     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    458   if (ltemp < (long) numrows)
    459     rowsperchunk = (JDIMENSION) ltemp;
    460   else
    461     rowsperchunk = numrows;
    462   mem->last_rowsperchunk = rowsperchunk;
    463 
    464   /* Get space for row pointers (small object) */
    465   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    466 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
    467 
    468   /* Get the rows themselves (large objects) */
    469   currow = 0;
    470   while (currow < numrows) {
    471     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    472     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    473 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    474 		  * SIZEOF(JBLOCK)));
    475     for (i = rowsperchunk; i > 0; i--) {
    476       result[currow++] = workspace;
    477       workspace += blocksperrow;
    478     }
    479   }
    480 
    481   return result;
    482 }
    483 
    484 
    485 /*
    486  * About virtual array management:
    487  *
    488  * The above "normal" array routines are only used to allocate strip buffers
    489  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    490  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    491  * time, but the memory manager must save the whole array for repeated
    492  * accesses.  The intended implementation is that there is a strip buffer in
    493  * memory (as high as is possible given the desired memory limit), plus a
    494  * backing file that holds the rest of the array.
    495  *
    496  * The request_virt_array routines are told the total size of the image and
    497  * the maximum number of rows that will be accessed at once.  The in-memory
    498  * buffer must be at least as large as the maxaccess value.
    499  *
    500  * The request routines create control blocks but not the in-memory buffers.
    501  * That is postponed until realize_virt_arrays is called.  At that time the
    502  * total amount of space needed is known (approximately, anyway), so free
    503  * memory can be divided up fairly.
    504  *
    505  * The access_virt_array routines are responsible for making a specific strip
    506  * area accessible (after reading or writing the backing file, if necessary).
    507  * Note that the access routines are told whether the caller intends to modify
    508  * the accessed strip; during a read-only pass this saves having to rewrite
    509  * data to disk.  The access routines are also responsible for pre-zeroing
    510  * any newly accessed rows, if pre-zeroing was requested.
    511  *
    512  * In current usage, the access requests are usually for nonoverlapping
    513  * strips; that is, successive access start_row numbers differ by exactly
    514  * num_rows = maxaccess.  This means we can get good performance with simple
    515  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    516  * of the access height; then there will never be accesses across bufferload
    517  * boundaries.  The code will still work with overlapping access requests,
    518  * but it doesn't handle bufferload overlaps very efficiently.
    519  */
    520 
    521 
    522 METHODDEF(jvirt_sarray_ptr)
    523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    524 		     JDIMENSION samplesperrow, JDIMENSION numrows,
    525 		     JDIMENSION maxaccess)
    526 /* Request a virtual 2-D sample array */
    527 {
    528   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    529   jvirt_sarray_ptr result;
    530 
    531   /* Only IMAGE-lifetime virtual arrays are currently supported */
    532   if (pool_id != JPOOL_IMAGE)
    533     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    534 
    535   /* get control block */
    536   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    537 					  SIZEOF(struct jvirt_sarray_control));
    538 
    539   result->mem_buffer = NULL;	/* marks array not yet realized */
    540   result->rows_in_array = numrows;
    541   result->samplesperrow = samplesperrow;
    542   result->maxaccess = maxaccess;
    543   result->pre_zero = pre_zero;
    544   result->b_s_open = FALSE;	/* no associated backing-store object */
    545   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    546   mem->virt_sarray_list = result;
    547 
    548   return result;
    549 }
    550 
    551 
    552 METHODDEF(jvirt_barray_ptr)
    553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    554 		     JDIMENSION blocksperrow, JDIMENSION numrows,
    555 		     JDIMENSION maxaccess)
    556 /* Request a virtual 2-D coefficient-block array */
    557 {
    558   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    559   jvirt_barray_ptr result;
    560 
    561   /* Only IMAGE-lifetime virtual arrays are currently supported */
    562   if (pool_id != JPOOL_IMAGE)
    563     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    564 
    565   /* get control block */
    566   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    567 					  SIZEOF(struct jvirt_barray_control));
    568 
    569   result->mem_buffer = NULL;	/* marks array not yet realized */
    570   result->rows_in_array = numrows;
    571   result->blocksperrow = blocksperrow;
    572   result->maxaccess = maxaccess;
    573   result->pre_zero = pre_zero;
    574   result->b_s_open = FALSE;	/* no associated backing-store object */
    575   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    576   mem->virt_barray_list = result;
    577 
    578   return result;
    579 }
    580 
    581 
    582 METHODDEF(void)
    583 realize_virt_arrays (j_common_ptr cinfo)
    584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    585 {
    586   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    587   long space_per_minheight, maximum_space, avail_mem;
    588   long minheights, max_minheights;
    589   jvirt_sarray_ptr sptr;
    590   jvirt_barray_ptr bptr;
    591 
    592   /* Compute the minimum space needed (maxaccess rows in each buffer)
    593    * and the maximum space needed (full image height in each buffer).
    594    * These may be of use to the system-dependent jpeg_mem_available routine.
    595    */
    596   space_per_minheight = 0;
    597   maximum_space = 0;
    598   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    599     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    600       space_per_minheight += (long) sptr->maxaccess *
    601 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    602       maximum_space += (long) sptr->rows_in_array *
    603 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    604     }
    605   }
    606   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    607     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    608       space_per_minheight += (long) bptr->maxaccess *
    609 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    610       maximum_space += (long) bptr->rows_in_array *
    611 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    612     }
    613   }
    614 
    615   if (space_per_minheight <= 0)
    616     return;			/* no unrealized arrays, no work */
    617 
    618   /* Determine amount of memory to actually use; this is system-dependent. */
    619   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    620 				 mem->total_space_allocated);
    621 
    622   /* If the maximum space needed is available, make all the buffers full
    623    * height; otherwise parcel it out with the same number of minheights
    624    * in each buffer.
    625    */
    626   if (avail_mem >= maximum_space)
    627     max_minheights = 1000000000L;
    628   else {
    629     max_minheights = avail_mem / space_per_minheight;
    630     /* If there doesn't seem to be enough space, try to get the minimum
    631      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    632      */
    633     if (max_minheights <= 0)
    634       max_minheights = 1;
    635   }
    636 
    637   /* Allocate the in-memory buffers and initialize backing store as needed. */
    638 
    639   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    640     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    641       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    642       if (minheights <= max_minheights) {
    643 	/* This buffer fits in memory */
    644 	sptr->rows_in_mem = sptr->rows_in_array;
    645       } else {
    646 	/* It doesn't fit in memory, create backing store. */
    647 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    648 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    649 				(long) sptr->rows_in_array *
    650 				(long) sptr->samplesperrow *
    651 				(long) SIZEOF(JSAMPLE));
    652 	sptr->b_s_open = TRUE;
    653       }
    654       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    655 				      sptr->samplesperrow, sptr->rows_in_mem);
    656       sptr->rowsperchunk = mem->last_rowsperchunk;
    657       sptr->cur_start_row = 0;
    658       sptr->first_undef_row = 0;
    659       sptr->dirty = FALSE;
    660     }
    661   }
    662 
    663   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    664     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    665       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    666       if (minheights <= max_minheights) {
    667 	/* This buffer fits in memory */
    668 	bptr->rows_in_mem = bptr->rows_in_array;
    669       } else {
    670 	/* It doesn't fit in memory, create backing store. */
    671 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    672 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    673 				(long) bptr->rows_in_array *
    674 				(long) bptr->blocksperrow *
    675 				(long) SIZEOF(JBLOCK));
    676 	bptr->b_s_open = TRUE;
    677       }
    678       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    679 				      bptr->blocksperrow, bptr->rows_in_mem);
    680       bptr->rowsperchunk = mem->last_rowsperchunk;
    681       bptr->cur_start_row = 0;
    682       bptr->first_undef_row = 0;
    683       bptr->dirty = FALSE;
    684     }
    685   }
    686 }
    687 
    688 
    689 LOCAL(void)
    690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    691 /* Do backing store read or write of a virtual sample array */
    692 {
    693   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    694 
    695   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
    696   file_offset = ptr->cur_start_row * bytesperrow;
    697   /* Loop to read or write each allocation chunk in mem_buffer */
    698   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    699     /* One chunk, but check for short chunk at end of buffer */
    700     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    701     /* Transfer no more than is currently defined */
    702     thisrow = (long) ptr->cur_start_row + i;
    703     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    704     /* Transfer no more than fits in file */
    705     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    706     if (rows <= 0)		/* this chunk might be past end of file! */
    707       break;
    708     byte_count = rows * bytesperrow;
    709     if (writing)
    710       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    711 					    (void FAR *) ptr->mem_buffer[i],
    712 					    file_offset, byte_count);
    713     else
    714       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    715 					   (void FAR *) ptr->mem_buffer[i],
    716 					   file_offset, byte_count);
    717     file_offset += byte_count;
    718   }
    719 }
    720 
    721 
    722 LOCAL(void)
    723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    724 /* Do backing store read or write of a virtual coefficient-block array */
    725 {
    726   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    727 
    728   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
    729   file_offset = ptr->cur_start_row * bytesperrow;
    730   /* Loop to read or write each allocation chunk in mem_buffer */
    731   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    732     /* One chunk, but check for short chunk at end of buffer */
    733     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    734     /* Transfer no more than is currently defined */
    735     thisrow = (long) ptr->cur_start_row + i;
    736     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    737     /* Transfer no more than fits in file */
    738     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    739     if (rows <= 0)		/* this chunk might be past end of file! */
    740       break;
    741     byte_count = rows * bytesperrow;
    742     if (writing)
    743       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    744 					    (void FAR *) ptr->mem_buffer[i],
    745 					    file_offset, byte_count);
    746     else
    747       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    748 					   (void FAR *) ptr->mem_buffer[i],
    749 					   file_offset, byte_count);
    750     file_offset += byte_count;
    751   }
    752 }
    753 
    754 
    755 METHODDEF(JSAMPARRAY)
    756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    757 		    JDIMENSION start_row, JDIMENSION num_rows,
    758 		    boolean writable)
    759 /* Access the part of a virtual sample array starting at start_row */
    760 /* and extending for num_rows rows.  writable is true if  */
    761 /* caller intends to modify the accessed area. */
    762 {
    763   JDIMENSION end_row = start_row + num_rows;
    764   JDIMENSION undef_row;
    765 
    766   /* debugging check */
    767   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    768       ptr->mem_buffer == NULL)
    769     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    770 
    771   /* Make the desired part of the virtual array accessible */
    772   if (start_row < ptr->cur_start_row ||
    773       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    774     if (! ptr->b_s_open)
    775       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    776     /* Flush old buffer contents if necessary */
    777     if (ptr->dirty) {
    778       do_sarray_io(cinfo, ptr, TRUE);
    779       ptr->dirty = FALSE;
    780     }
    781     /* Decide what part of virtual array to access.
    782      * Algorithm: if target address > current window, assume forward scan,
    783      * load starting at target address.  If target address < current window,
    784      * assume backward scan, load so that target area is top of window.
    785      * Note that when switching from forward write to forward read, will have
    786      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    787      */
    788     if (start_row > ptr->cur_start_row) {
    789       ptr->cur_start_row = start_row;
    790     } else {
    791       /* use long arithmetic here to avoid overflow & unsigned problems */
    792       long ltemp;
    793 
    794       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    795       if (ltemp < 0)
    796 	ltemp = 0;		/* don't fall off front end of file */
    797       ptr->cur_start_row = (JDIMENSION) ltemp;
    798     }
    799     /* Read in the selected part of the array.
    800      * During the initial write pass, we will do no actual read
    801      * because the selected part is all undefined.
    802      */
    803     do_sarray_io(cinfo, ptr, FALSE);
    804   }
    805   /* Ensure the accessed part of the array is defined; prezero if needed.
    806    * To improve locality of access, we only prezero the part of the array
    807    * that the caller is about to access, not the entire in-memory array.
    808    */
    809   if (ptr->first_undef_row < end_row) {
    810     if (ptr->first_undef_row < start_row) {
    811       if (writable)		/* writer skipped over a section of array */
    812 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    813       undef_row = start_row;	/* but reader is allowed to read ahead */
    814     } else {
    815       undef_row = ptr->first_undef_row;
    816     }
    817     if (writable)
    818       ptr->first_undef_row = end_row;
    819     if (ptr->pre_zero) {
    820       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
    821       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    822       end_row -= ptr->cur_start_row;
    823       while (undef_row < end_row) {
    824 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    825 	undef_row++;
    826       }
    827     } else {
    828       if (! writable)		/* reader looking at undefined data */
    829 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    830     }
    831   }
    832   /* Flag the buffer dirty if caller will write in it */
    833   if (writable)
    834     ptr->dirty = TRUE;
    835   /* Return address of proper part of the buffer */
    836   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    837 }
    838 
    839 
    840 METHODDEF(JBLOCKARRAY)
    841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    842 		    JDIMENSION start_row, JDIMENSION num_rows,
    843 		    boolean writable)
    844 /* Access the part of a virtual block array starting at start_row */
    845 /* and extending for num_rows rows.  writable is true if  */
    846 /* caller intends to modify the accessed area. */
    847 {
    848   JDIMENSION end_row = start_row + num_rows;
    849   JDIMENSION undef_row;
    850 
    851   /* debugging check */
    852   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    853       ptr->mem_buffer == NULL)
    854     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    855 
    856   /* Make the desired part of the virtual array accessible */
    857   if (start_row < ptr->cur_start_row ||
    858       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    859     if (! ptr->b_s_open)
    860       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    861     /* Flush old buffer contents if necessary */
    862     if (ptr->dirty) {
    863       do_barray_io(cinfo, ptr, TRUE);
    864       ptr->dirty = FALSE;
    865     }
    866     /* Decide what part of virtual array to access.
    867      * Algorithm: if target address > current window, assume forward scan,
    868      * load starting at target address.  If target address < current window,
    869      * assume backward scan, load so that target area is top of window.
    870      * Note that when switching from forward write to forward read, will have
    871      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    872      */
    873     if (start_row > ptr->cur_start_row) {
    874       ptr->cur_start_row = start_row;
    875     } else {
    876       /* use long arithmetic here to avoid overflow & unsigned problems */
    877       long ltemp;
    878 
    879       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    880       if (ltemp < 0)
    881 	ltemp = 0;		/* don't fall off front end of file */
    882       ptr->cur_start_row = (JDIMENSION) ltemp;
    883     }
    884     /* Read in the selected part of the array.
    885      * During the initial write pass, we will do no actual read
    886      * because the selected part is all undefined.
    887      */
    888     do_barray_io(cinfo, ptr, FALSE);
    889   }
    890   /* Ensure the accessed part of the array is defined; prezero if needed.
    891    * To improve locality of access, we only prezero the part of the array
    892    * that the caller is about to access, not the entire in-memory array.
    893    */
    894   if (ptr->first_undef_row < end_row) {
    895     if (ptr->first_undef_row < start_row) {
    896       if (writable)		/* writer skipped over a section of array */
    897 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    898       undef_row = start_row;	/* but reader is allowed to read ahead */
    899     } else {
    900       undef_row = ptr->first_undef_row;
    901     }
    902     if (writable)
    903       ptr->first_undef_row = end_row;
    904     if (ptr->pre_zero) {
    905       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
    906       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    907       end_row -= ptr->cur_start_row;
    908       while (undef_row < end_row) {
    909 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    910 	undef_row++;
    911       }
    912     } else {
    913       if (! writable)		/* reader looking at undefined data */
    914 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    915     }
    916   }
    917   /* Flag the buffer dirty if caller will write in it */
    918   if (writable)
    919     ptr->dirty = TRUE;
    920   /* Return address of proper part of the buffer */
    921   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    922 }
    923 
    924 
    925 /*
    926  * Release all objects belonging to a specified pool.
    927  */
    928 
    929 METHODDEF(void)
    930 free_pool (j_common_ptr cinfo, int pool_id)
    931 {
    932   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    933   small_pool_ptr shdr_ptr;
    934   large_pool_ptr lhdr_ptr;
    935   size_t space_freed;
    936 
    937   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    938     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    939 
    940 #ifdef MEM_STATS
    941   if (cinfo->err->trace_level > 1)
    942     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    943 #endif
    944 
    945   /* If freeing IMAGE pool, close any virtual arrays first */
    946   if (pool_id == JPOOL_IMAGE) {
    947     jvirt_sarray_ptr sptr;
    948     jvirt_barray_ptr bptr;
    949 
    950     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    951       if (sptr->b_s_open) {	/* there may be no backing store */
    952 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
    953 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    954       }
    955     }
    956     mem->virt_sarray_list = NULL;
    957     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    958       if (bptr->b_s_open) {	/* there may be no backing store */
    959 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
    960 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    961       }
    962     }
    963     mem->virt_barray_list = NULL;
    964   }
    965 
    966   /* Release large objects */
    967   lhdr_ptr = mem->large_list[pool_id];
    968   mem->large_list[pool_id] = NULL;
    969 
    970   while (lhdr_ptr != NULL) {
    971     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
    972     space_freed = lhdr_ptr->hdr.bytes_used +
    973 		  lhdr_ptr->hdr.bytes_left +
    974 		  SIZEOF(large_pool_hdr);
    975     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
    976     mem->total_space_allocated -= space_freed;
    977     lhdr_ptr = next_lhdr_ptr;
    978   }
    979 
    980   /* Release small objects */
    981   shdr_ptr = mem->small_list[pool_id];
    982   mem->small_list[pool_id] = NULL;
    983 
    984   while (shdr_ptr != NULL) {
    985     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
    986     space_freed = shdr_ptr->hdr.bytes_used +
    987 		  shdr_ptr->hdr.bytes_left +
    988 		  SIZEOF(small_pool_hdr);
    989     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
    990     mem->total_space_allocated -= space_freed;
    991     shdr_ptr = next_shdr_ptr;
    992   }
    993 }
    994 
    995 
    996 /*
    997  * Close up shop entirely.
    998  * Note that this cannot be called unless cinfo->mem is non-NULL.
    999  */
   1000 
   1001 METHODDEF(void)
   1002 self_destruct (j_common_ptr cinfo)
   1003 {
   1004   int pool;
   1005 
   1006   /* Close all backing store, release all memory.
   1007    * Releasing pools in reverse order might help avoid fragmentation
   1008    * with some (brain-damaged) malloc libraries.
   1009    */
   1010   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1011     free_pool(cinfo, pool);
   1012   }
   1013 
   1014   /* Release the memory manager control block too. */
   1015   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
   1016   cinfo->mem = NULL;		/* ensures I will be called only once */
   1017 
   1018   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
   1019 }
   1020 
   1021 
   1022 /*
   1023  * Memory manager initialization.
   1024  * When this is called, only the error manager pointer is valid in cinfo!
   1025  */
   1026 
   1027 GLOBAL(void)
   1028 jinit_memory_mgr (j_common_ptr cinfo)
   1029 {
   1030   my_mem_ptr mem;
   1031   long max_to_use;
   1032   int pool;
   1033   size_t test_mac;
   1034 
   1035   cinfo->mem = NULL;		/* for safety if init fails */
   1036 
   1037   /* Check for configuration errors.
   1038    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1039    * doesn't reflect any real hardware alignment requirement.
   1040    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1041    * in common if and only if X is a power of 2, ie has only one one-bit.
   1042    * Some compilers may give an "unreachable code" warning here; ignore it.
   1043    */
   1044   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
   1045     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1046   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1047    * a multiple of SIZEOF(ALIGN_TYPE).
   1048    * Again, an "unreachable code" warning may be ignored here.
   1049    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1050    */
   1051   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1052   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1053       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
   1054     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1055 
   1056   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1057 
   1058   /* Attempt to allocate memory manager's control block */
   1059   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
   1060 
   1061   if (mem == NULL) {
   1062     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
   1063     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1064   }
   1065 
   1066   /* OK, fill in the method pointers */
   1067   mem->pub.alloc_small = alloc_small;
   1068   mem->pub.alloc_large = alloc_large;
   1069   mem->pub.alloc_sarray = alloc_sarray;
   1070   mem->pub.alloc_barray = alloc_barray;
   1071   mem->pub.request_virt_sarray = request_virt_sarray;
   1072   mem->pub.request_virt_barray = request_virt_barray;
   1073   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1074   mem->pub.access_virt_sarray = access_virt_sarray;
   1075   mem->pub.access_virt_barray = access_virt_barray;
   1076   mem->pub.free_pool = free_pool;
   1077   mem->pub.self_destruct = self_destruct;
   1078 
   1079   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1080   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1081 
   1082   /* Initialize working state */
   1083   mem->pub.max_memory_to_use = max_to_use;
   1084 
   1085   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1086     mem->small_list[pool] = NULL;
   1087     mem->large_list[pool] = NULL;
   1088   }
   1089   mem->virt_sarray_list = NULL;
   1090   mem->virt_barray_list = NULL;
   1091 
   1092   mem->total_space_allocated = SIZEOF(my_memory_mgr);
   1093 
   1094   /* Declare ourselves open for business */
   1095   cinfo->mem = & mem->pub;
   1096 
   1097   /* Check for an environment variable JPEGMEM; if found, override the
   1098    * default max_memory setting from jpeg_mem_init.  Note that the
   1099    * surrounding application may again override this value.
   1100    * If your system doesn't support getenv(), define NO_GETENV to disable
   1101    * this feature.
   1102    */
   1103 #ifndef NO_GETENV
   1104   { char * memenv;
   1105 
   1106     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1107       char ch = 'x';
   1108 
   1109       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1110 	if (ch == 'm' || ch == 'M')
   1111 	  max_to_use *= 1000L;
   1112 	mem->pub.max_memory_to_use = max_to_use * 1000L;
   1113       }
   1114     }
   1115   }
   1116 #endif
   1117 
   1118 }
   1119