Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkRect_DEFINED
     11 #define SkRect_DEFINED
     12 
     13 #include "SkPoint.h"
     14 #include "SkSize.h"
     15 
     16 /** \struct SkIRect
     17 
     18     SkIRect holds four 32 bit integer coordinates for a rectangle
     19 */
     20 struct SK_API SkIRect {
     21     int32_t fLeft, fTop, fRight, fBottom;
     22 
     23     static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() {
     24         SkIRect r;
     25         r.setEmpty();
     26         return r;
     27     }
     28 
     29     static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() {
     30         SkIRect r;
     31         r.setLargest();
     32         return r;
     33     }
     34 
     35     static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) {
     36         SkIRect r;
     37         r.set(0, 0, w, h);
     38         return r;
     39     }
     40 
     41     static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) {
     42         SkIRect r;
     43         r.set(0, 0, size.width(), size.height());
     44         return r;
     45     }
     46 
     47     static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) {
     48         SkIRect rect;
     49         rect.set(l, t, r, b);
     50         return rect;
     51     }
     52 
     53     static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) {
     54         SkIRect r;
     55         r.set(x, y, x + w, y + h);
     56         return r;
     57     }
     58 
     59     int left() const { return fLeft; }
     60     int top() const { return fTop; }
     61     int right() const { return fRight; }
     62     int bottom() const { return fBottom; }
     63 
     64     /** return the left edge of the rect */
     65     int x() const { return fLeft; }
     66     /** return the top edge of the rect */
     67     int y() const { return fTop; }
     68     /**
     69      *  Returns the rectangle's width. This does not check for a valid rect
     70      *  (i.e. left <= right) so the result may be negative.
     71      */
     72     int width() const { return fRight - fLeft; }
     73 
     74     /**
     75      *  Returns the rectangle's height. This does not check for a valid rect
     76      *  (i.e. top <= bottom) so the result may be negative.
     77      */
     78     int height() const { return fBottom - fTop; }
     79 
     80     /**
     81      *  Since the center of an integer rect may fall on a factional value, this
     82      *  method is defined to return (right + left) >> 1.
     83      *
     84      *  This is a specific "truncation" of the average, which is different than
     85      *  (right + left) / 2 when the sum is negative.
     86      */
     87     int centerX() const { return (fRight + fLeft) >> 1; }
     88 
     89     /**
     90      *  Since the center of an integer rect may fall on a factional value, this
     91      *  method is defined to return (bottom + top) >> 1
     92      *
     93      *  This is a specific "truncation" of the average, which is different than
     94      *  (bottom + top) / 2 when the sum is negative.
     95      */
     96     int centerY() const { return (fBottom + fTop) >> 1; }
     97 
     98     /**
     99      *  Return true if the rectangle's width or height are <= 0
    100      */
    101     bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
    102 
    103     bool isLargest() const { return SK_MinS32 == fLeft &&
    104                                     SK_MinS32 == fTop &&
    105                                     SK_MaxS32 == fRight &&
    106                                     SK_MaxS32 == fBottom; }
    107 
    108     friend bool operator==(const SkIRect& a, const SkIRect& b) {
    109         return !memcmp(&a, &b, sizeof(a));
    110     }
    111 
    112     friend bool operator!=(const SkIRect& a, const SkIRect& b) {
    113         return !(a == b);
    114     }
    115 
    116     bool is16Bit() const {
    117         return  SkIsS16(fLeft) && SkIsS16(fTop) &&
    118                 SkIsS16(fRight) && SkIsS16(fBottom);
    119     }
    120 
    121     /** Set the rectangle to (0,0,0,0)
    122     */
    123     void setEmpty() { memset(this, 0, sizeof(*this)); }
    124 
    125     void set(int32_t left, int32_t top, int32_t right, int32_t bottom) {
    126         fLeft   = left;
    127         fTop    = top;
    128         fRight  = right;
    129         fBottom = bottom;
    130     }
    131     // alias for set(l, t, r, b)
    132     void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) {
    133         this->set(left, top, right, bottom);
    134     }
    135 
    136     void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) {
    137         fLeft = x;
    138         fTop = y;
    139         fRight = x + width;
    140         fBottom = y + height;
    141     }
    142 
    143     /**
    144      *  Make the largest representable rectangle
    145      */
    146     void setLargest() {
    147         fLeft = fTop = SK_MinS32;
    148         fRight = fBottom = SK_MaxS32;
    149     }
    150 
    151     /**
    152      *  Make the largest representable rectangle, but inverted (e.g. fLeft will
    153      *  be max 32bit and right will be min 32bit).
    154      */
    155     void setLargestInverted() {
    156         fLeft = fTop = SK_MaxS32;
    157         fRight = fBottom = SK_MinS32;
    158     }
    159 
    160     /** Offset set the rectangle by adding dx to its left and right,
    161         and adding dy to its top and bottom.
    162     */
    163     void offset(int32_t dx, int32_t dy) {
    164         fLeft   += dx;
    165         fTop    += dy;
    166         fRight  += dx;
    167         fBottom += dy;
    168     }
    169 
    170     void offset(const SkIPoint& delta) {
    171         this->offset(delta.fX, delta.fY);
    172     }
    173 
    174     /**
    175      *  Offset this rect such its new x() and y() will equal newX and newY.
    176      */
    177     void offsetTo(int32_t newX, int32_t newY) {
    178         fRight += newX - fLeft;
    179         fBottom += newY - fTop;
    180         fLeft = newX;
    181         fTop = newY;
    182     }
    183 
    184     /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards,
    185         making the rectangle narrower. If dx is negative, then the sides are moved outwards,
    186         making the rectangle wider. The same holds true for dy and the top and bottom.
    187     */
    188     void inset(int32_t dx, int32_t dy) {
    189         fLeft   += dx;
    190         fTop    += dy;
    191         fRight  -= dx;
    192         fBottom -= dy;
    193     }
    194 
    195    /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
    196        moved outwards, making the rectangle wider. If dx is negative, then the
    197        sides are moved inwards, making the rectangle narrower. The same holds
    198        true for dy and the top and bottom.
    199     */
    200     void outset(int32_t dx, int32_t dy)  { this->inset(-dx, -dy); }
    201 
    202     bool quickReject(int l, int t, int r, int b) const {
    203         return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b;
    204     }
    205 
    206     /** Returns true if (x,y) is inside the rectangle and the rectangle is not
    207         empty. The left and top are considered to be inside, while the right
    208         and bottom are not. Thus for the rectangle (0, 0, 5, 10), the
    209         points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not.
    210     */
    211     bool contains(int32_t x, int32_t y) const {
    212         return  (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) &&
    213                 (unsigned)(y - fTop) < (unsigned)(fBottom - fTop);
    214     }
    215 
    216     /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle.
    217         If either rectangle is empty, contains() returns false.
    218     */
    219     bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const {
    220         return  left < right && top < bottom && !this->isEmpty() && // check for empties
    221                 fLeft <= left && fTop <= top &&
    222                 fRight >= right && fBottom >= bottom;
    223     }
    224 
    225     /** Returns true if the specified rectangle r is inside or equal to this rectangle.
    226     */
    227     bool contains(const SkIRect& r) const {
    228         return  !r.isEmpty() && !this->isEmpty() &&     // check for empties
    229                 fLeft <= r.fLeft && fTop <= r.fTop &&
    230                 fRight >= r.fRight && fBottom >= r.fBottom;
    231     }
    232 
    233     /** Return true if this rectangle contains the specified rectangle.
    234         For speed, this method does not check if either this or the specified
    235         rectangles are empty, and if either is, its return value is undefined.
    236         In the debugging build however, we assert that both this and the
    237         specified rectangles are non-empty.
    238     */
    239     bool containsNoEmptyCheck(int32_t left, int32_t top,
    240                               int32_t right, int32_t bottom) const {
    241         SkASSERT(fLeft < fRight && fTop < fBottom);
    242         SkASSERT(left < right && top < bottom);
    243 
    244         return fLeft <= left && fTop <= top &&
    245                fRight >= right && fBottom >= bottom;
    246     }
    247 
    248     bool containsNoEmptyCheck(const SkIRect& r) const {
    249         return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom);
    250     }
    251 
    252     /** If r intersects this rectangle, return true and set this rectangle to that
    253         intersection, otherwise return false and do not change this rectangle.
    254         If either rectangle is empty, do nothing and return false.
    255     */
    256     bool intersect(const SkIRect& r) {
    257         SkASSERT(&r);
    258         return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
    259     }
    260 
    261     /** If rectangles a and b intersect, return true and set this rectangle to
    262         that intersection, otherwise return false and do not change this
    263         rectangle. If either rectangle is empty, do nothing and return false.
    264     */
    265     bool intersect(const SkIRect& a, const SkIRect& b) {
    266         SkASSERT(&a && &b);
    267 
    268         if (!a.isEmpty() && !b.isEmpty() &&
    269                 a.fLeft < b.fRight && b.fLeft < a.fRight &&
    270                 a.fTop < b.fBottom && b.fTop < a.fBottom) {
    271             fLeft   = SkMax32(a.fLeft,   b.fLeft);
    272             fTop    = SkMax32(a.fTop,    b.fTop);
    273             fRight  = SkMin32(a.fRight,  b.fRight);
    274             fBottom = SkMin32(a.fBottom, b.fBottom);
    275             return true;
    276         }
    277         return false;
    278     }
    279 
    280     /** If rectangles a and b intersect, return true and set this rectangle to
    281         that intersection, otherwise return false and do not change this
    282         rectangle. For speed, no check to see if a or b are empty is performed.
    283         If either is, then the return result is undefined. In the debug build,
    284         we assert that both rectangles are non-empty.
    285     */
    286     bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
    287         SkASSERT(&a && &b);
    288         SkASSERT(!a.isEmpty() && !b.isEmpty());
    289 
    290         if (a.fLeft < b.fRight && b.fLeft < a.fRight &&
    291                 a.fTop < b.fBottom && b.fTop < a.fBottom) {
    292             fLeft   = SkMax32(a.fLeft,   b.fLeft);
    293             fTop    = SkMax32(a.fTop,    b.fTop);
    294             fRight  = SkMin32(a.fRight,  b.fRight);
    295             fBottom = SkMin32(a.fBottom, b.fBottom);
    296             return true;
    297         }
    298         return false;
    299     }
    300 
    301     /** If the rectangle specified by left,top,right,bottom intersects this rectangle,
    302         return true and set this rectangle to that intersection,
    303         otherwise return false and do not change this rectangle.
    304         If either rectangle is empty, do nothing and return false.
    305     */
    306     bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) {
    307         if (left < right && top < bottom && !this->isEmpty() &&
    308                 fLeft < right && left < fRight && fTop < bottom && top < fBottom) {
    309             if (fLeft < left) fLeft = left;
    310             if (fTop < top) fTop = top;
    311             if (fRight > right) fRight = right;
    312             if (fBottom > bottom) fBottom = bottom;
    313             return true;
    314         }
    315         return false;
    316     }
    317 
    318     /** Returns true if a and b are not empty, and they intersect
    319      */
    320     static bool Intersects(const SkIRect& a, const SkIRect& b) {
    321         return  !a.isEmpty() && !b.isEmpty() &&              // check for empties
    322         a.fLeft < b.fRight && b.fLeft < a.fRight &&
    323         a.fTop < b.fBottom && b.fTop < a.fBottom;
    324     }
    325 
    326     /**
    327      *  Returns true if a and b intersect. debug-asserts that neither are empty.
    328      */
    329     static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
    330         SkASSERT(!a.isEmpty());
    331         SkASSERT(!b.isEmpty());
    332         return  a.fLeft < b.fRight && b.fLeft < a.fRight &&
    333                 a.fTop < b.fBottom && b.fTop < a.fBottom;
    334     }
    335 
    336     /** Update this rectangle to enclose itself and the specified rectangle.
    337         If this rectangle is empty, just set it to the specified rectangle. If the specified
    338         rectangle is empty, do nothing.
    339     */
    340     void join(int32_t left, int32_t top, int32_t right, int32_t bottom);
    341 
    342     /** Update this rectangle to enclose itself and the specified rectangle.
    343         If this rectangle is empty, just set it to the specified rectangle. If the specified
    344         rectangle is empty, do nothing.
    345     */
    346     void join(const SkIRect& r) {
    347         this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
    348     }
    349 
    350     /** Swap top/bottom or left/right if there are flipped.
    351         This can be called if the edges are computed separately,
    352         and may have crossed over each other.
    353         When this returns, left <= right && top <= bottom
    354     */
    355     void sort();
    356 
    357     static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() {
    358         static const SkIRect gEmpty = { 0, 0, 0, 0 };
    359         return gEmpty;
    360     }
    361 };
    362 
    363 /** \struct SkRect
    364 */
    365 struct SK_API SkRect {
    366     SkScalar    fLeft, fTop, fRight, fBottom;
    367 
    368     static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() {
    369         SkRect r;
    370         r.setEmpty();
    371         return r;
    372     }
    373 
    374     static SkRect SK_WARN_UNUSED_RESULT MakeLargest() {
    375         SkRect r;
    376         r.setLargest();
    377         return r;
    378     }
    379 
    380     static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) {
    381         SkRect r;
    382         r.set(0, 0, w, h);
    383         return r;
    384     }
    385 
    386     static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) {
    387         SkRect r;
    388         r.set(0, 0, size.width(), size.height());
    389         return r;
    390     }
    391 
    392     static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
    393         SkRect rect;
    394         rect.set(l, t, r, b);
    395         return rect;
    396     }
    397 
    398     static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) {
    399         SkRect r;
    400         r.set(x, y, x + w, y + h);
    401         return r;
    402     }
    403 
    404     SK_ATTR_DEPRECATED("use Make()")
    405     static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) {
    406         SkRect r;
    407         r.set(SkIntToScalar(irect.fLeft),
    408               SkIntToScalar(irect.fTop),
    409               SkIntToScalar(irect.fRight),
    410               SkIntToScalar(irect.fBottom));
    411         return r;
    412     }
    413 
    414     static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) {
    415         SkRect r;
    416         r.set(SkIntToScalar(irect.fLeft),
    417               SkIntToScalar(irect.fTop),
    418               SkIntToScalar(irect.fRight),
    419               SkIntToScalar(irect.fBottom));
    420         return r;
    421     }
    422 
    423     /**
    424      *  Return true if the rectangle's width or height are <= 0
    425      */
    426     bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
    427 
    428     bool isLargest() const { return SK_ScalarMin == fLeft &&
    429                                     SK_ScalarMin == fTop &&
    430                                     SK_ScalarMax == fRight &&
    431                                     SK_ScalarMax == fBottom; }
    432 
    433     /**
    434      *  Returns true iff all values in the rect are finite. If any are
    435      *  infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this
    436      *  returns false.
    437      */
    438     bool isFinite() const {
    439 #ifdef SK_SCALAR_IS_FLOAT
    440         float accum = 0;
    441         accum *= fLeft;
    442         accum *= fTop;
    443         accum *= fRight;
    444         accum *= fBottom;
    445 
    446         // accum is either NaN or it is finite (zero).
    447         SkASSERT(0 == accum || !(accum == accum));
    448 
    449         // value==value will be true iff value is not NaN
    450         // TODO: is it faster to say !accum or accum==accum?
    451         return accum == accum;
    452 #else
    453         // use bit-or for speed, since we don't care about short-circuting the
    454         // tests, and we expect the common case will be that we need to check all.
    455         int isNaN = (SK_FixedNaN == fLeft)  | (SK_FixedNaN == fTop) |
    456                     (SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom);
    457         return !isNaN;
    458 #endif
    459     }
    460 
    461     SkScalar    x() const { return fLeft; }
    462     SkScalar    y() const { return fTop; }
    463     SkScalar    left() const { return fLeft; }
    464     SkScalar    top() const { return fTop; }
    465     SkScalar    right() const { return fRight; }
    466     SkScalar    bottom() const { return fBottom; }
    467     SkScalar    width() const { return fRight - fLeft; }
    468     SkScalar    height() const { return fBottom - fTop; }
    469     SkScalar    centerX() const { return SkScalarHalf(fLeft + fRight); }
    470     SkScalar    centerY() const { return SkScalarHalf(fTop + fBottom); }
    471 
    472     friend bool operator==(const SkRect& a, const SkRect& b) {
    473         return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
    474     }
    475 
    476     friend bool operator!=(const SkRect& a, const SkRect& b) {
    477         return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
    478     }
    479 
    480     /** return the 4 points that enclose the rectangle (top-left, top-right, bottom-right,
    481         bottom-left). TODO: Consider adding param to control whether quad is CW or CCW.
    482      */
    483     void toQuad(SkPoint quad[4]) const;
    484 
    485     /** Set this rectangle to the empty rectangle (0,0,0,0)
    486     */
    487     void setEmpty() { memset(this, 0, sizeof(*this)); }
    488 
    489     void set(const SkIRect& src) {
    490         fLeft   = SkIntToScalar(src.fLeft);
    491         fTop    = SkIntToScalar(src.fTop);
    492         fRight  = SkIntToScalar(src.fRight);
    493         fBottom = SkIntToScalar(src.fBottom);
    494     }
    495 
    496     void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
    497         fLeft   = left;
    498         fTop    = top;
    499         fRight  = right;
    500         fBottom = bottom;
    501     }
    502     // alias for set(l, t, r, b)
    503     void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
    504         this->set(left, top, right, bottom);
    505     }
    506 
    507     /** Initialize the rect with the 4 specified integers. The routine handles
    508         converting them to scalars (by calling SkIntToScalar)
    509      */
    510     void iset(int left, int top, int right, int bottom) {
    511         fLeft   = SkIntToScalar(left);
    512         fTop    = SkIntToScalar(top);
    513         fRight  = SkIntToScalar(right);
    514         fBottom = SkIntToScalar(bottom);
    515     }
    516 
    517     /**
    518      *  Set this rectangle to be left/top at 0,0, and have the specified width
    519      *  and height (automatically converted to SkScalar).
    520      */
    521     void isetWH(int width, int height) {
    522         fLeft = fTop = 0;
    523         fRight = SkIntToScalar(width);
    524         fBottom = SkIntToScalar(height);
    525     }
    526 
    527     /** Set this rectangle to be the bounds of the array of points.
    528         If the array is empty (count == 0), then set this rectangle
    529         to the empty rectangle (0,0,0,0)
    530     */
    531     void set(const SkPoint pts[], int count) {
    532         // set() had been checking for non-finite values, so keep that behavior
    533         // for now. Now that we have setBoundsCheck(), we may decide to make
    534         // set() be simpler/faster, and not check for those.
    535         (void)this->setBoundsCheck(pts, count);
    536     }
    537 
    538     // alias for set(pts, count)
    539     void setBounds(const SkPoint pts[], int count) {
    540         (void)this->setBoundsCheck(pts, count);
    541     }
    542 
    543     /**
    544      *  Compute the bounds of the array of points, and set this rect to that
    545      *  bounds and return true... unless a non-finite value is encountered,
    546      *  in which case this rect is set to empty and false is returned.
    547      */
    548     bool setBoundsCheck(const SkPoint pts[], int count);
    549 
    550     void set(const SkPoint& p0, const SkPoint& p1) {
    551         fLeft =   SkMinScalar(p0.fX, p1.fX);
    552         fRight =  SkMaxScalar(p0.fX, p1.fX);
    553         fTop =    SkMinScalar(p0.fY, p1.fY);
    554         fBottom = SkMaxScalar(p0.fY, p1.fY);
    555     }
    556 
    557     void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) {
    558         fLeft = x;
    559         fTop = y;
    560         fRight = x + width;
    561         fBottom = y + height;
    562     }
    563 
    564     void setWH(SkScalar width, SkScalar height) {
    565         fLeft = 0;
    566         fTop = 0;
    567         fRight = width;
    568         fBottom = height;
    569     }
    570 
    571     /**
    572      *  Make the largest representable rectangle
    573      */
    574     void setLargest() {
    575         fLeft = fTop = SK_ScalarMin;
    576         fRight = fBottom = SK_ScalarMax;
    577     }
    578 
    579     /**
    580      *  Make the largest representable rectangle, but inverted (e.g. fLeft will
    581      *  be max and right will be min).
    582      */
    583     void setLargestInverted() {
    584         fLeft = fTop = SK_ScalarMax;
    585         fRight = fBottom = SK_ScalarMin;
    586     }
    587 
    588     /** Offset set the rectangle by adding dx to its left and right,
    589         and adding dy to its top and bottom.
    590     */
    591     void offset(SkScalar dx, SkScalar dy) {
    592         fLeft   += dx;
    593         fTop    += dy;
    594         fRight  += dx;
    595         fBottom += dy;
    596     }
    597 
    598     void offset(const SkPoint& delta) {
    599         this->offset(delta.fX, delta.fY);
    600     }
    601 
    602     /**
    603      *  Offset this rect such its new x() and y() will equal newX and newY.
    604      */
    605     void offsetTo(SkScalar newX, SkScalar newY) {
    606         fRight += newX - fLeft;
    607         fBottom += newY - fTop;
    608         fLeft = newX;
    609         fTop = newY;
    610     }
    611 
    612     /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are
    613         moved inwards, making the rectangle narrower. If dx is negative, then
    614         the sides are moved outwards, making the rectangle wider. The same holds
    615          true for dy and the top and bottom.
    616     */
    617     void inset(SkScalar dx, SkScalar dy)  {
    618         fLeft   += dx;
    619         fTop    += dy;
    620         fRight  -= dx;
    621         fBottom -= dy;
    622     }
    623 
    624    /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
    625        moved outwards, making the rectangle wider. If dx is negative, then the
    626        sides are moved inwards, making the rectangle narrower. The same holds
    627        true for dy and the top and bottom.
    628     */
    629     void outset(SkScalar dx, SkScalar dy)  { this->inset(-dx, -dy); }
    630 
    631     /** If this rectangle intersects r, return true and set this rectangle to that
    632         intersection, otherwise return false and do not change this rectangle.
    633         If either rectangle is empty, do nothing and return false.
    634     */
    635     bool intersect(const SkRect& r);
    636 
    637     /** If this rectangle intersects the rectangle specified by left, top, right, bottom,
    638         return true and set this rectangle to that intersection, otherwise return false
    639         and do not change this rectangle.
    640         If either rectangle is empty, do nothing and return false.
    641     */
    642     bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
    643 
    644     /**
    645      *  Return true if this rectangle is not empty, and the specified sides of
    646      *  a rectangle are not empty, and they intersect.
    647      */
    648     bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const {
    649         return // first check that both are not empty
    650                left < right && top < bottom &&
    651                fLeft < fRight && fTop < fBottom &&
    652                // now check for intersection
    653                fLeft < right && left < fRight &&
    654                fTop < bottom && top < fBottom;
    655     }
    656 
    657     /** If rectangles a and b intersect, return true and set this rectangle to
    658      *  that intersection, otherwise return false and do not change this
    659      *  rectangle. If either rectangle is empty, do nothing and return false.
    660      */
    661     bool intersect(const SkRect& a, const SkRect& b);
    662 
    663     /**
    664      *  Return true if rectangles a and b are not empty and intersect.
    665      */
    666     static bool Intersects(const SkRect& a, const SkRect& b) {
    667         return  !a.isEmpty() && !b.isEmpty() &&
    668                 a.fLeft < b.fRight && b.fLeft < a.fRight &&
    669                 a.fTop < b.fBottom && b.fTop < a.fBottom;
    670     }
    671 
    672     /**
    673      *  Update this rectangle to enclose itself and the specified rectangle.
    674      *  If this rectangle is empty, just set it to the specified rectangle.
    675      *  If the specified rectangle is empty, do nothing.
    676      */
    677     void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
    678 
    679     /** Update this rectangle to enclose itself and the specified rectangle.
    680         If this rectangle is empty, just set it to the specified rectangle. If the specified
    681         rectangle is empty, do nothing.
    682     */
    683     void join(const SkRect& r) {
    684         this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
    685     }
    686     // alias for join()
    687     void growToInclude(const SkRect& r) { this->join(r); }
    688 
    689     /**
    690      *  Grow the rect to include the specified (x,y). After this call, the
    691      *  following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom.
    692      *
    693      *  This is close, but not quite the same contract as contains(), since
    694      *  contains() treats the left and top different from the right and bottom.
    695      *  contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note
    696      *  that contains(x,y) always returns false if the rect is empty.
    697      */
    698     void growToInclude(SkScalar x, SkScalar y) {
    699         fLeft  = SkMinScalar(x, fLeft);
    700         fRight = SkMaxScalar(x, fRight);
    701         fTop    = SkMinScalar(y, fTop);
    702         fBottom = SkMaxScalar(y, fBottom);
    703     }
    704 
    705     /** Bulk version of growToInclude */
    706     void growToInclude(const SkPoint pts[], int count) {
    707         this->growToInclude(pts, sizeof(SkPoint), count);
    708     }
    709 
    710     /** Bulk version of growToInclude with stride. */
    711     void growToInclude(const SkPoint pts[], size_t stride, int count) {
    712         SkASSERT(count >= 0);
    713         SkASSERT(stride >= sizeof(SkPoint));
    714         const SkPoint* end = (const SkPoint*)((intptr_t)pts + count * stride);
    715         for (; pts < end; pts = (const SkPoint*)((intptr_t)pts + stride)) {
    716             this->growToInclude(pts->fX, pts->fY);
    717         }
    718     }
    719 
    720     /**
    721      *  Return true if this rectangle contains r, and if both rectangles are
    722      *  not empty.
    723      */
    724     bool contains(const SkRect& r) const {
    725         // todo: can we eliminate the this->isEmpty check?
    726         return  !r.isEmpty() && !this->isEmpty() &&
    727                 fLeft <= r.fLeft && fTop <= r.fTop &&
    728                 fRight >= r.fRight && fBottom >= r.fBottom;
    729     }
    730 
    731     /**
    732      *  Set the dst rectangle by rounding this rectangle's coordinates to their
    733      *  nearest integer values using SkScalarRoundToInt.
    734      */
    735     void round(SkIRect* dst) const {
    736         SkASSERT(dst);
    737         dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
    738                  SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom));
    739     }
    740 
    741     /**
    742      *  Set the dst rectangle by rounding "out" this rectangle, choosing the
    743      *  SkScalarFloor of top and left, and the SkScalarCeil of right and bottom.
    744      */
    745     void roundOut(SkIRect* dst) const {
    746         SkASSERT(dst);
    747         dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
    748                  SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom));
    749     }
    750 
    751     /**
    752      *  Expand this rectangle by rounding its coordinates "out", choosing the
    753      *  floor of top and left, and the ceil of right and bottom. If this rect
    754      *  is already on integer coordinates, then it will be unchanged.
    755      */
    756     void roundOut() {
    757         this->set(SkScalarFloorToScalar(fLeft),
    758                   SkScalarFloorToScalar(fTop),
    759                   SkScalarCeilToScalar(fRight),
    760                   SkScalarCeilToScalar(fBottom));
    761     }
    762 
    763     /**
    764      *  Set the dst rectangle by rounding "in" this rectangle, choosing the
    765      *  ceil of top and left, and the floor of right and bottom. This does *not*
    766      *  call sort(), so it is possible that the resulting rect is inverted...
    767      *  e.g. left >= right or top >= bottom. Call isEmpty() to detect that.
    768      */
    769     void roundIn(SkIRect* dst) const {
    770         SkASSERT(dst);
    771         dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
    772                  SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom));
    773     }
    774 
    775     /**
    776      *  Return a new SkIRect which is contains the rounded coordinates of this
    777      *  rect using SkScalarRoundToInt.
    778      */
    779     SkIRect round() const {
    780         SkIRect ir;
    781         this->round(&ir);
    782         return ir;
    783     }
    784 
    785     /**
    786      *  Swap top/bottom or left/right if there are flipped (i.e. if width()
    787      *  or height() would have returned a negative value.) This should be called
    788      *  if the edges are computed separately, and may have crossed over each
    789      *  other. When this returns, left <= right && top <= bottom
    790      */
    791     void sort();
    792 
    793     /**
    794      *  cast-safe way to treat the rect as an array of (4) SkScalars.
    795      */
    796     const SkScalar* asScalars() const { return &fLeft; }
    797 };
    798 
    799 #endif
    800