Home | History | Annotate | Download | only in core
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkRefCnt_DEFINED
     11 #define SkRefCnt_DEFINED
     12 
     13 #include "SkThread.h"
     14 #include "SkInstCnt.h"
     15 #include "SkTemplates.h"
     16 
     17 /** \class SkRefCntBase
     18 
     19     SkRefCntBase is the base class for objects that may be shared by multiple
     20     objects. When an existing owner wants to share a reference, it calls ref().
     21     When an owner wants to release its reference, it calls unref(). When the
     22     shared object's reference count goes to zero as the result of an unref()
     23     call, its (virtual) destructor is called. It is an error for the
     24     destructor to be called explicitly (or via the object going out of scope on
     25     the stack or calling delete) if getRefCnt() > 1.
     26 */
     27 class SK_API SkRefCntBase : public SkNoncopyable {
     28 public:
     29     SK_DECLARE_INST_COUNT_ROOT(SkRefCntBase)
     30 
     31     /** Default construct, initializing the reference count to 1.
     32     */
     33     SkRefCntBase() : fRefCnt(1) {}
     34 
     35     /** Destruct, asserting that the reference count is 1.
     36     */
     37     virtual ~SkRefCntBase() {
     38 #ifdef SK_DEBUG
     39         SkASSERT(fRefCnt == 1);
     40         fRefCnt = 0;    // illegal value, to catch us if we reuse after delete
     41 #endif
     42     }
     43 
     44     /** Return the reference count. Use only for debugging. */
     45     int32_t getRefCnt() const { return fRefCnt; }
     46 
     47     /** Returns true if the caller is the only owner.
     48      *  Ensures that all previous owner's actions are complete.
     49      */
     50     bool unique() const {
     51         bool const unique = (1 == fRefCnt);
     52         if (unique) {
     53             // Aquire barrier (L/SL), if not provided by load of fRefCnt.
     54             // Prevents user's 'unique' code from happening before decrements.
     55             //TODO: issue the barrier.
     56         }
     57         return unique;
     58     }
     59 
     60     /** Increment the reference count. Must be balanced by a call to unref().
     61     */
     62     void ref() const {
     63         SkASSERT(fRefCnt > 0);
     64         sk_atomic_inc(&fRefCnt);  // No barrier required.
     65     }
     66 
     67     /** Decrement the reference count. If the reference count is 1 before the
     68         decrement, then delete the object. Note that if this is the case, then
     69         the object needs to have been allocated via new, and not on the stack.
     70     */
     71     void unref() const {
     72         SkASSERT(fRefCnt > 0);
     73         // Release barrier (SL/S), if not provided below.
     74         if (sk_atomic_dec(&fRefCnt) == 1) {
     75             // Aquire barrier (L/SL), if not provided above.
     76             // Prevents code in dispose from happening before the decrement.
     77             sk_membar_aquire__after_atomic_dec();
     78             internal_dispose();
     79         }
     80     }
     81 
     82 #ifdef SK_DEBUG
     83     void validate() const {
     84         SkASSERT(fRefCnt > 0);
     85     }
     86 #endif
     87 
     88 protected:
     89     /**
     90      *  Allow subclasses to call this if they've overridden internal_dispose
     91      *  so they can reset fRefCnt before the destructor is called. Should only
     92      *  be called right before calling through to inherited internal_dispose()
     93      *  or before calling the destructor.
     94      */
     95     void internal_dispose_restore_refcnt_to_1() const {
     96 #ifdef SK_DEBUG
     97         SkASSERT(0 == fRefCnt);
     98         fRefCnt = 1;
     99 #endif
    100     }
    101 
    102 private:
    103     /**
    104      *  Called when the ref count goes to 0.
    105      */
    106     virtual void internal_dispose() const {
    107         this->internal_dispose_restore_refcnt_to_1();
    108         SkDELETE(this);
    109     }
    110 
    111     // The following friends are those which override internal_dispose()
    112     // and conditionally call SkRefCnt::internal_dispose().
    113     friend class GrTexture;
    114     friend class SkWeakRefCnt;
    115 
    116     mutable int32_t fRefCnt;
    117 
    118     typedef SkNoncopyable INHERITED;
    119 };
    120 
    121 #ifdef SK_REF_CNT_MIXIN_INCLUDE
    122 // It is the responsibility of the following include to define the type SkRefCnt.
    123 // This SkRefCnt should normally derive from SkRefCntBase.
    124 #include SK_REF_CNT_MIXIN_INCLUDE
    125 #else
    126 class SK_API SkRefCnt : public SkRefCntBase { };
    127 #endif
    128 
    129 ///////////////////////////////////////////////////////////////////////////////
    130 
    131 /** Helper macro to safely assign one SkRefCnt[TS]* to another, checking for
    132     null in on each side of the assignment, and ensuring that ref() is called
    133     before unref(), in case the two pointers point to the same object.
    134  */
    135 #define SkRefCnt_SafeAssign(dst, src)   \
    136     do {                                \
    137         if (src) src->ref();            \
    138         if (dst) dst->unref();          \
    139         dst = src;                      \
    140     } while (0)
    141 
    142 
    143 /** Call obj->ref() and return obj. The obj must not be NULL.
    144  */
    145 template <typename T> static inline T* SkRef(T* obj) {
    146     SkASSERT(obj);
    147     obj->ref();
    148     return obj;
    149 }
    150 
    151 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
    152  */
    153 template <typename T> static inline T* SkSafeRef(T* obj) {
    154     if (obj) {
    155         obj->ref();
    156     }
    157     return obj;
    158 }
    159 
    160 /** Check if the argument is non-null, and if so, call obj->unref()
    161  */
    162 template <typename T> static inline void SkSafeUnref(T* obj) {
    163     if (obj) {
    164         obj->unref();
    165     }
    166 }
    167 
    168 template<typename T> static inline void SkSafeSetNull(T*& obj) {
    169     if (NULL != obj) {
    170         obj->unref();
    171         obj = NULL;
    172     }
    173 }
    174 
    175 ///////////////////////////////////////////////////////////////////////////////
    176 
    177 /**
    178  *  Utility class that simply unref's its argument in the destructor.
    179  */
    180 template <typename T> class SkAutoTUnref : SkNoncopyable {
    181 public:
    182     explicit SkAutoTUnref(T* obj = NULL) : fObj(obj) {}
    183     ~SkAutoTUnref() { SkSafeUnref(fObj); }
    184 
    185     T* get() const { return fObj; }
    186 
    187     T* reset(T* obj) {
    188         SkSafeUnref(fObj);
    189         fObj = obj;
    190         return obj;
    191     }
    192 
    193     void swap(SkAutoTUnref* other) {
    194         T* tmp = fObj;
    195         fObj = other->fObj;
    196         other->fObj = tmp;
    197     }
    198 
    199     /**
    200      *  Return the hosted object (which may be null), transferring ownership.
    201      *  The reference count is not modified, and the internal ptr is set to NULL
    202      *  so unref() will not be called in our destructor. A subsequent call to
    203      *  detach() will do nothing and return null.
    204      */
    205     T* detach() {
    206         T* obj = fObj;
    207         fObj = NULL;
    208         return obj;
    209     }
    210 
    211     /**
    212      *  BlockRef<B> is a type which inherits from B, cannot be created,
    213      *  cannot be deleted, and makes ref and unref private.
    214      */
    215     template<typename B> class BlockRef : public B {
    216     private:
    217         BlockRef();
    218         ~BlockRef();
    219         void ref() const;
    220         void unref() const;
    221     };
    222 
    223     /** If T is const, the type returned from operator-> will also be const. */
    224     typedef typename SkTConstType<BlockRef<T>, SkTIsConst<T>::value>::type BlockRefType;
    225 
    226     /**
    227      *  SkAutoTUnref assumes ownership of the ref. As a result, it is an error
    228      *  for the user to ref or unref through SkAutoTUnref. Therefore
    229      *  SkAutoTUnref::operator-> returns BlockRef<T>*. This prevents use of
    230      *  skAutoTUnrefInstance->ref() and skAutoTUnrefInstance->unref().
    231      */
    232     BlockRefType *operator->() const {
    233         return static_cast<BlockRefType*>(fObj);
    234     }
    235     operator T*() { return fObj; }
    236 
    237 private:
    238     T*  fObj;
    239 };
    240 // Can't use the #define trick below to guard a bare SkAutoTUnref(...) because it's templated. :(
    241 
    242 class SkAutoUnref : public SkAutoTUnref<SkRefCnt> {
    243 public:
    244     SkAutoUnref(SkRefCnt* obj) : SkAutoTUnref<SkRefCnt>(obj) {}
    245 };
    246 #define SkAutoUnref(...) SK_REQUIRE_LOCAL_VAR(SkAutoUnref)
    247 
    248 class SkAutoRef : SkNoncopyable {
    249 public:
    250     SkAutoRef(SkRefCnt* obj) : fObj(obj) { SkSafeRef(obj); }
    251     ~SkAutoRef() { SkSafeUnref(fObj); }
    252 private:
    253     SkRefCnt* fObj;
    254 };
    255 #define SkAutoRef(...) SK_REQUIRE_LOCAL_VAR(SkAutoRef)
    256 
    257 /** Wrapper class for SkRefCnt pointers. This manages ref/unref of a pointer to
    258     a SkRefCnt (or subclass) object.
    259  */
    260 template <typename T> class SkRefPtr {
    261 public:
    262     SkRefPtr() : fObj(NULL) {}
    263     SkRefPtr(T* obj) : fObj(obj) { SkSafeRef(fObj); }
    264     SkRefPtr(const SkRefPtr& o) : fObj(o.fObj) { SkSafeRef(fObj); }
    265     ~SkRefPtr() { SkSafeUnref(fObj); }
    266 
    267     SkRefPtr& operator=(const SkRefPtr& rp) {
    268         SkRefCnt_SafeAssign(fObj, rp.fObj);
    269         return *this;
    270     }
    271     SkRefPtr& operator=(T* obj) {
    272         SkRefCnt_SafeAssign(fObj, obj);
    273         return *this;
    274     }
    275 
    276     T* get() const { return fObj; }
    277     T& operator*() const { return *fObj; }
    278     T* operator->() const { return fObj; }
    279 
    280     typedef T* SkRefPtr::*unspecified_bool_type;
    281     operator unspecified_bool_type() const {
    282         return fObj ? &SkRefPtr::fObj : NULL;
    283     }
    284 
    285 private:
    286     T* fObj;
    287 };
    288 
    289 #endif
    290