1 2 /* 3 * Copyright 2012 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 #include "SkOrderedWriteBuffer.h" 10 #include "SkBitmap.h" 11 #include "SkData.h" 12 #include "SkPtrRecorder.h" 13 #include "SkStream.h" 14 #include "SkTypeface.h" 15 16 SkOrderedWriteBuffer::SkOrderedWriteBuffer(size_t minSize) 17 : INHERITED() 18 , fFactorySet(NULL) 19 , fNamedFactorySet(NULL) 20 , fWriter(minSize) 21 , fBitmapHeap(NULL) 22 , fTFSet(NULL) 23 , fBitmapEncoder(NULL) { 24 } 25 26 SkOrderedWriteBuffer::SkOrderedWriteBuffer(size_t minSize, void* storage, size_t storageSize) 27 : INHERITED() 28 , fFactorySet(NULL) 29 , fNamedFactorySet(NULL) 30 , fWriter(minSize, storage, storageSize) 31 , fBitmapHeap(NULL) 32 , fTFSet(NULL) 33 , fBitmapEncoder(NULL) { 34 } 35 36 SkOrderedWriteBuffer::~SkOrderedWriteBuffer() { 37 SkSafeUnref(fFactorySet); 38 SkSafeUnref(fNamedFactorySet); 39 SkSafeUnref(fBitmapHeap); 40 SkSafeUnref(fTFSet); 41 } 42 43 void SkOrderedWriteBuffer::writeByteArray(const void* data, size_t size) { 44 fWriter.write32(size); 45 fWriter.writePad(data, size); 46 } 47 48 void SkOrderedWriteBuffer::writeBool(bool value) { 49 fWriter.writeBool(value); 50 } 51 52 void SkOrderedWriteBuffer::writeFixed(SkFixed value) { 53 fWriter.write32(value); 54 } 55 56 void SkOrderedWriteBuffer::writeScalar(SkScalar value) { 57 fWriter.writeScalar(value); 58 } 59 60 void SkOrderedWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { 61 fWriter.write32(count); 62 fWriter.write(value, count * sizeof(SkScalar)); 63 } 64 65 void SkOrderedWriteBuffer::writeInt(int32_t value) { 66 fWriter.write32(value); 67 } 68 69 void SkOrderedWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { 70 fWriter.write32(count); 71 fWriter.write(value, count * sizeof(int32_t)); 72 } 73 74 void SkOrderedWriteBuffer::writeUInt(uint32_t value) { 75 fWriter.write32(value); 76 } 77 78 void SkOrderedWriteBuffer::write32(int32_t value) { 79 fWriter.write32(value); 80 } 81 82 void SkOrderedWriteBuffer::writeString(const char* value) { 83 fWriter.writeString(value); 84 } 85 86 void SkOrderedWriteBuffer::writeEncodedString(const void* value, size_t byteLength, 87 SkPaint::TextEncoding encoding) { 88 fWriter.writeInt(encoding); 89 fWriter.writeInt(byteLength); 90 fWriter.write(value, byteLength); 91 } 92 93 94 void SkOrderedWriteBuffer::writeColor(const SkColor& color) { 95 fWriter.write32(color); 96 } 97 98 void SkOrderedWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { 99 fWriter.write32(count); 100 fWriter.write(color, count * sizeof(SkColor)); 101 } 102 103 void SkOrderedWriteBuffer::writePoint(const SkPoint& point) { 104 fWriter.writeScalar(point.fX); 105 fWriter.writeScalar(point.fY); 106 } 107 108 void SkOrderedWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { 109 fWriter.write32(count); 110 fWriter.write(point, count * sizeof(SkPoint)); 111 } 112 113 void SkOrderedWriteBuffer::writeMatrix(const SkMatrix& matrix) { 114 fWriter.writeMatrix(matrix); 115 } 116 117 void SkOrderedWriteBuffer::writeIRect(const SkIRect& rect) { 118 fWriter.write(&rect, sizeof(SkIRect)); 119 } 120 121 void SkOrderedWriteBuffer::writeRect(const SkRect& rect) { 122 fWriter.writeRect(rect); 123 } 124 125 void SkOrderedWriteBuffer::writeRegion(const SkRegion& region) { 126 fWriter.writeRegion(region); 127 } 128 129 void SkOrderedWriteBuffer::writePath(const SkPath& path) { 130 fWriter.writePath(path); 131 } 132 133 size_t SkOrderedWriteBuffer::writeStream(SkStream* stream, size_t length) { 134 fWriter.write32(length); 135 size_t bytesWritten = fWriter.readFromStream(stream, length); 136 if (bytesWritten < length) { 137 fWriter.reservePad(length - bytesWritten); 138 } 139 return bytesWritten; 140 } 141 142 bool SkOrderedWriteBuffer::writeToStream(SkWStream* stream) { 143 return fWriter.writeToStream(stream); 144 } 145 146 // Defined in SkBitmap.cpp 147 bool get_upper_left_from_offset(SkBitmap::Config config, size_t offset, size_t rowBytes, 148 int32_t* x, int32_t* y); 149 150 void SkOrderedWriteBuffer::writeBitmap(const SkBitmap& bitmap) { 151 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the 152 // right size. 153 this->writeInt(bitmap.width()); 154 this->writeInt(bitmap.height()); 155 156 // Record information about the bitmap in one of three ways, in order of priority: 157 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the 158 // bitmap entirely or serialize it later as desired. A boolean value of true will be written 159 // to the stream to signify that a heap was used. 160 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the 161 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write 162 // the size of the encoded data. A non-zero size signifies that encoded data was written. 163 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was 164 // not used, write a zero to signify that the data was not encoded. 165 bool useBitmapHeap = fBitmapHeap != NULL; 166 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an 167 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way. 168 this->writeBool(useBitmapHeap); 169 if (useBitmapHeap) { 170 SkASSERT(NULL == fBitmapEncoder); 171 int32_t slot = fBitmapHeap->insert(bitmap); 172 fWriter.write32(slot); 173 // crbug.com/155875 174 // The generation ID is not required information. We write it to prevent collisions 175 // in SkFlatDictionary. It is possible to get a collision when a previously 176 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary 177 // and the instance currently being written is re-using the same slot from the 178 // bitmap heap. 179 fWriter.write32(bitmap.getGenerationID()); 180 return; 181 } 182 if (fBitmapEncoder != NULL) { 183 SkASSERT(NULL == fBitmapHeap); 184 size_t offset = 0; 185 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap)); 186 if (data.get() != NULL) { 187 // Write the length to indicate that the bitmap was encoded successfully, followed 188 // by the actual data. 189 this->writeUInt(SkToU32(data->size())); 190 fWriter.writePad(data->data(), data->size()); 191 // Store the coordinate of the offset, rather than fPixelRefOffset, which may be 192 // different depending on the decoder. 193 int32_t x, y; 194 if (0 == offset || !get_upper_left_from_offset(bitmap.config(), offset, 195 bitmap.rowBytes(), &x, &y)) { 196 x = y = 0; 197 } 198 this->write32(x); 199 this->write32(y); 200 return; 201 } 202 } 203 // Bitmap was not encoded. Record a zero, implying that the reader need not decode. 204 this->writeUInt(0); 205 bitmap.flatten(*this); 206 } 207 208 void SkOrderedWriteBuffer::writeTypeface(SkTypeface* obj) { 209 if (NULL == obj || NULL == fTFSet) { 210 fWriter.write32(0); 211 } else { 212 fWriter.write32(fTFSet->add(obj)); 213 } 214 } 215 216 SkFactorySet* SkOrderedWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { 217 SkRefCnt_SafeAssign(fFactorySet, rec); 218 if (fNamedFactorySet != NULL) { 219 fNamedFactorySet->unref(); 220 fNamedFactorySet = NULL; 221 } 222 return rec; 223 } 224 225 SkNamedFactorySet* SkOrderedWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) { 226 SkRefCnt_SafeAssign(fNamedFactorySet, rec); 227 if (fFactorySet != NULL) { 228 fFactorySet->unref(); 229 fFactorySet = NULL; 230 } 231 return rec; 232 } 233 234 SkRefCntSet* SkOrderedWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { 235 SkRefCnt_SafeAssign(fTFSet, rec); 236 return rec; 237 } 238 239 void SkOrderedWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { 240 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); 241 if (bitmapHeap != NULL) { 242 SkASSERT(NULL == fBitmapEncoder); 243 fBitmapEncoder = NULL; 244 } 245 } 246 247 void SkOrderedWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncoder) { 248 fBitmapEncoder = bitmapEncoder; 249 if (bitmapEncoder != NULL) { 250 SkASSERT(NULL == fBitmapHeap); 251 SkSafeUnref(fBitmapHeap); 252 fBitmapHeap = NULL; 253 } 254 } 255 256 void SkOrderedWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { 257 /* 258 * If we have a factoryset, then the first 32bits tell us... 259 * 0: failure to write the flattenable 260 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet 261 * If we don't have a factoryset, then the first "ptr" is either the 262 * factory, or null for failure. 263 * 264 * The distinction is important, since 0-index is 32bits (always), but a 265 * 0-functionptr might be 32 or 64 bits. 266 */ 267 268 SkFlattenable::Factory factory = NULL; 269 if (flattenable) { 270 factory = flattenable->getFactory(); 271 } 272 if (NULL == factory) { 273 if (this->isValidating()) { 274 this->writeString(""); 275 SkASSERT(NULL == flattenable); // We shouldn't get in here in this scenario 276 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { 277 this->write32(0); 278 } else { 279 this->writeFunctionPtr(NULL); 280 } 281 return; 282 } 283 284 /* 285 * We can write 1 of 3 versions of the flattenable: 286 * 1. function-ptr : this is the fastest for the reader, but assumes that 287 * the writer and reader are in the same process. 288 * 2. index into fFactorySet : This is assumes the writer will later 289 * resolve the function-ptrs into strings for its reader. SkPicture 290 * does exactly this, by writing a table of names (matching the indices) 291 * up front in its serialized form. 292 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the 293 * name. SkGPipe uses this technique so it can write the name to its 294 * stream before writing the flattenable. 295 */ 296 if (this->isValidating()) { 297 this->writeString(flattenable->getTypeName()); 298 } else if (fFactorySet) { 299 this->write32(fFactorySet->add(factory)); 300 } else if (fNamedFactorySet) { 301 int32_t index = fNamedFactorySet->find(factory); 302 this->write32(index); 303 if (0 == index) { 304 return; 305 } 306 } else { 307 this->writeFunctionPtr((void*)factory); 308 } 309 310 // make room for the size of the flattened object 311 (void)fWriter.reserve(sizeof(uint32_t)); 312 // record the current size, so we can subtract after the object writes. 313 uint32_t offset = fWriter.bytesWritten(); 314 // now flatten the object 315 flattenObject(flattenable, *this); 316 uint32_t objSize = fWriter.bytesWritten() - offset; 317 // record the obj's size 318 *fWriter.peek32(offset - sizeof(uint32_t)) = objSize; 319 } 320