Home | History | Annotate | Download | only in lib
      1 // equivalent.h
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //      http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 //
     15 //
     16 // \file Functions and classes to determine the equivalence of two
     17 // FSTs.
     18 
     19 #ifndef FST_LIB_EQUIVALENT_H__
     20 #define FST_LIB_EQUIVALENT_H__
     21 
     22 #include <algorithm>
     23 
     24 #include <ext/hash_map>
     25 using __gnu_cxx::hash_map;
     26 
     27 #include "fst/lib/encode.h"
     28 #include "fst/lib/push.h"
     29 #include "fst/lib/union-find.h"
     30 #include "fst/lib/vector-fst.h"
     31 
     32 namespace fst {
     33 
     34 // Traits-like struct holding utility functions/typedefs/constants for
     35 // the equivalence algorithm.
     36 //
     37 // Encoding device: in order to make the statesets of the two acceptors
     38 // disjoint, we map Arc::StateId on the type MappedId. The states of
     39 // the first acceptor are mapped on odd numbers (s -> 2s + 1), and
     40 // those of the second one on even numbers (s -> 2s + 2). The number 0
     41 // is reserved for an implicit (non-final) 'dead state' (required for
     42 // the correct treatment of non-coaccessible states; kNoStateId is
     43 // mapped to kDeadState for both acceptors). The union-find algorithm
     44 // operates on the mapped IDs.
     45 template <class Arc>
     46 struct EquivalenceUtil {
     47   typedef typename Arc::StateId StateId;
     48   typedef typename Arc::Weight Weight;
     49   typedef int32 MappedId;  // ID for an equivalence class.
     50 
     51   // MappedId for an implicit dead state.
     52   static const MappedId kDeadState = 0;
     53 
     54   // MappedId for lookup failure.
     55   static const MappedId kInvalidId = -1;
     56 
     57   // Maps state ID to the representative of the corresponding
     58   // equivalence class. The parameter 'which_fst' takes the values 1
     59   // and 2, identifying the input FST.
     60   static MappedId MapState(StateId s, int32 which_fst) {
     61     return
     62       (kNoStateId == s)
     63       ?
     64       kDeadState
     65       :
     66       (static_cast<MappedId>(s) << 1) + which_fst;
     67   }
     68   // Maps set ID to State ID.
     69   static StateId UnMapState(MappedId id) {
     70     return static_cast<StateId>((--id) >> 1);
     71   }
     72   // Convenience function: checks if state with MappedId 's' is final
     73   // in acceptor 'fa'.
     74   static bool IsFinal(const Fst<Arc> &fa, MappedId s) {
     75     return
     76       (kDeadState == s) ?
     77       false : (fa.Final(UnMapState(s)) != Weight::Zero());
     78   }
     79   // Convenience function: returns the representative of 'id' in 'sets',
     80   // creating a new set if needed.
     81   static MappedId FindSet(UnionFind<MappedId> *sets, MappedId id) {
     82     MappedId repr = sets->FindSet(id);
     83     if (repr != kInvalidId) {
     84       return repr;
     85     } else {
     86       sets->MakeSet(id);
     87       return id;
     88     }
     89   }
     90 };
     91 
     92 // Equivalence checking algorithm: determines if the two FSTs
     93 // <code>fst1</code> and <code>fst2</code> are equivalent. The input
     94 // FSTs must be deterministic input-side epsilon-free acceptors,
     95 // unweighted or with weights over a left semiring. Two acceptors are
     96 // considered equivalent if they accept exactly the same set of
     97 // strings (with the same weights).
     98 //
     99 // The algorithm (cf. Aho, Hopcroft and Ullman, "The Design and
    100 // Analysis of Computer Programs") successively constructs sets of
    101 // states that can be reached by the same prefixes, starting with a
    102 // set containing the start states of both acceptors. A disjoint tree
    103 // forest (the union-find algorithm) is used to represent the sets of
    104 // states. The algorithm returns 'false' if one of the constructed
    105 // sets contains both final and non-final states.
    106 //
    107 // Complexity: quasi-linear, i.e. O(n G(n)), where
    108 //   n = |S1| + |S2| is the number of states in both acceptors
    109 //   G(n) is a very slowly growing function that can be approximated
    110 //        by 4 by all practical purposes.
    111 //
    112 template <class Arc>
    113 bool Equivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2) {
    114   typedef typename Arc::Weight Weight;
    115   // Check properties first:
    116   uint64 props = kNoEpsilons | kIDeterministic | kAcceptor;
    117   if (fst1.Properties(props, true) != props) {
    118     LOG(FATAL) << "Equivalent: first argument not an"
    119                << " epsilon-free deterministic acceptor";
    120   }
    121   if (fst2.Properties(props, true) != props) {
    122     LOG(FATAL) << "Equivalent: second argument not an"
    123                << " epsilon-free deterministic acceptor";
    124   }
    125 
    126   if ((fst1.Properties(kUnweighted , true) != kUnweighted)
    127       || (fst2.Properties(kUnweighted , true) != kUnweighted)) {
    128     VectorFst<Arc> efst1(fst1);
    129     VectorFst<Arc> efst2(fst2);
    130     Push(&efst1, REWEIGHT_TO_INITIAL);
    131     Push(&efst2, REWEIGHT_TO_INITIAL);
    132     Map(&efst1, QuantizeMapper<Arc>());
    133     Map(&efst2, QuantizeMapper<Arc>());
    134     EncodeMapper<Arc> mapper(kEncodeWeights|kEncodeLabels, ENCODE);
    135     Map(&efst1, &mapper);
    136     Map(&efst2, &mapper);
    137     return Equivalent(efst1, efst2);
    138   }
    139 
    140   // Convenience typedefs:
    141   typedef typename Arc::StateId StateId;
    142   typedef EquivalenceUtil<Arc> Util;
    143   typedef typename Util::MappedId MappedId;
    144   enum { FST1 = 1, FST2 = 2 };  // Required by Util::MapState(...)
    145 
    146   MappedId s1 = Util::MapState(fst1.Start(), FST1);
    147   MappedId s2 = Util::MapState(fst2.Start(), FST2);
    148 
    149   // The union-find structure.
    150   UnionFind<MappedId> eq_classes(1000, Util::kInvalidId);
    151 
    152   // Initialize the union-find structure.
    153   eq_classes.MakeSet(s1);
    154   eq_classes.MakeSet(s2);
    155 
    156   // Early return if the start states differ w.r.t. being final.
    157   if (Util::IsFinal(fst1, s1) != Util::IsFinal(fst2, s2)) {
    158     return false;
    159   }
    160   // Data structure for the (partial) acceptor transition function of
    161   // fst1 and fst2: input labels mapped to pairs of MappedId's
    162   // representing destination states of the corresponding arcs in fst1
    163   // and fst2, respectively.
    164   typedef
    165     hash_map<typename Arc::Label, pair<MappedId, MappedId> >
    166     Label2StatePairMap;
    167 
    168   Label2StatePairMap arc_pairs;
    169 
    170   // Pairs of MappedId's to be processed, organized in a queue.
    171   deque<pair<MappedId, MappedId> > q;
    172 
    173   // Main loop: explores the two acceptors in a breadth-first manner,
    174   // updating the equivalence relation on the statesets. Loop
    175   // invariant: each block of states contains either final states only
    176   // or non-final states only.
    177   for (q.push_back(make_pair(s1, s2)); !q.empty(); q.pop_front()) {
    178     s1 = q.front().first;
    179     s2 = q.front().second;
    180 
    181     // Representatives of the equivalence classes of s1/s2.
    182     MappedId rep1 = Util::FindSet(&eq_classes, s1);
    183     MappedId rep2 = Util::FindSet(&eq_classes, s2);
    184 
    185     if (rep1 != rep2) {
    186       eq_classes.Union(rep1, rep2);
    187       arc_pairs.clear();
    188 
    189       // Copy outgoing arcs starting at s1 into the hashtable.
    190       if (Util::kDeadState != s1) {
    191         ArcIterator<Fst<Arc> > arc_iter(fst1, Util::UnMapState(s1));
    192         for (; !arc_iter.Done(); arc_iter.Next()) {
    193           const Arc &arc = arc_iter.Value();
    194           if (arc.weight != Weight::Zero()) {  // Zero-weight arcs
    195                                                    // are treated as
    196                                                    // non-exisitent.
    197             arc_pairs[arc.ilabel].first = Util::MapState(arc.nextstate, FST1);
    198           }
    199         }
    200       }
    201       // Copy outgoing arcs starting at s2 into the hashtable.
    202       if (Util::kDeadState != s2) {
    203         ArcIterator<Fst<Arc> > arc_iter(fst2, Util::UnMapState(s2));
    204         for (; !arc_iter.Done(); arc_iter.Next()) {
    205           const Arc &arc = arc_iter.Value();
    206           if (arc.weight != Weight::Zero()) {  // Zero-weight arcs
    207                                                    // are treated as
    208                                                    // non-existent.
    209             arc_pairs[arc.ilabel].second = Util::MapState(arc.nextstate, FST2);
    210           }
    211         }
    212       }
    213       // Iterate through the hashtable and process pairs of target
    214       // states.
    215       for (typename Label2StatePairMap::const_iterator
    216              arc_iter = arc_pairs.begin();
    217            arc_iter != arc_pairs.end();
    218            ++arc_iter) {
    219         const pair<MappedId, MappedId> &p = arc_iter->second;
    220         if (Util::IsFinal(fst1, p.first) != Util::IsFinal(fst2, p.second)) {
    221           // Detected inconsistency: return false.
    222           return false;
    223         }
    224         q.push_back(p);
    225       }
    226     }
    227   }
    228   return true;
    229 }
    230 
    231 }  // namespace fst
    232 
    233 #endif  // FST_LIB_EQUIVALENT_H__
    234