Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 #include "lithium-allocator-inl.h"
     30 
     31 #include "hydrogen.h"
     32 #include "string-stream.h"
     33 
     34 #if V8_TARGET_ARCH_IA32
     35 #include "ia32/lithium-ia32.h"
     36 #elif V8_TARGET_ARCH_X64
     37 #include "x64/lithium-x64.h"
     38 #elif V8_TARGET_ARCH_ARM
     39 #include "arm/lithium-arm.h"
     40 #elif V8_TARGET_ARCH_MIPS
     41 #include "mips/lithium-mips.h"
     42 #else
     43 #error "Unknown architecture."
     44 #endif
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
     50   return a.Value() < b.Value() ? a : b;
     51 }
     52 
     53 
     54 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
     55   return a.Value() > b.Value() ? a : b;
     56 }
     57 
     58 
     59 UsePosition::UsePosition(LifetimePosition pos, LOperand* operand)
     60     : operand_(operand),
     61       hint_(NULL),
     62       pos_(pos),
     63       next_(NULL),
     64       requires_reg_(false),
     65       register_beneficial_(true) {
     66   if (operand_ != NULL && operand_->IsUnallocated()) {
     67     LUnallocated* unalloc = LUnallocated::cast(operand_);
     68     requires_reg_ = unalloc->HasRegisterPolicy();
     69     register_beneficial_ = !unalloc->HasAnyPolicy();
     70   }
     71   ASSERT(pos_.IsValid());
     72 }
     73 
     74 
     75 bool UsePosition::HasHint() const {
     76   return hint_ != NULL && !hint_->IsUnallocated();
     77 }
     78 
     79 
     80 bool UsePosition::RequiresRegister() const {
     81   return requires_reg_;
     82 }
     83 
     84 
     85 bool UsePosition::RegisterIsBeneficial() const {
     86   return register_beneficial_;
     87 }
     88 
     89 
     90 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
     91   ASSERT(Contains(pos) && pos.Value() != start().Value());
     92   UseInterval* after = new(zone) UseInterval(pos, end_);
     93   after->next_ = next_;
     94   next_ = after;
     95   end_ = pos;
     96 }
     97 
     98 
     99 #ifdef DEBUG
    100 
    101 
    102 void LiveRange::Verify() const {
    103   UsePosition* cur = first_pos_;
    104   while (cur != NULL) {
    105     ASSERT(Start().Value() <= cur->pos().Value() &&
    106            cur->pos().Value() <= End().Value());
    107     cur = cur->next();
    108   }
    109 }
    110 
    111 
    112 bool LiveRange::HasOverlap(UseInterval* target) const {
    113   UseInterval* current_interval = first_interval_;
    114   while (current_interval != NULL) {
    115     // Intervals overlap if the start of one is contained in the other.
    116     if (current_interval->Contains(target->start()) ||
    117         target->Contains(current_interval->start())) {
    118       return true;
    119     }
    120     current_interval = current_interval->next();
    121   }
    122   return false;
    123 }
    124 
    125 
    126 #endif
    127 
    128 
    129 LiveRange::LiveRange(int id, Zone* zone)
    130     : id_(id),
    131       spilled_(false),
    132       is_double_(false),
    133       assigned_register_(kInvalidAssignment),
    134       last_interval_(NULL),
    135       first_interval_(NULL),
    136       first_pos_(NULL),
    137       parent_(NULL),
    138       next_(NULL),
    139       current_interval_(NULL),
    140       last_processed_use_(NULL),
    141       spill_operand_(new(zone) LOperand()),
    142       spill_start_index_(kMaxInt) { }
    143 
    144 
    145 void LiveRange::set_assigned_register(int reg,
    146                                       RegisterKind register_kind,
    147                                       Zone* zone) {
    148   ASSERT(!HasRegisterAssigned() && !IsSpilled());
    149   assigned_register_ = reg;
    150   is_double_ = (register_kind == DOUBLE_REGISTERS);
    151   ConvertOperands(zone);
    152 }
    153 
    154 
    155 void LiveRange::MakeSpilled(Zone* zone) {
    156   ASSERT(!IsSpilled());
    157   ASSERT(TopLevel()->HasAllocatedSpillOperand());
    158   spilled_ = true;
    159   assigned_register_ = kInvalidAssignment;
    160   ConvertOperands(zone);
    161 }
    162 
    163 
    164 bool LiveRange::HasAllocatedSpillOperand() const {
    165   ASSERT(spill_operand_ != NULL);
    166   return !spill_operand_->IsIgnored();
    167 }
    168 
    169 
    170 void LiveRange::SetSpillOperand(LOperand* operand) {
    171   ASSERT(!operand->IsUnallocated());
    172   ASSERT(spill_operand_ != NULL);
    173   ASSERT(spill_operand_->IsIgnored());
    174   spill_operand_->ConvertTo(operand->kind(), operand->index());
    175 }
    176 
    177 
    178 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
    179   UsePosition* use_pos = last_processed_use_;
    180   if (use_pos == NULL) use_pos = first_pos();
    181   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
    182     use_pos = use_pos->next();
    183   }
    184   last_processed_use_ = use_pos;
    185   return use_pos;
    186 }
    187 
    188 
    189 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
    190     LifetimePosition start) {
    191   UsePosition* pos = NextUsePosition(start);
    192   while (pos != NULL && !pos->RegisterIsBeneficial()) {
    193     pos = pos->next();
    194   }
    195   return pos;
    196 }
    197 
    198 
    199 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
    200   UsePosition* pos = NextUsePosition(start);
    201   while (pos != NULL && !pos->RequiresRegister()) {
    202     pos = pos->next();
    203   }
    204   return pos;
    205 }
    206 
    207 
    208 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
    209   // TODO(kmillikin): Comment. Now.
    210   if (pos.Value() <= Start().Value() && HasRegisterAssigned()) return false;
    211 
    212   // We cannot spill a live range that has a use requiring a register
    213   // at the current or the immediate next position.
    214   UsePosition* use_pos = NextRegisterPosition(pos);
    215   if (use_pos == NULL) return true;
    216   return
    217       use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
    218 }
    219 
    220 
    221 UsePosition* LiveRange::FirstPosWithHint() const {
    222   UsePosition* pos = first_pos_;
    223   while (pos != NULL && !pos->HasHint()) pos = pos->next();
    224   return pos;
    225 }
    226 
    227 
    228 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
    229   LOperand* op = NULL;
    230   if (HasRegisterAssigned()) {
    231     ASSERT(!IsSpilled());
    232     if (IsDouble()) {
    233       op = LDoubleRegister::Create(assigned_register());
    234     } else {
    235       op = LRegister::Create(assigned_register());
    236     }
    237   } else if (IsSpilled()) {
    238     ASSERT(!HasRegisterAssigned());
    239     op = TopLevel()->GetSpillOperand();
    240     ASSERT(!op->IsUnallocated());
    241   } else {
    242     LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
    243     unalloc->set_virtual_register(id_);
    244     op = unalloc;
    245   }
    246   return op;
    247 }
    248 
    249 
    250 UseInterval* LiveRange::FirstSearchIntervalForPosition(
    251     LifetimePosition position) const {
    252   if (current_interval_ == NULL) return first_interval_;
    253   if (current_interval_->start().Value() > position.Value()) {
    254     current_interval_ = NULL;
    255     return first_interval_;
    256   }
    257   return current_interval_;
    258 }
    259 
    260 
    261 void LiveRange::AdvanceLastProcessedMarker(
    262     UseInterval* to_start_of, LifetimePosition but_not_past) const {
    263   if (to_start_of == NULL) return;
    264   if (to_start_of->start().Value() > but_not_past.Value()) return;
    265   LifetimePosition start =
    266       current_interval_ == NULL ? LifetimePosition::Invalid()
    267                                 : current_interval_->start();
    268   if (to_start_of->start().Value() > start.Value()) {
    269     current_interval_ = to_start_of;
    270   }
    271 }
    272 
    273 
    274 void LiveRange::SplitAt(LifetimePosition position,
    275                         LiveRange* result,
    276                         Zone* zone) {
    277   ASSERT(Start().Value() < position.Value());
    278   ASSERT(result->IsEmpty());
    279   // Find the last interval that ends before the position. If the
    280   // position is contained in one of the intervals in the chain, we
    281   // split that interval and use the first part.
    282   UseInterval* current = FirstSearchIntervalForPosition(position);
    283 
    284   // If the split position coincides with the beginning of a use interval
    285   // we need to split use positons in a special way.
    286   bool split_at_start = false;
    287 
    288   if (current->start().Value() == position.Value()) {
    289     // When splitting at start we need to locate the previous use interval.
    290     current = first_interval_;
    291   }
    292 
    293   while (current != NULL) {
    294     if (current->Contains(position)) {
    295       current->SplitAt(position, zone);
    296       break;
    297     }
    298     UseInterval* next = current->next();
    299     if (next->start().Value() >= position.Value()) {
    300       split_at_start = (next->start().Value() == position.Value());
    301       break;
    302     }
    303     current = next;
    304   }
    305 
    306   // Partition original use intervals to the two live ranges.
    307   UseInterval* before = current;
    308   UseInterval* after = before->next();
    309   result->last_interval_ = (last_interval_ == before)
    310       ? after            // Only interval in the range after split.
    311       : last_interval_;  // Last interval of the original range.
    312   result->first_interval_ = after;
    313   last_interval_ = before;
    314 
    315   // Find the last use position before the split and the first use
    316   // position after it.
    317   UsePosition* use_after = first_pos_;
    318   UsePosition* use_before = NULL;
    319   if (split_at_start) {
    320     // The split position coincides with the beginning of a use interval (the
    321     // end of a lifetime hole). Use at this position should be attributed to
    322     // the split child because split child owns use interval covering it.
    323     while (use_after != NULL && use_after->pos().Value() < position.Value()) {
    324       use_before = use_after;
    325       use_after = use_after->next();
    326     }
    327   } else {
    328     while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
    329       use_before = use_after;
    330       use_after = use_after->next();
    331     }
    332   }
    333 
    334   // Partition original use positions to the two live ranges.
    335   if (use_before != NULL) {
    336     use_before->next_ = NULL;
    337   } else {
    338     first_pos_ = NULL;
    339   }
    340   result->first_pos_ = use_after;
    341 
    342   // Discard cached iteration state. It might be pointing
    343   // to the use that no longer belongs to this live range.
    344   last_processed_use_ = NULL;
    345   current_interval_ = NULL;
    346 
    347   // Link the new live range in the chain before any of the other
    348   // ranges linked from the range before the split.
    349   result->parent_ = (parent_ == NULL) ? this : parent_;
    350   result->next_ = next_;
    351   next_ = result;
    352 
    353 #ifdef DEBUG
    354   Verify();
    355   result->Verify();
    356 #endif
    357 }
    358 
    359 
    360 // This implements an ordering on live ranges so that they are ordered by their
    361 // start positions.  This is needed for the correctness of the register
    362 // allocation algorithm.  If two live ranges start at the same offset then there
    363 // is a tie breaker based on where the value is first used.  This part of the
    364 // ordering is merely a heuristic.
    365 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
    366   LifetimePosition start = Start();
    367   LifetimePosition other_start = other->Start();
    368   if (start.Value() == other_start.Value()) {
    369     UsePosition* pos = FirstPosWithHint();
    370     if (pos == NULL) return false;
    371     UsePosition* other_pos = other->first_pos();
    372     if (other_pos == NULL) return true;
    373     return pos->pos().Value() < other_pos->pos().Value();
    374   }
    375   return start.Value() < other_start.Value();
    376 }
    377 
    378 
    379 void LiveRange::ShortenTo(LifetimePosition start) {
    380   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
    381   ASSERT(first_interval_ != NULL);
    382   ASSERT(first_interval_->start().Value() <= start.Value());
    383   ASSERT(start.Value() < first_interval_->end().Value());
    384   first_interval_->set_start(start);
    385 }
    386 
    387 
    388 void LiveRange::EnsureInterval(LifetimePosition start,
    389                                LifetimePosition end,
    390                                Zone* zone) {
    391   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
    392                          id_,
    393                          start.Value(),
    394                          end.Value());
    395   LifetimePosition new_end = end;
    396   while (first_interval_ != NULL &&
    397          first_interval_->start().Value() <= end.Value()) {
    398     if (first_interval_->end().Value() > end.Value()) {
    399       new_end = first_interval_->end();
    400     }
    401     first_interval_ = first_interval_->next();
    402   }
    403 
    404   UseInterval* new_interval = new(zone) UseInterval(start, new_end);
    405   new_interval->next_ = first_interval_;
    406   first_interval_ = new_interval;
    407   if (new_interval->next() == NULL) {
    408     last_interval_ = new_interval;
    409   }
    410 }
    411 
    412 
    413 void LiveRange::AddUseInterval(LifetimePosition start,
    414                                LifetimePosition end,
    415                                Zone* zone) {
    416   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
    417                          id_,
    418                          start.Value(),
    419                          end.Value());
    420   if (first_interval_ == NULL) {
    421     UseInterval* interval = new(zone) UseInterval(start, end);
    422     first_interval_ = interval;
    423     last_interval_ = interval;
    424   } else {
    425     if (end.Value() == first_interval_->start().Value()) {
    426       first_interval_->set_start(start);
    427     } else if (end.Value() < first_interval_->start().Value()) {
    428       UseInterval* interval = new(zone) UseInterval(start, end);
    429       interval->set_next(first_interval_);
    430       first_interval_ = interval;
    431     } else {
    432       // Order of instruction's processing (see ProcessInstructions) guarantees
    433       // that each new use interval either precedes or intersects with
    434       // last added interval.
    435       ASSERT(start.Value() < first_interval_->end().Value());
    436       first_interval_->start_ = Min(start, first_interval_->start_);
    437       first_interval_->end_ = Max(end, first_interval_->end_);
    438     }
    439   }
    440 }
    441 
    442 
    443 UsePosition* LiveRange::AddUsePosition(LifetimePosition pos,
    444                                        LOperand* operand,
    445                                        Zone* zone) {
    446   LAllocator::TraceAlloc("Add to live range %d use position %d\n",
    447                          id_,
    448                          pos.Value());
    449   UsePosition* use_pos = new(zone) UsePosition(pos, operand);
    450   UsePosition* prev = NULL;
    451   UsePosition* current = first_pos_;
    452   while (current != NULL && current->pos().Value() < pos.Value()) {
    453     prev = current;
    454     current = current->next();
    455   }
    456 
    457   if (prev == NULL) {
    458     use_pos->set_next(first_pos_);
    459     first_pos_ = use_pos;
    460   } else {
    461     use_pos->next_ = prev->next_;
    462     prev->next_ = use_pos;
    463   }
    464 
    465   return use_pos;
    466 }
    467 
    468 
    469 void LiveRange::ConvertOperands(Zone* zone) {
    470   LOperand* op = CreateAssignedOperand(zone);
    471   UsePosition* use_pos = first_pos();
    472   while (use_pos != NULL) {
    473     ASSERT(Start().Value() <= use_pos->pos().Value() &&
    474            use_pos->pos().Value() <= End().Value());
    475 
    476     if (use_pos->HasOperand()) {
    477       ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
    478              !use_pos->RequiresRegister());
    479       use_pos->operand()->ConvertTo(op->kind(), op->index());
    480     }
    481     use_pos = use_pos->next();
    482   }
    483 }
    484 
    485 
    486 bool LiveRange::CanCover(LifetimePosition position) const {
    487   if (IsEmpty()) return false;
    488   return Start().Value() <= position.Value() &&
    489          position.Value() < End().Value();
    490 }
    491 
    492 
    493 bool LiveRange::Covers(LifetimePosition position) {
    494   if (!CanCover(position)) return false;
    495   UseInterval* start_search = FirstSearchIntervalForPosition(position);
    496   for (UseInterval* interval = start_search;
    497        interval != NULL;
    498        interval = interval->next()) {
    499     ASSERT(interval->next() == NULL ||
    500            interval->next()->start().Value() >= interval->start().Value());
    501     AdvanceLastProcessedMarker(interval, position);
    502     if (interval->Contains(position)) return true;
    503     if (interval->start().Value() > position.Value()) return false;
    504   }
    505   return false;
    506 }
    507 
    508 
    509 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
    510   UseInterval* b = other->first_interval();
    511   if (b == NULL) return LifetimePosition::Invalid();
    512   LifetimePosition advance_last_processed_up_to = b->start();
    513   UseInterval* a = FirstSearchIntervalForPosition(b->start());
    514   while (a != NULL && b != NULL) {
    515     if (a->start().Value() > other->End().Value()) break;
    516     if (b->start().Value() > End().Value()) break;
    517     LifetimePosition cur_intersection = a->Intersect(b);
    518     if (cur_intersection.IsValid()) {
    519       return cur_intersection;
    520     }
    521     if (a->start().Value() < b->start().Value()) {
    522       a = a->next();
    523       if (a == NULL || a->start().Value() > other->End().Value()) break;
    524       AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
    525     } else {
    526       b = b->next();
    527     }
    528   }
    529   return LifetimePosition::Invalid();
    530 }
    531 
    532 
    533 LAllocator::LAllocator(int num_values, HGraph* graph)
    534     : zone_(graph->zone()),
    535       chunk_(NULL),
    536       live_in_sets_(graph->blocks()->length()),
    537       live_ranges_(num_values * 2),
    538       fixed_live_ranges_(NULL),
    539       fixed_double_live_ranges_(NULL),
    540       unhandled_live_ranges_(num_values * 2),
    541       active_live_ranges_(8),
    542       inactive_live_ranges_(8),
    543       reusable_slots_(8),
    544       next_virtual_register_(num_values),
    545       first_artificial_register_(num_values),
    546       mode_(GENERAL_REGISTERS),
    547       num_registers_(-1),
    548       graph_(graph),
    549       has_osr_entry_(false),
    550       allocation_ok_(true) { }
    551 
    552 
    553 void LAllocator::InitializeLivenessAnalysis() {
    554   // Initialize the live_in sets for each block to NULL.
    555   int block_count = graph_->blocks()->length();
    556   live_in_sets_.Initialize(block_count);
    557   live_in_sets_.AddBlock(NULL, block_count);
    558 }
    559 
    560 
    561 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
    562   // Compute live out for the given block, except not including backward
    563   // successor edges.
    564   BitVector* live_out = new(zone_) BitVector(next_virtual_register_, zone_);
    565 
    566   // Process all successor blocks.
    567   for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
    568     // Add values live on entry to the successor. Note the successor's
    569     // live_in will not be computed yet for backwards edges.
    570     HBasicBlock* successor = it.Current();
    571     BitVector* live_in = live_in_sets_[successor->block_id()];
    572     if (live_in != NULL) live_out->Union(*live_in);
    573 
    574     // All phi input operands corresponding to this successor edge are live
    575     // out from this block.
    576     int index = successor->PredecessorIndexOf(block);
    577     const ZoneList<HPhi*>* phis = successor->phis();
    578     for (int i = 0; i < phis->length(); ++i) {
    579       HPhi* phi = phis->at(i);
    580       if (!phi->OperandAt(index)->IsConstant()) {
    581         live_out->Add(phi->OperandAt(index)->id());
    582       }
    583     }
    584   }
    585 
    586   return live_out;
    587 }
    588 
    589 
    590 void LAllocator::AddInitialIntervals(HBasicBlock* block,
    591                                      BitVector* live_out) {
    592   // Add an interval that includes the entire block to the live range for
    593   // each live_out value.
    594   LifetimePosition start = LifetimePosition::FromInstructionIndex(
    595       block->first_instruction_index());
    596   LifetimePosition end = LifetimePosition::FromInstructionIndex(
    597       block->last_instruction_index()).NextInstruction();
    598   BitVector::Iterator iterator(live_out);
    599   while (!iterator.Done()) {
    600     int operand_index = iterator.Current();
    601     LiveRange* range = LiveRangeFor(operand_index);
    602     range->AddUseInterval(start, end, zone_);
    603     iterator.Advance();
    604   }
    605 }
    606 
    607 
    608 int LAllocator::FixedDoubleLiveRangeID(int index) {
    609   return -index - 1 - Register::kNumAllocatableRegisters;
    610 }
    611 
    612 
    613 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
    614                                     int pos,
    615                                     bool is_tagged) {
    616   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
    617   ASSERT(operand->HasFixedPolicy());
    618   if (operand->policy() == LUnallocated::FIXED_SLOT) {
    619     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_index());
    620   } else if (operand->policy() == LUnallocated::FIXED_REGISTER) {
    621     int reg_index = operand->fixed_index();
    622     operand->ConvertTo(LOperand::REGISTER, reg_index);
    623   } else if (operand->policy() == LUnallocated::FIXED_DOUBLE_REGISTER) {
    624     int reg_index = operand->fixed_index();
    625     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
    626   } else {
    627     UNREACHABLE();
    628   }
    629   if (is_tagged) {
    630     TraceAlloc("Fixed reg is tagged at %d\n", pos);
    631     LInstruction* instr = InstructionAt(pos);
    632     if (instr->HasPointerMap()) {
    633       instr->pointer_map()->RecordPointer(operand);
    634     }
    635   }
    636   return operand;
    637 }
    638 
    639 
    640 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
    641   ASSERT(index < Register::kNumAllocatableRegisters);
    642   LiveRange* result = fixed_live_ranges_[index];
    643   if (result == NULL) {
    644     result = new(zone_) LiveRange(FixedLiveRangeID(index), zone_);
    645     ASSERT(result->IsFixed());
    646     result->set_assigned_register(index, GENERAL_REGISTERS, zone_);
    647     fixed_live_ranges_[index] = result;
    648   }
    649   return result;
    650 }
    651 
    652 
    653 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
    654   ASSERT(index < DoubleRegister::kNumAllocatableRegisters);
    655   LiveRange* result = fixed_double_live_ranges_[index];
    656   if (result == NULL) {
    657     result = new(zone_) LiveRange(FixedDoubleLiveRangeID(index), zone_);
    658     ASSERT(result->IsFixed());
    659     result->set_assigned_register(index, DOUBLE_REGISTERS, zone_);
    660     fixed_double_live_ranges_[index] = result;
    661   }
    662   return result;
    663 }
    664 
    665 
    666 LiveRange* LAllocator::LiveRangeFor(int index) {
    667   if (index >= live_ranges_.length()) {
    668     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1);
    669   }
    670   LiveRange* result = live_ranges_[index];
    671   if (result == NULL) {
    672     result = new(zone_) LiveRange(index, zone_);
    673     live_ranges_[index] = result;
    674   }
    675   return result;
    676 }
    677 
    678 
    679 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
    680   int last_instruction = block->last_instruction_index();
    681   int index = chunk_->NearestGapPos(last_instruction);
    682   return GapAt(index);
    683 }
    684 
    685 
    686 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
    687   if (!operand->IsUnallocated()) return NULL;
    688   int index = LUnallocated::cast(operand)->virtual_register();
    689   HValue* instr = graph_->LookupValue(index);
    690   if (instr != NULL && instr->IsPhi()) {
    691     return HPhi::cast(instr);
    692   }
    693   return NULL;
    694 }
    695 
    696 
    697 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
    698   if (operand->IsUnallocated()) {
    699     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
    700   } else if (operand->IsRegister()) {
    701     return FixedLiveRangeFor(operand->index());
    702   } else if (operand->IsDoubleRegister()) {
    703     return FixedDoubleLiveRangeFor(operand->index());
    704   } else {
    705     return NULL;
    706   }
    707 }
    708 
    709 
    710 void LAllocator::Define(LifetimePosition position,
    711                         LOperand* operand,
    712                         LOperand* hint) {
    713   LiveRange* range = LiveRangeFor(operand);
    714   if (range == NULL) return;
    715 
    716   if (range->IsEmpty() || range->Start().Value() > position.Value()) {
    717     // Can happen if there is a definition without use.
    718     range->AddUseInterval(position, position.NextInstruction(), zone_);
    719     range->AddUsePosition(position.NextInstruction(), NULL, zone_);
    720   } else {
    721     range->ShortenTo(position);
    722   }
    723 
    724   if (operand->IsUnallocated()) {
    725     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
    726     range->AddUsePosition(position, unalloc_operand, zone_)->set_hint(hint);
    727   }
    728 }
    729 
    730 
    731 void LAllocator::Use(LifetimePosition block_start,
    732                      LifetimePosition position,
    733                      LOperand* operand,
    734                      LOperand* hint) {
    735   LiveRange* range = LiveRangeFor(operand);
    736   if (range == NULL) return;
    737   if (operand->IsUnallocated()) {
    738     LUnallocated* unalloc_operand = LUnallocated::cast(operand);
    739     range->AddUsePosition(position, unalloc_operand, zone_)->set_hint(hint);
    740   }
    741   range->AddUseInterval(block_start, position, zone_);
    742 }
    743 
    744 
    745 void LAllocator::AddConstraintsGapMove(int index,
    746                                        LOperand* from,
    747                                        LOperand* to) {
    748   LGap* gap = GapAt(index);
    749   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
    750   if (from->IsUnallocated()) {
    751     const ZoneList<LMoveOperands>* move_operands = move->move_operands();
    752     for (int i = 0; i < move_operands->length(); ++i) {
    753       LMoveOperands cur = move_operands->at(i);
    754       LOperand* cur_to = cur.destination();
    755       if (cur_to->IsUnallocated()) {
    756         if (LUnallocated::cast(cur_to)->virtual_register() ==
    757             LUnallocated::cast(from)->virtual_register()) {
    758           move->AddMove(cur.source(), to);
    759           return;
    760         }
    761       }
    762     }
    763   }
    764   move->AddMove(from, to);
    765 }
    766 
    767 
    768 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
    769   int start = block->first_instruction_index();
    770   int end = block->last_instruction_index();
    771   for (int i = start; i <= end; ++i) {
    772     if (IsGapAt(i)) {
    773       LInstruction* instr = NULL;
    774       LInstruction* prev_instr = NULL;
    775       if (i < end) instr = InstructionAt(i + 1);
    776       if (i > start) prev_instr = InstructionAt(i - 1);
    777       MeetConstraintsBetween(prev_instr, instr, i);
    778       if (!AllocationOk()) return;
    779     }
    780   }
    781 }
    782 
    783 
    784 void LAllocator::MeetConstraintsBetween(LInstruction* first,
    785                                         LInstruction* second,
    786                                         int gap_index) {
    787   // Handle fixed temporaries.
    788   if (first != NULL) {
    789     for (TempIterator it(first); !it.Done(); it.Advance()) {
    790       LUnallocated* temp = LUnallocated::cast(it.Current());
    791       if (temp->HasFixedPolicy()) {
    792         AllocateFixed(temp, gap_index - 1, false);
    793       }
    794     }
    795   }
    796 
    797   // Handle fixed output operand.
    798   if (first != NULL && first->Output() != NULL) {
    799     LUnallocated* first_output = LUnallocated::cast(first->Output());
    800     LiveRange* range = LiveRangeFor(first_output->virtual_register());
    801     bool assigned = false;
    802     if (first_output->HasFixedPolicy()) {
    803       LUnallocated* output_copy = first_output->CopyUnconstrained();
    804       bool is_tagged = HasTaggedValue(first_output->virtual_register());
    805       AllocateFixed(first_output, gap_index, is_tagged);
    806 
    807       // This value is produced on the stack, we never need to spill it.
    808       if (first_output->IsStackSlot()) {
    809         range->SetSpillOperand(first_output);
    810         range->SetSpillStartIndex(gap_index - 1);
    811         assigned = true;
    812       }
    813       chunk_->AddGapMove(gap_index, first_output, output_copy);
    814     }
    815 
    816     if (!assigned) {
    817       range->SetSpillStartIndex(gap_index);
    818 
    819       // This move to spill operand is not a real use. Liveness analysis
    820       // and splitting of live ranges do not account for it.
    821       // Thus it should be inserted to a lifetime position corresponding to
    822       // the instruction end.
    823       LGap* gap = GapAt(gap_index);
    824       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE);
    825       move->AddMove(first_output, range->GetSpillOperand());
    826     }
    827   }
    828 
    829   // Handle fixed input operands of second instruction.
    830   if (second != NULL) {
    831     for (UseIterator it(second); !it.Done(); it.Advance()) {
    832       LUnallocated* cur_input = LUnallocated::cast(it.Current());
    833       if (cur_input->HasFixedPolicy()) {
    834         LUnallocated* input_copy = cur_input->CopyUnconstrained();
    835         bool is_tagged = HasTaggedValue(cur_input->virtual_register());
    836         AllocateFixed(cur_input, gap_index + 1, is_tagged);
    837         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    838       } else if (cur_input->policy() == LUnallocated::WRITABLE_REGISTER) {
    839         // The live range of writable input registers always goes until the end
    840         // of the instruction.
    841         ASSERT(!cur_input->IsUsedAtStart());
    842 
    843         LUnallocated* input_copy = cur_input->CopyUnconstrained();
    844         cur_input->set_virtual_register(GetVirtualRegister());
    845         if (!AllocationOk()) return;
    846 
    847         if (RequiredRegisterKind(input_copy->virtual_register()) ==
    848             DOUBLE_REGISTERS) {
    849           double_artificial_registers_.Add(
    850               cur_input->virtual_register() - first_artificial_register_,
    851               zone_);
    852         }
    853 
    854         AddConstraintsGapMove(gap_index, input_copy, cur_input);
    855       }
    856     }
    857   }
    858 
    859   // Handle "output same as input" for second instruction.
    860   if (second != NULL && second->Output() != NULL) {
    861     LUnallocated* second_output = LUnallocated::cast(second->Output());
    862     if (second_output->HasSameAsInputPolicy()) {
    863       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
    864       int output_vreg = second_output->virtual_register();
    865       int input_vreg = cur_input->virtual_register();
    866 
    867       LUnallocated* input_copy = cur_input->CopyUnconstrained();
    868       cur_input->set_virtual_register(second_output->virtual_register());
    869       AddConstraintsGapMove(gap_index, input_copy, cur_input);
    870 
    871       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
    872         int index = gap_index + 1;
    873         LInstruction* instr = InstructionAt(index);
    874         if (instr->HasPointerMap()) {
    875           instr->pointer_map()->RecordPointer(input_copy);
    876         }
    877       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
    878         // The input is assumed to immediately have a tagged representation,
    879         // before the pointer map can be used. I.e. the pointer map at the
    880         // instruction will include the output operand (whose value at the
    881         // beginning of the instruction is equal to the input operand). If
    882         // this is not desired, then the pointer map at this instruction needs
    883         // to be adjusted manually.
    884       }
    885     }
    886   }
    887 }
    888 
    889 
    890 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
    891   int block_start = block->first_instruction_index();
    892   int index = block->last_instruction_index();
    893 
    894   LifetimePosition block_start_position =
    895       LifetimePosition::FromInstructionIndex(block_start);
    896 
    897   while (index >= block_start) {
    898     LifetimePosition curr_position =
    899         LifetimePosition::FromInstructionIndex(index);
    900 
    901     if (IsGapAt(index)) {
    902       // We have a gap at this position.
    903       LGap* gap = GapAt(index);
    904       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
    905       const ZoneList<LMoveOperands>* move_operands = move->move_operands();
    906       for (int i = 0; i < move_operands->length(); ++i) {
    907         LMoveOperands* cur = &move_operands->at(i);
    908         if (cur->IsIgnored()) continue;
    909         LOperand* from = cur->source();
    910         LOperand* to = cur->destination();
    911         HPhi* phi = LookupPhi(to);
    912         LOperand* hint = to;
    913         if (phi != NULL) {
    914           // This is a phi resolving move.
    915           if (!phi->block()->IsLoopHeader()) {
    916             hint = LiveRangeFor(phi->id())->FirstHint();
    917           }
    918         } else {
    919           if (to->IsUnallocated()) {
    920             if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
    921               Define(curr_position, to, from);
    922               live->Remove(LUnallocated::cast(to)->virtual_register());
    923             } else {
    924               cur->Eliminate();
    925               continue;
    926             }
    927           } else {
    928             Define(curr_position, to, from);
    929           }
    930         }
    931         Use(block_start_position, curr_position, from, hint);
    932         if (from->IsUnallocated()) {
    933           live->Add(LUnallocated::cast(from)->virtual_register());
    934         }
    935       }
    936     } else {
    937       ASSERT(!IsGapAt(index));
    938       LInstruction* instr = InstructionAt(index);
    939 
    940       if (instr != NULL) {
    941         LOperand* output = instr->Output();
    942         if (output != NULL) {
    943           if (output->IsUnallocated()) {
    944             live->Remove(LUnallocated::cast(output)->virtual_register());
    945           }
    946           Define(curr_position, output, NULL);
    947         }
    948 
    949         if (instr->IsMarkedAsCall()) {
    950           for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
    951             if (output == NULL || !output->IsRegister() ||
    952                 output->index() != i) {
    953               LiveRange* range = FixedLiveRangeFor(i);
    954               range->AddUseInterval(curr_position,
    955                                     curr_position.InstructionEnd(),
    956                                     zone_);
    957             }
    958           }
    959         }
    960 
    961         if (instr->IsMarkedAsCall() || instr->IsMarkedAsSaveDoubles()) {
    962           for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
    963             if (output == NULL || !output->IsDoubleRegister() ||
    964                 output->index() != i) {
    965               LiveRange* range = FixedDoubleLiveRangeFor(i);
    966               range->AddUseInterval(curr_position,
    967                                     curr_position.InstructionEnd(),
    968                                     zone_);
    969             }
    970           }
    971         }
    972 
    973         for (UseIterator it(instr); !it.Done(); it.Advance()) {
    974           LOperand* input = it.Current();
    975 
    976           LifetimePosition use_pos;
    977           if (input->IsUnallocated() &&
    978               LUnallocated::cast(input)->IsUsedAtStart()) {
    979             use_pos = curr_position;
    980           } else {
    981             use_pos = curr_position.InstructionEnd();
    982           }
    983 
    984           Use(block_start_position, use_pos, input, NULL);
    985           if (input->IsUnallocated()) {
    986             live->Add(LUnallocated::cast(input)->virtual_register());
    987           }
    988         }
    989 
    990         for (TempIterator it(instr); !it.Done(); it.Advance()) {
    991           LOperand* temp = it.Current();
    992           if (instr->IsMarkedAsCall()) {
    993             if (temp->IsRegister()) continue;
    994             if (temp->IsUnallocated()) {
    995               LUnallocated* temp_unalloc = LUnallocated::cast(temp);
    996               if (temp_unalloc->HasFixedPolicy()) {
    997                 continue;
    998               }
    999             }
   1000           }
   1001           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
   1002           Define(curr_position, temp, NULL);
   1003         }
   1004       }
   1005     }
   1006 
   1007     index = index - 1;
   1008   }
   1009 }
   1010 
   1011 
   1012 void LAllocator::ResolvePhis(HBasicBlock* block) {
   1013   const ZoneList<HPhi*>* phis = block->phis();
   1014   for (int i = 0; i < phis->length(); ++i) {
   1015     HPhi* phi = phis->at(i);
   1016     LUnallocated* phi_operand = new(zone_) LUnallocated(LUnallocated::NONE);
   1017     phi_operand->set_virtual_register(phi->id());
   1018     for (int j = 0; j < phi->OperandCount(); ++j) {
   1019       HValue* op = phi->OperandAt(j);
   1020       LOperand* operand = NULL;
   1021       if (op->IsConstant() && op->EmitAtUses()) {
   1022         HConstant* constant = HConstant::cast(op);
   1023         operand = chunk_->DefineConstantOperand(constant);
   1024       } else {
   1025         ASSERT(!op->EmitAtUses());
   1026         LUnallocated* unalloc = new(zone_) LUnallocated(LUnallocated::ANY);
   1027         unalloc->set_virtual_register(op->id());
   1028         operand = unalloc;
   1029       }
   1030       HBasicBlock* cur_block = block->predecessors()->at(j);
   1031       // The gap move must be added without any special processing as in
   1032       // the AddConstraintsGapMove.
   1033       chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
   1034                          operand,
   1035                          phi_operand);
   1036 
   1037       // We are going to insert a move before the branch instruction.
   1038       // Some branch instructions (e.g. loops' back edges)
   1039       // can potentially cause a GC so they have a pointer map.
   1040       // By inserting a move we essentially create a copy of a
   1041       // value which is invisible to PopulatePointerMaps(), because we store
   1042       // it into a location different from the operand of a live range
   1043       // covering a branch instruction.
   1044       // Thus we need to manually record a pointer.
   1045       LInstruction* branch =
   1046           InstructionAt(cur_block->last_instruction_index());
   1047       if (branch->HasPointerMap()) {
   1048         if (phi->representation().IsTagged()) {
   1049           branch->pointer_map()->RecordPointer(phi_operand);
   1050         } else if (!phi->representation().IsDouble()) {
   1051           branch->pointer_map()->RecordUntagged(phi_operand);
   1052         }
   1053       }
   1054     }
   1055 
   1056     LiveRange* live_range = LiveRangeFor(phi->id());
   1057     LLabel* label = chunk_->GetLabel(phi->block()->block_id());
   1058     label->GetOrCreateParallelMove(LGap::START)->
   1059         AddMove(phi_operand, live_range->GetSpillOperand());
   1060     live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
   1061   }
   1062 }
   1063 
   1064 
   1065 bool LAllocator::Allocate(LChunk* chunk) {
   1066   ASSERT(chunk_ == NULL);
   1067   chunk_ = chunk;
   1068   MeetRegisterConstraints();
   1069   if (!AllocationOk()) return false;
   1070   ResolvePhis();
   1071   BuildLiveRanges();
   1072   AllocateGeneralRegisters();
   1073   if (!AllocationOk()) return false;
   1074   AllocateDoubleRegisters();
   1075   if (!AllocationOk()) return false;
   1076   PopulatePointerMaps();
   1077   if (has_osr_entry_) ProcessOsrEntry();
   1078   ConnectRanges();
   1079   ResolveControlFlow();
   1080   return true;
   1081 }
   1082 
   1083 
   1084 void LAllocator::MeetRegisterConstraints() {
   1085   HPhase phase("L_Register constraints", chunk_);
   1086   first_artificial_register_ = next_virtual_register_;
   1087   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1088   for (int i = 0; i < blocks->length(); ++i) {
   1089     HBasicBlock* block = blocks->at(i);
   1090     MeetRegisterConstraints(block);
   1091     if (!AllocationOk()) return;
   1092   }
   1093 }
   1094 
   1095 
   1096 void LAllocator::ResolvePhis() {
   1097   HPhase phase("L_Resolve phis", chunk_);
   1098 
   1099   // Process the blocks in reverse order.
   1100   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1101   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
   1102     HBasicBlock* block = blocks->at(block_id);
   1103     ResolvePhis(block);
   1104   }
   1105 }
   1106 
   1107 
   1108 void LAllocator::ResolveControlFlow(LiveRange* range,
   1109                                     HBasicBlock* block,
   1110                                     HBasicBlock* pred) {
   1111   LifetimePosition pred_end =
   1112       LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
   1113   LifetimePosition cur_start =
   1114       LifetimePosition::FromInstructionIndex(block->first_instruction_index());
   1115   LiveRange* pred_cover = NULL;
   1116   LiveRange* cur_cover = NULL;
   1117   LiveRange* cur_range = range;
   1118   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
   1119     if (cur_range->CanCover(cur_start)) {
   1120       ASSERT(cur_cover == NULL);
   1121       cur_cover = cur_range;
   1122     }
   1123     if (cur_range->CanCover(pred_end)) {
   1124       ASSERT(pred_cover == NULL);
   1125       pred_cover = cur_range;
   1126     }
   1127     cur_range = cur_range->next();
   1128   }
   1129 
   1130   if (cur_cover->IsSpilled()) return;
   1131   ASSERT(pred_cover != NULL && cur_cover != NULL);
   1132   if (pred_cover != cur_cover) {
   1133     LOperand* pred_op = pred_cover->CreateAssignedOperand(zone_);
   1134     LOperand* cur_op = cur_cover->CreateAssignedOperand(zone_);
   1135     if (!pred_op->Equals(cur_op)) {
   1136       LGap* gap = NULL;
   1137       if (block->predecessors()->length() == 1) {
   1138         gap = GapAt(block->first_instruction_index());
   1139       } else {
   1140         ASSERT(pred->end()->SecondSuccessor() == NULL);
   1141         gap = GetLastGap(pred);
   1142 
   1143         // We are going to insert a move before the branch instruction.
   1144         // Some branch instructions (e.g. loops' back edges)
   1145         // can potentially cause a GC so they have a pointer map.
   1146         // By inserting a move we essentially create a copy of a
   1147         // value which is invisible to PopulatePointerMaps(), because we store
   1148         // it into a location different from the operand of a live range
   1149         // covering a branch instruction.
   1150         // Thus we need to manually record a pointer.
   1151         LInstruction* branch = InstructionAt(pred->last_instruction_index());
   1152         if (branch->HasPointerMap()) {
   1153           if (HasTaggedValue(range->id())) {
   1154             branch->pointer_map()->RecordPointer(cur_op);
   1155           } else if (!cur_op->IsDoubleStackSlot() &&
   1156                      !cur_op->IsDoubleRegister()) {
   1157             branch->pointer_map()->RemovePointer(cur_op);
   1158           }
   1159         }
   1160       }
   1161       gap->GetOrCreateParallelMove(LGap::START)->AddMove(pred_op, cur_op);
   1162     }
   1163   }
   1164 }
   1165 
   1166 
   1167 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
   1168   int index = pos.InstructionIndex();
   1169   if (IsGapAt(index)) {
   1170     LGap* gap = GapAt(index);
   1171     return gap->GetOrCreateParallelMove(
   1172         pos.IsInstructionStart() ? LGap::START : LGap::END);
   1173   }
   1174   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
   1175   return GapAt(gap_pos)->GetOrCreateParallelMove(
   1176       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE);
   1177 }
   1178 
   1179 
   1180 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
   1181   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
   1182   return gap->block();
   1183 }
   1184 
   1185 
   1186 void LAllocator::ConnectRanges() {
   1187   HPhase phase("L_Connect ranges", this);
   1188   for (int i = 0; i < live_ranges()->length(); ++i) {
   1189     LiveRange* first_range = live_ranges()->at(i);
   1190     if (first_range == NULL || first_range->parent() != NULL) continue;
   1191 
   1192     LiveRange* second_range = first_range->next();
   1193     while (second_range != NULL) {
   1194       LifetimePosition pos = second_range->Start();
   1195 
   1196       if (!second_range->IsSpilled()) {
   1197         // Add gap move if the two live ranges touch and there is no block
   1198         // boundary.
   1199         if (first_range->End().Value() == pos.Value()) {
   1200           bool should_insert = true;
   1201           if (IsBlockBoundary(pos)) {
   1202             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
   1203           }
   1204           if (should_insert) {
   1205             LParallelMove* move = GetConnectingParallelMove(pos);
   1206             LOperand* prev_operand = first_range->CreateAssignedOperand(zone_);
   1207             LOperand* cur_operand = second_range->CreateAssignedOperand(zone_);
   1208             move->AddMove(prev_operand, cur_operand);
   1209           }
   1210         }
   1211       }
   1212 
   1213       first_range = second_range;
   1214       second_range = second_range->next();
   1215     }
   1216   }
   1217 }
   1218 
   1219 
   1220 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
   1221   if (block->predecessors()->length() != 1) return false;
   1222   return block->predecessors()->first()->block_id() == block->block_id() - 1;
   1223 }
   1224 
   1225 
   1226 void LAllocator::ResolveControlFlow() {
   1227   HPhase phase("L_Resolve control flow", this);
   1228   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1229   for (int block_id = 1; block_id < blocks->length(); ++block_id) {
   1230     HBasicBlock* block = blocks->at(block_id);
   1231     if (CanEagerlyResolveControlFlow(block)) continue;
   1232     BitVector* live = live_in_sets_[block->block_id()];
   1233     BitVector::Iterator iterator(live);
   1234     while (!iterator.Done()) {
   1235       int operand_index = iterator.Current();
   1236       for (int i = 0; i < block->predecessors()->length(); ++i) {
   1237         HBasicBlock* cur = block->predecessors()->at(i);
   1238         LiveRange* cur_range = LiveRangeFor(operand_index);
   1239         ResolveControlFlow(cur_range, block, cur);
   1240       }
   1241       iterator.Advance();
   1242     }
   1243   }
   1244 }
   1245 
   1246 
   1247 void LAllocator::BuildLiveRanges() {
   1248   HPhase phase("L_Build live ranges", this);
   1249   InitializeLivenessAnalysis();
   1250   // Process the blocks in reverse order.
   1251   const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
   1252   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
   1253     HBasicBlock* block = blocks->at(block_id);
   1254     BitVector* live = ComputeLiveOut(block);
   1255     // Initially consider all live_out values live for the entire block. We
   1256     // will shorten these intervals if necessary.
   1257     AddInitialIntervals(block, live);
   1258 
   1259     // Process the instructions in reverse order, generating and killing
   1260     // live values.
   1261     ProcessInstructions(block, live);
   1262     // All phi output operands are killed by this block.
   1263     const ZoneList<HPhi*>* phis = block->phis();
   1264     for (int i = 0; i < phis->length(); ++i) {
   1265       // The live range interval already ends at the first instruction of the
   1266       // block.
   1267       HPhi* phi = phis->at(i);
   1268       live->Remove(phi->id());
   1269 
   1270       LOperand* hint = NULL;
   1271       LOperand* phi_operand = NULL;
   1272       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
   1273       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START);
   1274       for (int j = 0; j < move->move_operands()->length(); ++j) {
   1275         LOperand* to = move->move_operands()->at(j).destination();
   1276         if (to->IsUnallocated() &&
   1277             LUnallocated::cast(to)->virtual_register() == phi->id()) {
   1278           hint = move->move_operands()->at(j).source();
   1279           phi_operand = to;
   1280           break;
   1281         }
   1282       }
   1283       ASSERT(hint != NULL);
   1284 
   1285       LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
   1286               block->first_instruction_index());
   1287       Define(block_start, phi_operand, hint);
   1288     }
   1289 
   1290     // Now live is live_in for this block except not including values live
   1291     // out on backward successor edges.
   1292     live_in_sets_[block_id] = live;
   1293 
   1294     // If this block is a loop header go back and patch up the necessary
   1295     // predecessor blocks.
   1296     if (block->IsLoopHeader()) {
   1297       // TODO(kmillikin): Need to be able to get the last block of the loop
   1298       // in the loop information. Add a live range stretching from the first
   1299       // loop instruction to the last for each value live on entry to the
   1300       // header.
   1301       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
   1302       BitVector::Iterator iterator(live);
   1303       LifetimePosition start = LifetimePosition::FromInstructionIndex(
   1304           block->first_instruction_index());
   1305       LifetimePosition end = LifetimePosition::FromInstructionIndex(
   1306           back_edge->last_instruction_index()).NextInstruction();
   1307       while (!iterator.Done()) {
   1308         int operand_index = iterator.Current();
   1309         LiveRange* range = LiveRangeFor(operand_index);
   1310         range->EnsureInterval(start, end, zone_);
   1311         iterator.Advance();
   1312       }
   1313 
   1314       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
   1315         live_in_sets_[i]->Union(*live);
   1316       }
   1317     }
   1318 
   1319 #ifdef DEBUG
   1320     if (block_id == 0) {
   1321       BitVector::Iterator iterator(live);
   1322       bool found = false;
   1323       while (!iterator.Done()) {
   1324         found = true;
   1325         int operand_index = iterator.Current();
   1326         PrintF("Function: %s\n",
   1327                *chunk_->info()->function()->debug_name()->ToCString());
   1328         PrintF("Value %d used before first definition!\n", operand_index);
   1329         LiveRange* range = LiveRangeFor(operand_index);
   1330         PrintF("First use is at %d\n", range->first_pos()->pos().Value());
   1331         iterator.Advance();
   1332       }
   1333       ASSERT(!found);
   1334     }
   1335 #endif
   1336   }
   1337 }
   1338 
   1339 
   1340 bool LAllocator::SafePointsAreInOrder() const {
   1341   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
   1342   int safe_point = 0;
   1343   for (int i = 0; i < pointer_maps->length(); ++i) {
   1344     LPointerMap* map = pointer_maps->at(i);
   1345     if (safe_point > map->lithium_position()) return false;
   1346     safe_point = map->lithium_position();
   1347   }
   1348   return true;
   1349 }
   1350 
   1351 
   1352 void LAllocator::PopulatePointerMaps() {
   1353   HPhase phase("L_Populate pointer maps", this);
   1354   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
   1355 
   1356   ASSERT(SafePointsAreInOrder());
   1357 
   1358   // Iterate over all safe point positions and record a pointer
   1359   // for all spilled live ranges at this point.
   1360   int first_safe_point_index = 0;
   1361   int last_range_start = 0;
   1362   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
   1363     LiveRange* range = live_ranges()->at(range_idx);
   1364     if (range == NULL) continue;
   1365     // Iterate over the first parts of multi-part live ranges.
   1366     if (range->parent() != NULL) continue;
   1367     // Skip non-pointer values.
   1368     if (!HasTaggedValue(range->id())) continue;
   1369     // Skip empty live ranges.
   1370     if (range->IsEmpty()) continue;
   1371 
   1372     // Find the extent of the range and its children.
   1373     int start = range->Start().InstructionIndex();
   1374     int end = 0;
   1375     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
   1376       LifetimePosition this_end = cur->End();
   1377       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
   1378       ASSERT(cur->Start().InstructionIndex() >= start);
   1379     }
   1380 
   1381     // Most of the ranges are in order, but not all.  Keep an eye on when
   1382     // they step backwards and reset the first_safe_point_index so we don't
   1383     // miss any safe points.
   1384     if (start < last_range_start) {
   1385       first_safe_point_index = 0;
   1386     }
   1387     last_range_start = start;
   1388 
   1389     // Step across all the safe points that are before the start of this range,
   1390     // recording how far we step in order to save doing this for the next range.
   1391     while (first_safe_point_index < pointer_maps->length()) {
   1392       LPointerMap* map = pointer_maps->at(first_safe_point_index);
   1393       int safe_point = map->lithium_position();
   1394       if (safe_point >= start) break;
   1395       first_safe_point_index++;
   1396     }
   1397 
   1398     // Step through the safe points to see whether they are in the range.
   1399     for (int safe_point_index = first_safe_point_index;
   1400          safe_point_index < pointer_maps->length();
   1401          ++safe_point_index) {
   1402       LPointerMap* map = pointer_maps->at(safe_point_index);
   1403       int safe_point = map->lithium_position();
   1404 
   1405       // The safe points are sorted so we can stop searching here.
   1406       if (safe_point - 1 > end) break;
   1407 
   1408       // Advance to the next active range that covers the current
   1409       // safe point position.
   1410       LifetimePosition safe_point_pos =
   1411           LifetimePosition::FromInstructionIndex(safe_point);
   1412       LiveRange* cur = range;
   1413       while (cur != NULL && !cur->Covers(safe_point_pos.PrevInstruction())) {
   1414         cur = cur->next();
   1415       }
   1416       if (cur == NULL) continue;
   1417 
   1418       // Check if the live range is spilled and the safe point is after
   1419       // the spill position.
   1420       if (range->HasAllocatedSpillOperand() &&
   1421           safe_point >= range->spill_start_index()) {
   1422         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
   1423                    range->id(), range->spill_start_index(), safe_point);
   1424         map->RecordPointer(range->GetSpillOperand());
   1425       }
   1426 
   1427       if (!cur->IsSpilled()) {
   1428         TraceAlloc("Pointer in register for range %d (start at %d) "
   1429                    "at safe point %d\n",
   1430                    cur->id(), cur->Start().Value(), safe_point);
   1431         LOperand* operand = cur->CreateAssignedOperand(zone_);
   1432         ASSERT(!operand->IsStackSlot());
   1433         map->RecordPointer(operand);
   1434       }
   1435     }
   1436   }
   1437 }
   1438 
   1439 
   1440 void LAllocator::ProcessOsrEntry() {
   1441   const ZoneList<LInstruction*>* instrs = chunk_->instructions();
   1442 
   1443   // Linear search for the OSR entry instruction in the chunk.
   1444   int index = -1;
   1445   while (++index < instrs->length() &&
   1446          !instrs->at(index)->IsOsrEntry()) {
   1447   }
   1448   ASSERT(index < instrs->length());
   1449   LOsrEntry* instruction = LOsrEntry::cast(instrs->at(index));
   1450 
   1451   LifetimePosition position = LifetimePosition::FromInstructionIndex(index);
   1452   for (int i = 0; i < live_ranges()->length(); ++i) {
   1453     LiveRange* range = live_ranges()->at(i);
   1454     if (range != NULL) {
   1455       if (range->Covers(position) &&
   1456           range->HasRegisterAssigned() &&
   1457           range->TopLevel()->HasAllocatedSpillOperand()) {
   1458         int reg_index = range->assigned_register();
   1459         LOperand* spill_operand = range->TopLevel()->GetSpillOperand();
   1460         if (range->IsDouble()) {
   1461           instruction->MarkSpilledDoubleRegister(reg_index, spill_operand);
   1462         } else {
   1463           instruction->MarkSpilledRegister(reg_index, spill_operand);
   1464         }
   1465       }
   1466     }
   1467   }
   1468 }
   1469 
   1470 
   1471 void LAllocator::AllocateGeneralRegisters() {
   1472   HPhase phase("L_Allocate general registers", this);
   1473   num_registers_ = Register::kNumAllocatableRegisters;
   1474   AllocateRegisters();
   1475 }
   1476 
   1477 
   1478 void LAllocator::AllocateDoubleRegisters() {
   1479   HPhase phase("L_Allocate double registers", this);
   1480   num_registers_ = DoubleRegister::kNumAllocatableRegisters;
   1481   mode_ = DOUBLE_REGISTERS;
   1482   AllocateRegisters();
   1483 }
   1484 
   1485 
   1486 void LAllocator::AllocateRegisters() {
   1487   ASSERT(unhandled_live_ranges_.is_empty());
   1488 
   1489   for (int i = 0; i < live_ranges_.length(); ++i) {
   1490     if (live_ranges_[i] != NULL) {
   1491       if (RequiredRegisterKind(live_ranges_[i]->id()) == mode_) {
   1492         AddToUnhandledUnsorted(live_ranges_[i]);
   1493       }
   1494     }
   1495   }
   1496   SortUnhandled();
   1497   ASSERT(UnhandledIsSorted());
   1498 
   1499   ASSERT(reusable_slots_.is_empty());
   1500   ASSERT(active_live_ranges_.is_empty());
   1501   ASSERT(inactive_live_ranges_.is_empty());
   1502 
   1503   if (mode_ == DOUBLE_REGISTERS) {
   1504     for (int i = 0; i < fixed_double_live_ranges_.length(); ++i) {
   1505       LiveRange* current = fixed_double_live_ranges_.at(i);
   1506       if (current != NULL) {
   1507         AddToInactive(current);
   1508       }
   1509     }
   1510   } else {
   1511     for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
   1512       LiveRange* current = fixed_live_ranges_.at(i);
   1513       if (current != NULL) {
   1514         AddToInactive(current);
   1515       }
   1516     }
   1517   }
   1518 
   1519   while (!unhandled_live_ranges_.is_empty()) {
   1520     ASSERT(UnhandledIsSorted());
   1521     LiveRange* current = unhandled_live_ranges_.RemoveLast();
   1522     ASSERT(UnhandledIsSorted());
   1523     LifetimePosition position = current->Start();
   1524     TraceAlloc("Processing interval %d start=%d\n",
   1525                current->id(),
   1526                position.Value());
   1527 
   1528     if (current->HasAllocatedSpillOperand()) {
   1529       TraceAlloc("Live range %d already has a spill operand\n", current->id());
   1530       LifetimePosition next_pos = position;
   1531       if (IsGapAt(next_pos.InstructionIndex())) {
   1532         next_pos = next_pos.NextInstruction();
   1533       }
   1534       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
   1535       // If the range already has a spill operand and it doesn't need a
   1536       // register immediately, split it and spill the first part of the range.
   1537       if (pos == NULL) {
   1538         Spill(current);
   1539         continue;
   1540       } else if (pos->pos().Value() >
   1541                  current->Start().NextInstruction().Value()) {
   1542         // Do not spill live range eagerly if use position that can benefit from
   1543         // the register is too close to the start of live range.
   1544         SpillBetween(current, current->Start(), pos->pos());
   1545         if (!AllocationOk()) return;
   1546         ASSERT(UnhandledIsSorted());
   1547         continue;
   1548       }
   1549     }
   1550 
   1551     for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1552       LiveRange* cur_active = active_live_ranges_.at(i);
   1553       if (cur_active->End().Value() <= position.Value()) {
   1554         ActiveToHandled(cur_active);
   1555         --i;  // The live range was removed from the list of active live ranges.
   1556       } else if (!cur_active->Covers(position)) {
   1557         ActiveToInactive(cur_active);
   1558         --i;  // The live range was removed from the list of active live ranges.
   1559       }
   1560     }
   1561 
   1562     for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1563       LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1564       if (cur_inactive->End().Value() <= position.Value()) {
   1565         InactiveToHandled(cur_inactive);
   1566         --i;  // Live range was removed from the list of inactive live ranges.
   1567       } else if (cur_inactive->Covers(position)) {
   1568         InactiveToActive(cur_inactive);
   1569         --i;  // Live range was removed from the list of inactive live ranges.
   1570       }
   1571     }
   1572 
   1573     ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
   1574 
   1575     bool result = TryAllocateFreeReg(current);
   1576     if (!AllocationOk()) return;
   1577 
   1578     if (!result) AllocateBlockedReg(current);
   1579     if (!AllocationOk()) return;
   1580 
   1581     if (current->HasRegisterAssigned()) {
   1582       AddToActive(current);
   1583     }
   1584   }
   1585 
   1586   reusable_slots_.Rewind(0);
   1587   active_live_ranges_.Rewind(0);
   1588   inactive_live_ranges_.Rewind(0);
   1589 }
   1590 
   1591 
   1592 const char* LAllocator::RegisterName(int allocation_index) {
   1593   if (mode_ == GENERAL_REGISTERS) {
   1594     return Register::AllocationIndexToString(allocation_index);
   1595   } else {
   1596     return DoubleRegister::AllocationIndexToString(allocation_index);
   1597   }
   1598 }
   1599 
   1600 
   1601 void LAllocator::TraceAlloc(const char* msg, ...) {
   1602   if (FLAG_trace_alloc) {
   1603     va_list arguments;
   1604     va_start(arguments, msg);
   1605     OS::VPrint(msg, arguments);
   1606     va_end(arguments);
   1607   }
   1608 }
   1609 
   1610 
   1611 bool LAllocator::HasTaggedValue(int virtual_register) const {
   1612   HValue* value = graph_->LookupValue(virtual_register);
   1613   if (value == NULL) return false;
   1614   return value->representation().IsTagged();
   1615 }
   1616 
   1617 
   1618 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
   1619   if (virtual_register < first_artificial_register_) {
   1620     HValue* value = graph_->LookupValue(virtual_register);
   1621     if (value != NULL && value->representation().IsDouble()) {
   1622       return DOUBLE_REGISTERS;
   1623     }
   1624   } else if (double_artificial_registers_.Contains(
   1625       virtual_register - first_artificial_register_)) {
   1626     return DOUBLE_REGISTERS;
   1627   }
   1628 
   1629   return GENERAL_REGISTERS;
   1630 }
   1631 
   1632 
   1633 void LAllocator::AddToActive(LiveRange* range) {
   1634   TraceAlloc("Add live range %d to active\n", range->id());
   1635   active_live_ranges_.Add(range);
   1636 }
   1637 
   1638 
   1639 void LAllocator::AddToInactive(LiveRange* range) {
   1640   TraceAlloc("Add live range %d to inactive\n", range->id());
   1641   inactive_live_ranges_.Add(range);
   1642 }
   1643 
   1644 
   1645 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
   1646   if (range == NULL || range->IsEmpty()) return;
   1647   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
   1648   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
   1649     LiveRange* cur_range = unhandled_live_ranges_.at(i);
   1650     if (range->ShouldBeAllocatedBefore(cur_range)) {
   1651       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
   1652       unhandled_live_ranges_.InsertAt(i + 1, range);
   1653       ASSERT(UnhandledIsSorted());
   1654       return;
   1655     }
   1656   }
   1657   TraceAlloc("Add live range %d to unhandled at start\n", range->id());
   1658   unhandled_live_ranges_.InsertAt(0, range);
   1659   ASSERT(UnhandledIsSorted());
   1660 }
   1661 
   1662 
   1663 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
   1664   if (range == NULL || range->IsEmpty()) return;
   1665   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
   1666   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
   1667   unhandled_live_ranges_.Add(range);
   1668 }
   1669 
   1670 
   1671 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
   1672   ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
   1673          !(*b)->ShouldBeAllocatedBefore(*a));
   1674   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
   1675   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
   1676   return (*a)->id() - (*b)->id();
   1677 }
   1678 
   1679 
   1680 // Sort the unhandled live ranges so that the ranges to be processed first are
   1681 // at the end of the array list.  This is convenient for the register allocation
   1682 // algorithm because it is efficient to remove elements from the end.
   1683 void LAllocator::SortUnhandled() {
   1684   TraceAlloc("Sort unhandled\n");
   1685   unhandled_live_ranges_.Sort(&UnhandledSortHelper);
   1686 }
   1687 
   1688 
   1689 bool LAllocator::UnhandledIsSorted() {
   1690   int len = unhandled_live_ranges_.length();
   1691   for (int i = 1; i < len; i++) {
   1692     LiveRange* a = unhandled_live_ranges_.at(i - 1);
   1693     LiveRange* b = unhandled_live_ranges_.at(i);
   1694     if (a->Start().Value() < b->Start().Value()) return false;
   1695   }
   1696   return true;
   1697 }
   1698 
   1699 
   1700 void LAllocator::FreeSpillSlot(LiveRange* range) {
   1701   // Check that we are the last range.
   1702   if (range->next() != NULL) return;
   1703 
   1704   if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
   1705 
   1706   int index = range->TopLevel()->GetSpillOperand()->index();
   1707   if (index >= 0) {
   1708     reusable_slots_.Add(range);
   1709   }
   1710 }
   1711 
   1712 
   1713 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
   1714   if (reusable_slots_.is_empty()) return NULL;
   1715   if (reusable_slots_.first()->End().Value() >
   1716       range->TopLevel()->Start().Value()) {
   1717     return NULL;
   1718   }
   1719   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
   1720   reusable_slots_.Remove(0);
   1721   return result;
   1722 }
   1723 
   1724 
   1725 void LAllocator::ActiveToHandled(LiveRange* range) {
   1726   ASSERT(active_live_ranges_.Contains(range));
   1727   active_live_ranges_.RemoveElement(range);
   1728   TraceAlloc("Moving live range %d from active to handled\n", range->id());
   1729   FreeSpillSlot(range);
   1730 }
   1731 
   1732 
   1733 void LAllocator::ActiveToInactive(LiveRange* range) {
   1734   ASSERT(active_live_ranges_.Contains(range));
   1735   active_live_ranges_.RemoveElement(range);
   1736   inactive_live_ranges_.Add(range);
   1737   TraceAlloc("Moving live range %d from active to inactive\n", range->id());
   1738 }
   1739 
   1740 
   1741 void LAllocator::InactiveToHandled(LiveRange* range) {
   1742   ASSERT(inactive_live_ranges_.Contains(range));
   1743   inactive_live_ranges_.RemoveElement(range);
   1744   TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
   1745   FreeSpillSlot(range);
   1746 }
   1747 
   1748 
   1749 void LAllocator::InactiveToActive(LiveRange* range) {
   1750   ASSERT(inactive_live_ranges_.Contains(range));
   1751   inactive_live_ranges_.RemoveElement(range);
   1752   active_live_ranges_.Add(range);
   1753   TraceAlloc("Moving live range %d from inactive to active\n", range->id());
   1754 }
   1755 
   1756 
   1757 // TryAllocateFreeReg and AllocateBlockedReg assume this
   1758 // when allocating local arrays.
   1759 STATIC_ASSERT(DoubleRegister::kNumAllocatableRegisters >=
   1760               Register::kNumAllocatableRegisters);
   1761 
   1762 
   1763 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
   1764   LifetimePosition free_until_pos[DoubleRegister::kNumAllocatableRegisters];
   1765 
   1766   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
   1767     free_until_pos[i] = LifetimePosition::MaxPosition();
   1768   }
   1769 
   1770   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1771     LiveRange* cur_active = active_live_ranges_.at(i);
   1772     free_until_pos[cur_active->assigned_register()] =
   1773         LifetimePosition::FromInstructionIndex(0);
   1774   }
   1775 
   1776   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1777     LiveRange* cur_inactive = inactive_live_ranges_.at(i);
   1778     ASSERT(cur_inactive->End().Value() > current->Start().Value());
   1779     LifetimePosition next_intersection =
   1780         cur_inactive->FirstIntersection(current);
   1781     if (!next_intersection.IsValid()) continue;
   1782     int cur_reg = cur_inactive->assigned_register();
   1783     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
   1784   }
   1785 
   1786   UsePosition* hinted_use = current->FirstPosWithHint();
   1787   if (hinted_use != NULL) {
   1788     LOperand* hint = hinted_use->hint();
   1789     if (hint->IsRegister() || hint->IsDoubleRegister()) {
   1790       int register_index = hint->index();
   1791       TraceAlloc(
   1792           "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
   1793           RegisterName(register_index),
   1794           free_until_pos[register_index].Value(),
   1795           current->id(),
   1796           current->End().Value());
   1797 
   1798       // The desired register is free until the end of the current live range.
   1799       if (free_until_pos[register_index].Value() >= current->End().Value()) {
   1800         TraceAlloc("Assigning preferred reg %s to live range %d\n",
   1801                    RegisterName(register_index),
   1802                    current->id());
   1803         current->set_assigned_register(register_index, mode_, zone_);
   1804         return true;
   1805       }
   1806     }
   1807   }
   1808 
   1809   // Find the register which stays free for the longest time.
   1810   int reg = 0;
   1811   for (int i = 1; i < RegisterCount(); ++i) {
   1812     if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
   1813       reg = i;
   1814     }
   1815   }
   1816 
   1817   LifetimePosition pos = free_until_pos[reg];
   1818 
   1819   if (pos.Value() <= current->Start().Value()) {
   1820     // All registers are blocked.
   1821     return false;
   1822   }
   1823 
   1824   if (pos.Value() < current->End().Value()) {
   1825     // Register reg is available at the range start but becomes blocked before
   1826     // the range end. Split current at position where it becomes blocked.
   1827     LiveRange* tail = SplitRangeAt(current, pos);
   1828     if (!AllocationOk()) return false;
   1829     AddToUnhandledSorted(tail);
   1830   }
   1831 
   1832 
   1833   // Register reg is available at the range start and is free until
   1834   // the range end.
   1835   ASSERT(pos.Value() >= current->End().Value());
   1836   TraceAlloc("Assigning free reg %s to live range %d\n",
   1837              RegisterName(reg),
   1838              current->id());
   1839   current->set_assigned_register(reg, mode_, zone_);
   1840 
   1841   return true;
   1842 }
   1843 
   1844 
   1845 void LAllocator::AllocateBlockedReg(LiveRange* current) {
   1846   UsePosition* register_use = current->NextRegisterPosition(current->Start());
   1847   if (register_use == NULL) {
   1848     // There is no use in the current live range that requires a register.
   1849     // We can just spill it.
   1850     Spill(current);
   1851     return;
   1852   }
   1853 
   1854 
   1855   LifetimePosition use_pos[DoubleRegister::kNumAllocatableRegisters];
   1856   LifetimePosition block_pos[DoubleRegister::kNumAllocatableRegisters];
   1857 
   1858   for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; i++) {
   1859     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
   1860   }
   1861 
   1862   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1863     LiveRange* range = active_live_ranges_[i];
   1864     int cur_reg = range->assigned_register();
   1865     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
   1866       block_pos[cur_reg] = use_pos[cur_reg] =
   1867           LifetimePosition::FromInstructionIndex(0);
   1868     } else {
   1869       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
   1870           current->Start());
   1871       if (next_use == NULL) {
   1872         use_pos[cur_reg] = range->End();
   1873       } else {
   1874         use_pos[cur_reg] = next_use->pos();
   1875       }
   1876     }
   1877   }
   1878 
   1879   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1880     LiveRange* range = inactive_live_ranges_.at(i);
   1881     ASSERT(range->End().Value() > current->Start().Value());
   1882     LifetimePosition next_intersection = range->FirstIntersection(current);
   1883     if (!next_intersection.IsValid()) continue;
   1884     int cur_reg = range->assigned_register();
   1885     if (range->IsFixed()) {
   1886       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
   1887       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
   1888     } else {
   1889       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
   1890     }
   1891   }
   1892 
   1893   int reg = 0;
   1894   for (int i = 1; i < RegisterCount(); ++i) {
   1895     if (use_pos[i].Value() > use_pos[reg].Value()) {
   1896       reg = i;
   1897     }
   1898   }
   1899 
   1900   LifetimePosition pos = use_pos[reg];
   1901 
   1902   if (pos.Value() < register_use->pos().Value()) {
   1903     // All registers are blocked before the first use that requires a register.
   1904     // Spill starting part of live range up to that use.
   1905     //
   1906     // Corner case: the first use position is equal to the start of the range.
   1907     // In this case we have nothing to spill and SpillBetween will just return
   1908     // this range to the list of unhandled ones. This will lead to the infinite
   1909     // loop.
   1910     ASSERT(current->Start().Value() < register_use->pos().Value());
   1911     SpillBetween(current, current->Start(), register_use->pos());
   1912     return;
   1913   }
   1914 
   1915   if (block_pos[reg].Value() < current->End().Value()) {
   1916     // Register becomes blocked before the current range end. Split before that
   1917     // position.
   1918     LiveRange* tail = SplitBetween(current,
   1919                                    current->Start(),
   1920                                    block_pos[reg].InstructionStart());
   1921     AddToUnhandledSorted(tail);
   1922   }
   1923 
   1924   // Register reg is not blocked for the whole range.
   1925   ASSERT(block_pos[reg].Value() >= current->End().Value());
   1926   TraceAlloc("Assigning blocked reg %s to live range %d\n",
   1927              RegisterName(reg),
   1928              current->id());
   1929   current->set_assigned_register(reg, mode_, zone_);
   1930 
   1931   // This register was not free. Thus we need to find and spill
   1932   // parts of active and inactive live regions that use the same register
   1933   // at the same lifetime positions as current.
   1934   SplitAndSpillIntersecting(current);
   1935 }
   1936 
   1937 
   1938 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
   1939   ASSERT(current->HasRegisterAssigned());
   1940   int reg = current->assigned_register();
   1941   LifetimePosition split_pos = current->Start();
   1942   for (int i = 0; i < active_live_ranges_.length(); ++i) {
   1943     LiveRange* range = active_live_ranges_[i];
   1944     if (range->assigned_register() == reg) {
   1945       UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   1946       if (next_pos == NULL) {
   1947         SpillAfter(range, split_pos);
   1948       } else {
   1949         SpillBetween(range, split_pos, next_pos->pos());
   1950       }
   1951       ActiveToHandled(range);
   1952       --i;
   1953     }
   1954   }
   1955 
   1956   for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
   1957     LiveRange* range = inactive_live_ranges_[i];
   1958     ASSERT(range->End().Value() > current->Start().Value());
   1959     if (range->assigned_register() == reg && !range->IsFixed()) {
   1960       LifetimePosition next_intersection = range->FirstIntersection(current);
   1961       if (next_intersection.IsValid()) {
   1962         UsePosition* next_pos = range->NextRegisterPosition(current->Start());
   1963         if (next_pos == NULL) {
   1964           SpillAfter(range, split_pos);
   1965         } else {
   1966           next_intersection = Min(next_intersection, next_pos->pos());
   1967           SpillBetween(range, split_pos, next_intersection);
   1968         }
   1969         InactiveToHandled(range);
   1970         --i;
   1971       }
   1972     }
   1973   }
   1974 }
   1975 
   1976 
   1977 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
   1978   return pos.IsInstructionStart() &&
   1979       InstructionAt(pos.InstructionIndex())->IsLabel();
   1980 }
   1981 
   1982 
   1983 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
   1984   ASSERT(!range->IsFixed());
   1985   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
   1986 
   1987   if (pos.Value() <= range->Start().Value()) return range;
   1988 
   1989   // We can't properly connect liveranges if split occured at the end
   1990   // of control instruction.
   1991   ASSERT(pos.IsInstructionStart() ||
   1992          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
   1993 
   1994   LiveRange* result = LiveRangeFor(GetVirtualRegister());
   1995   if (!AllocationOk()) return NULL;
   1996   range->SplitAt(pos, result, zone_);
   1997   return result;
   1998 }
   1999 
   2000 
   2001 LiveRange* LAllocator::SplitBetween(LiveRange* range,
   2002                                     LifetimePosition start,
   2003                                     LifetimePosition end) {
   2004   ASSERT(!range->IsFixed());
   2005   TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
   2006              range->id(),
   2007              start.Value(),
   2008              end.Value());
   2009 
   2010   LifetimePosition split_pos = FindOptimalSplitPos(start, end);
   2011   ASSERT(split_pos.Value() >= start.Value());
   2012   return SplitRangeAt(range, split_pos);
   2013 }
   2014 
   2015 
   2016 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
   2017                                                  LifetimePosition end) {
   2018   int start_instr = start.InstructionIndex();
   2019   int end_instr = end.InstructionIndex();
   2020   ASSERT(start_instr <= end_instr);
   2021 
   2022   // We have no choice
   2023   if (start_instr == end_instr) return end;
   2024 
   2025   HBasicBlock* start_block = GetBlock(start);
   2026   HBasicBlock* end_block = GetBlock(end);
   2027 
   2028   if (end_block == start_block) {
   2029     // The interval is split in the same basic block. Split at the latest
   2030     // possible position.
   2031     return end;
   2032   }
   2033 
   2034   HBasicBlock* block = end_block;
   2035   // Find header of outermost loop.
   2036   while (block->parent_loop_header() != NULL &&
   2037       block->parent_loop_header()->block_id() > start_block->block_id()) {
   2038     block = block->parent_loop_header();
   2039   }
   2040 
   2041   // We did not find any suitable outer loop. Split at the latest possible
   2042   // position unless end_block is a loop header itself.
   2043   if (block == end_block && !end_block->IsLoopHeader()) return end;
   2044 
   2045   return LifetimePosition::FromInstructionIndex(
   2046       block->first_instruction_index());
   2047 }
   2048 
   2049 
   2050 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
   2051   LiveRange* second_part = SplitRangeAt(range, pos);
   2052   if (!AllocationOk()) return;
   2053   Spill(second_part);
   2054 }
   2055 
   2056 
   2057 void LAllocator::SpillBetween(LiveRange* range,
   2058                               LifetimePosition start,
   2059                               LifetimePosition end) {
   2060   ASSERT(start.Value() < end.Value());
   2061   LiveRange* second_part = SplitRangeAt(range, start);
   2062   if (!AllocationOk()) return;
   2063 
   2064   if (second_part->Start().Value() < end.Value()) {
   2065     // The split result intersects with [start, end[.
   2066     // Split it at position between ]start+1, end[, spill the middle part
   2067     // and put the rest to unhandled.
   2068     LiveRange* third_part = SplitBetween(
   2069         second_part,
   2070         second_part->Start().InstructionEnd(),
   2071         end.PrevInstruction().InstructionEnd());
   2072 
   2073     ASSERT(third_part != second_part);
   2074 
   2075     Spill(second_part);
   2076     AddToUnhandledSorted(third_part);
   2077   } else {
   2078     // The split result does not intersect with [start, end[.
   2079     // Nothing to spill. Just put it to unhandled as whole.
   2080     AddToUnhandledSorted(second_part);
   2081   }
   2082 }
   2083 
   2084 
   2085 void LAllocator::Spill(LiveRange* range) {
   2086   ASSERT(!range->IsSpilled());
   2087   TraceAlloc("Spilling live range %d\n", range->id());
   2088   LiveRange* first = range->TopLevel();
   2089 
   2090   if (!first->HasAllocatedSpillOperand()) {
   2091     LOperand* op = TryReuseSpillSlot(range);
   2092     if (op == NULL) op = chunk_->GetNextSpillSlot(mode_ == DOUBLE_REGISTERS);
   2093     first->SetSpillOperand(op);
   2094   }
   2095   range->MakeSpilled(zone_);
   2096 }
   2097 
   2098 
   2099 int LAllocator::RegisterCount() const {
   2100   return num_registers_;
   2101 }
   2102 
   2103 
   2104 #ifdef DEBUG
   2105 
   2106 
   2107 void LAllocator::Verify() const {
   2108   for (int i = 0; i < live_ranges()->length(); ++i) {
   2109     LiveRange* current = live_ranges()->at(i);
   2110     if (current != NULL) current->Verify();
   2111   }
   2112 }
   2113 
   2114 
   2115 #endif
   2116 
   2117 
   2118 } }  // namespace v8::internal
   2119