Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_SCOPES_H_
     29 #define V8_SCOPES_H_
     30 
     31 #include "ast.h"
     32 #include "zone.h"
     33 
     34 namespace v8 {
     35 namespace internal {
     36 
     37 class CompilationInfo;
     38 
     39 
     40 // A hash map to support fast variable declaration and lookup.
     41 class VariableMap: public ZoneHashMap {
     42  public:
     43   VariableMap();
     44 
     45   virtual ~VariableMap();
     46 
     47   Variable* Declare(Scope* scope,
     48                     Handle<String> name,
     49                     VariableMode mode,
     50                     bool is_valid_lhs,
     51                     Variable::Kind kind,
     52                     InitializationFlag initialization_flag,
     53                     Interface* interface = Interface::NewValue());
     54 
     55   Variable* Lookup(Handle<String> name);
     56 };
     57 
     58 
     59 // The dynamic scope part holds hash maps for the variables that will
     60 // be looked up dynamically from within eval and with scopes. The objects
     61 // are allocated on-demand from Scope::NonLocal to avoid wasting memory
     62 // and setup time for scopes that don't need them.
     63 class DynamicScopePart : public ZoneObject {
     64  public:
     65   VariableMap* GetMap(VariableMode mode) {
     66     int index = mode - DYNAMIC;
     67     ASSERT(index >= 0 && index < 3);
     68     return &maps_[index];
     69   }
     70 
     71  private:
     72   VariableMap maps_[3];
     73 };
     74 
     75 
     76 // Global invariants after AST construction: Each reference (i.e. identifier)
     77 // to a JavaScript variable (including global properties) is represented by a
     78 // VariableProxy node. Immediately after AST construction and before variable
     79 // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
     80 // corresponding variable (though some are bound during parse time). Variable
     81 // allocation binds each unresolved VariableProxy to one Variable and assigns
     82 // a location. Note that many VariableProxy nodes may refer to the same Java-
     83 // Script variable.
     84 
     85 class Scope: public ZoneObject {
     86  public:
     87   // ---------------------------------------------------------------------------
     88   // Construction
     89 
     90   Scope(Scope* outer_scope, ScopeType type);
     91 
     92   // Compute top scope and allocate variables. For lazy compilation the top
     93   // scope only contains the single lazily compiled function, so this
     94   // doesn't re-allocate variables repeatedly.
     95   static bool Analyze(CompilationInfo* info);
     96 
     97   static Scope* DeserializeScopeChain(Context* context, Scope* global_scope);
     98 
     99   // The scope name is only used for printing/debugging.
    100   void SetScopeName(Handle<String> scope_name) { scope_name_ = scope_name; }
    101 
    102   void Initialize();
    103 
    104   // Checks if the block scope is redundant, i.e. it does not contain any
    105   // block scoped declarations. In that case it is removed from the scope
    106   // tree and its children are reparented.
    107   Scope* FinalizeBlockScope();
    108 
    109   // ---------------------------------------------------------------------------
    110   // Declarations
    111 
    112   // Lookup a variable in this scope. Returns the variable or NULL if not found.
    113   Variable* LocalLookup(Handle<String> name);
    114 
    115   // This lookup corresponds to a lookup in the "intermediate" scope sitting
    116   // between this scope and the outer scope. (ECMA-262, 3rd., requires that
    117   // the name of named function literal is kept in an intermediate scope
    118   // in between this scope and the next outer scope.)
    119   Variable* LookupFunctionVar(Handle<String> name,
    120                               AstNodeFactory<AstNullVisitor>* factory);
    121 
    122   // Lookup a variable in this scope or outer scopes.
    123   // Returns the variable or NULL if not found.
    124   Variable* Lookup(Handle<String> name);
    125 
    126   // Declare the function variable for a function literal. This variable
    127   // is in an intermediate scope between this function scope and the the
    128   // outer scope. Only possible for function scopes; at most one variable.
    129   template<class Visitor>
    130   Variable* DeclareFunctionVar(Handle<String> name,
    131                                VariableMode mode,
    132                                AstNodeFactory<Visitor>* factory) {
    133     ASSERT(is_function_scope() && function_ == NULL);
    134     Variable* function_var = new Variable(
    135         this, name, mode, true, Variable::NORMAL, kCreatedInitialized);
    136     function_ = factory->NewVariableProxy(function_var);
    137     return function_var;
    138   }
    139 
    140   // Declare a parameter in this scope.  When there are duplicated
    141   // parameters the rightmost one 'wins'.  However, the implementation
    142   // expects all parameters to be declared and from left to right.
    143   void DeclareParameter(Handle<String> name, VariableMode mode);
    144 
    145   // Declare a local variable in this scope. If the variable has been
    146   // declared before, the previously declared variable is returned.
    147   Variable* DeclareLocal(Handle<String> name,
    148                          VariableMode mode,
    149                          InitializationFlag init_flag,
    150                          Interface* interface = Interface::NewValue());
    151 
    152   // Declare an implicit global variable in this scope which must be a
    153   // global scope.  The variable was introduced (possibly from an inner
    154   // scope) by a reference to an unresolved variable with no intervening
    155   // with statements or eval calls.
    156   Variable* DeclareGlobal(Handle<String> name);
    157 
    158   // Create a new unresolved variable.
    159   template<class Visitor>
    160   VariableProxy* NewUnresolved(AstNodeFactory<Visitor>* factory,
    161                                Handle<String> name,
    162                                int position = RelocInfo::kNoPosition,
    163                                Interface* interface = Interface::NewValue()) {
    164     // Note that we must not share the unresolved variables with
    165     // the same name because they may be removed selectively via
    166     // RemoveUnresolved().
    167     ASSERT(!already_resolved());
    168     VariableProxy* proxy =
    169         factory->NewVariableProxy(name, false, position, interface);
    170     unresolved_.Add(proxy);
    171     return proxy;
    172   }
    173 
    174   // Remove a unresolved variable. During parsing, an unresolved variable
    175   // may have been added optimistically, but then only the variable name
    176   // was used (typically for labels). If the variable was not declared, the
    177   // addition introduced a new unresolved variable which may end up being
    178   // allocated globally as a "ghost" variable. RemoveUnresolved removes
    179   // such a variable again if it was added; otherwise this is a no-op.
    180   void RemoveUnresolved(VariableProxy* var);
    181 
    182   // Creates a new temporary variable in this scope.  The name is only used
    183   // for printing and cannot be used to find the variable.  In particular,
    184   // the only way to get hold of the temporary is by keeping the Variable*
    185   // around.
    186   Variable* NewTemporary(Handle<String> name);
    187 
    188   // Adds the specific declaration node to the list of declarations in
    189   // this scope. The declarations are processed as part of entering
    190   // the scope; see codegen.cc:ProcessDeclarations.
    191   void AddDeclaration(Declaration* declaration);
    192 
    193   // ---------------------------------------------------------------------------
    194   // Illegal redeclaration support.
    195 
    196   // Set an expression node that will be executed when the scope is
    197   // entered. We only keep track of one illegal redeclaration node per
    198   // scope - the first one - so if you try to set it multiple times
    199   // the additional requests will be silently ignored.
    200   void SetIllegalRedeclaration(Expression* expression);
    201 
    202   // Visit the illegal redeclaration expression. Do not call if the
    203   // scope doesn't have an illegal redeclaration node.
    204   void VisitIllegalRedeclaration(AstVisitor* visitor);
    205 
    206   // Check if the scope has (at least) one illegal redeclaration.
    207   bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; }
    208 
    209   // For harmony block scoping mode: Check if the scope has conflicting var
    210   // declarations, i.e. a var declaration that has been hoisted from a nested
    211   // scope over a let binding of the same name.
    212   Declaration* CheckConflictingVarDeclarations();
    213 
    214   // For harmony block scoping mode: Check if the scope has variable proxies
    215   // that are used as lvalues and point to const variables. Assumes that scopes
    216   // have been analyzed and variables been resolved.
    217   VariableProxy* CheckAssignmentToConst();
    218 
    219   // ---------------------------------------------------------------------------
    220   // Scope-specific info.
    221 
    222   // Inform the scope that the corresponding code contains a with statement.
    223   void RecordWithStatement() { scope_contains_with_ = true; }
    224 
    225   // Inform the scope that the corresponding code contains an eval call.
    226   void RecordEvalCall() { if (!is_global_scope()) scope_calls_eval_ = true; }
    227 
    228   // Set the strict mode flag (unless disabled by a global flag).
    229   void SetLanguageMode(LanguageMode language_mode) {
    230     language_mode_ = language_mode;
    231   }
    232 
    233   // Position in the source where this scope begins and ends.
    234   //
    235   // * For the scope of a with statement
    236   //     with (obj) stmt
    237   //   start position: start position of first token of 'stmt'
    238   //   end position: end position of last token of 'stmt'
    239   // * For the scope of a block
    240   //     { stmts }
    241   //   start position: start position of '{'
    242   //   end position: end position of '}'
    243   // * For the scope of a function literal or decalaration
    244   //     function fun(a,b) { stmts }
    245   //   start position: start position of '('
    246   //   end position: end position of '}'
    247   // * For the scope of a catch block
    248   //     try { stms } catch(e) { stmts }
    249   //   start position: start position of '('
    250   //   end position: end position of ')'
    251   // * For the scope of a for-statement
    252   //     for (let x ...) stmt
    253   //   start position: start position of '('
    254   //   end position: end position of last token of 'stmt'
    255   int start_position() const { return start_position_; }
    256   void set_start_position(int statement_pos) {
    257     start_position_ = statement_pos;
    258   }
    259   int end_position() const { return end_position_; }
    260   void set_end_position(int statement_pos) {
    261     end_position_ = statement_pos;
    262   }
    263 
    264   // ---------------------------------------------------------------------------
    265   // Predicates.
    266 
    267   // Specific scope types.
    268   bool is_eval_scope() const { return type_ == EVAL_SCOPE; }
    269   bool is_function_scope() const { return type_ == FUNCTION_SCOPE; }
    270   bool is_module_scope() const { return type_ == MODULE_SCOPE; }
    271   bool is_global_scope() const { return type_ == GLOBAL_SCOPE; }
    272   bool is_catch_scope() const { return type_ == CATCH_SCOPE; }
    273   bool is_block_scope() const { return type_ == BLOCK_SCOPE; }
    274   bool is_with_scope() const { return type_ == WITH_SCOPE; }
    275   bool is_declaration_scope() const {
    276     return is_eval_scope() || is_function_scope() || is_global_scope();
    277   }
    278   bool is_classic_mode() const {
    279     return language_mode() == CLASSIC_MODE;
    280   }
    281   bool is_extended_mode() const {
    282     return language_mode() == EXTENDED_MODE;
    283   }
    284   bool is_strict_or_extended_eval_scope() const {
    285     return is_eval_scope() && !is_classic_mode();
    286   }
    287 
    288   // Information about which scopes calls eval.
    289   bool calls_eval() const { return scope_calls_eval_; }
    290   bool calls_non_strict_eval() {
    291     return scope_calls_eval_ && is_classic_mode();
    292   }
    293   bool outer_scope_calls_non_strict_eval() const {
    294     return outer_scope_calls_non_strict_eval_;
    295   }
    296 
    297   // Is this scope inside a with statement.
    298   bool inside_with() const { return scope_inside_with_; }
    299   // Does this scope contain a with statement.
    300   bool contains_with() const { return scope_contains_with_; }
    301 
    302   // ---------------------------------------------------------------------------
    303   // Accessors.
    304 
    305   // The type of this scope.
    306   ScopeType type() const { return type_; }
    307 
    308   // The language mode of this scope.
    309   LanguageMode language_mode() const { return language_mode_; }
    310 
    311   // The variable corresponding the 'this' value.
    312   Variable* receiver() { return receiver_; }
    313 
    314   // The variable holding the function literal for named function
    315   // literals, or NULL.
    316   // Only valid for function scopes.
    317   VariableProxy* function() const {
    318     ASSERT(is_function_scope());
    319     return function_;
    320   }
    321 
    322   // Parameters. The left-most parameter has index 0.
    323   // Only valid for function scopes.
    324   Variable* parameter(int index) const {
    325     ASSERT(is_function_scope());
    326     return params_[index];
    327   }
    328 
    329   int num_parameters() const { return params_.length(); }
    330 
    331   // The local variable 'arguments' if we need to allocate it; NULL otherwise.
    332   Variable* arguments() const { return arguments_; }
    333 
    334   // Declarations list.
    335   ZoneList<Declaration*>* declarations() { return &decls_; }
    336 
    337   // Inner scope list.
    338   ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
    339 
    340   // The scope immediately surrounding this scope, or NULL.
    341   Scope* outer_scope() const { return outer_scope_; }
    342 
    343   // The interface as inferred so far; only for module scopes.
    344   Interface* interface() const { return interface_; }
    345 
    346   // ---------------------------------------------------------------------------
    347   // Variable allocation.
    348 
    349   // Collect stack and context allocated local variables in this scope. Note
    350   // that the function variable - if present - is not collected and should be
    351   // handled separately.
    352   void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
    353                                     ZoneList<Variable*>* context_locals);
    354 
    355   // Current number of var or const locals.
    356   int num_var_or_const() { return num_var_or_const_; }
    357 
    358   // Result of variable allocation.
    359   int num_stack_slots() const { return num_stack_slots_; }
    360   int num_heap_slots() const { return num_heap_slots_; }
    361 
    362   int StackLocalCount() const;
    363   int ContextLocalCount() const;
    364 
    365   // Make sure this scope and all outer scopes are eagerly compiled.
    366   void ForceEagerCompilation()  { force_eager_compilation_ = true; }
    367 
    368   // Determine if we can use lazy compilation for this scope.
    369   bool AllowsLazyCompilation() const;
    370 
    371   // True if we can lazily recompile functions with this scope.
    372   bool AllowsLazyRecompilation() const;
    373 
    374   // True if the outer context of this scope is always the global context.
    375   bool HasTrivialOuterContext() const;
    376 
    377   // True if this scope is inside a with scope and all declaration scopes
    378   // between them have empty contexts. Such declaration scopes become
    379   // invisible during scope info deserialization.
    380   bool TrivialDeclarationScopesBeforeWithScope() const;
    381 
    382   // The number of contexts between this and scope; zero if this == scope.
    383   int ContextChainLength(Scope* scope);
    384 
    385   // Find the first function, global, or eval scope.  This is the scope
    386   // where var declarations will be hoisted to in the implementation.
    387   Scope* DeclarationScope();
    388 
    389   Handle<ScopeInfo> GetScopeInfo();
    390 
    391   // Get the chain of nested scopes within this scope for the source statement
    392   // position. The scopes will be added to the list from the outermost scope to
    393   // the innermost scope. Only nested block, catch or with scopes are tracked
    394   // and will be returned, but no inner function scopes.
    395   void GetNestedScopeChain(List<Handle<ScopeInfo> >* chain,
    396                            int statement_position);
    397 
    398   // ---------------------------------------------------------------------------
    399   // Strict mode support.
    400   bool IsDeclared(Handle<String> name) {
    401     // During formal parameter list parsing the scope only contains
    402     // two variables inserted at initialization: "this" and "arguments".
    403     // "this" is an invalid parameter name and "arguments" is invalid parameter
    404     // name in strict mode. Therefore looking up with the map which includes
    405     // "this" and "arguments" in addition to all formal parameters is safe.
    406     return variables_.Lookup(name) != NULL;
    407   }
    408 
    409   // ---------------------------------------------------------------------------
    410   // Debugging.
    411 
    412 #ifdef DEBUG
    413   void Print(int n = 0);  // n = indentation; n < 0 => don't print recursively
    414 #endif
    415 
    416   // ---------------------------------------------------------------------------
    417   // Implementation.
    418  protected:
    419   friend class ParserFactory;
    420 
    421   Isolate* const isolate_;
    422 
    423   // Scope tree.
    424   Scope* outer_scope_;  // the immediately enclosing outer scope, or NULL
    425   ZoneList<Scope*> inner_scopes_;  // the immediately enclosed inner scopes
    426 
    427   // The scope type.
    428   ScopeType type_;
    429 
    430   // Debugging support.
    431   Handle<String> scope_name_;
    432 
    433   // The variables declared in this scope:
    434   //
    435   // All user-declared variables (incl. parameters).  For global scopes
    436   // variables may be implicitly 'declared' by being used (possibly in
    437   // an inner scope) with no intervening with statements or eval calls.
    438   VariableMap variables_;
    439   // Compiler-allocated (user-invisible) temporaries.
    440   ZoneList<Variable*> temps_;
    441   // Parameter list in source order.
    442   ZoneList<Variable*> params_;
    443   // Variables that must be looked up dynamically.
    444   DynamicScopePart* dynamics_;
    445   // Unresolved variables referred to from this scope.
    446   ZoneList<VariableProxy*> unresolved_;
    447   // Declarations.
    448   ZoneList<Declaration*> decls_;
    449   // Convenience variable.
    450   Variable* receiver_;
    451   // Function variable, if any; function scopes only.
    452   VariableProxy* function_;
    453   // Convenience variable; function scopes only.
    454   Variable* arguments_;
    455   // Interface; module scopes only.
    456   Interface* interface_;
    457 
    458   // Illegal redeclaration.
    459   Expression* illegal_redecl_;
    460 
    461   // Scope-specific information computed during parsing.
    462   //
    463   // This scope is inside a 'with' of some outer scope.
    464   bool scope_inside_with_;
    465   // This scope contains a 'with' statement.
    466   bool scope_contains_with_;
    467   // This scope or a nested catch scope or with scope contain an 'eval' call. At
    468   // the 'eval' call site this scope is the declaration scope.
    469   bool scope_calls_eval_;
    470   // The language mode of this scope.
    471   LanguageMode language_mode_;
    472   // Source positions.
    473   int start_position_;
    474   int end_position_;
    475 
    476   // Computed via PropagateScopeInfo.
    477   bool outer_scope_calls_non_strict_eval_;
    478   bool inner_scope_calls_eval_;
    479   bool force_eager_compilation_;
    480 
    481   // True if it doesn't need scope resolution (e.g., if the scope was
    482   // constructed based on a serialized scope info or a catch context).
    483   bool already_resolved_;
    484 
    485   // Computed as variables are declared.
    486   int num_var_or_const_;
    487 
    488   // Computed via AllocateVariables; function, block and catch scopes only.
    489   int num_stack_slots_;
    490   int num_heap_slots_;
    491 
    492   // Serialized scope info support.
    493   Handle<ScopeInfo> scope_info_;
    494   bool already_resolved() { return already_resolved_; }
    495 
    496   // Create a non-local variable with a given name.
    497   // These variables are looked up dynamically at runtime.
    498   Variable* NonLocal(Handle<String> name, VariableMode mode);
    499 
    500   // Variable resolution.
    501   // Possible results of a recursive variable lookup telling if and how a
    502   // variable is bound. These are returned in the output parameter *binding_kind
    503   // of the LookupRecursive function.
    504   enum BindingKind {
    505     // The variable reference could be statically resolved to a variable binding
    506     // which is returned. There is no 'with' statement between the reference and
    507     // the binding and no scope between the reference scope (inclusive) and
    508     // binding scope (exclusive) makes a non-strict 'eval' call.
    509     BOUND,
    510 
    511     // The variable reference could be statically resolved to a variable binding
    512     // which is returned. There is no 'with' statement between the reference and
    513     // the binding, but some scope between the reference scope (inclusive) and
    514     // binding scope (exclusive) makes a non-strict 'eval' call, that might
    515     // possibly introduce variable bindings shadowing the found one. Thus the
    516     // found variable binding is just a guess.
    517     BOUND_EVAL_SHADOWED,
    518 
    519     // The variable reference could not be statically resolved to any binding
    520     // and thus should be considered referencing a global variable. NULL is
    521     // returned. The variable reference is not inside any 'with' statement and
    522     // no scope between the reference scope (inclusive) and global scope
    523     // (exclusive) makes a non-strict 'eval' call.
    524     UNBOUND,
    525 
    526     // The variable reference could not be statically resolved to any binding
    527     // NULL is returned. The variable reference is not inside any 'with'
    528     // statement, but some scope between the reference scope (inclusive) and
    529     // global scope (exclusive) makes a non-strict 'eval' call, that might
    530     // possibly introduce a variable binding. Thus the reference should be
    531     // considered referencing a global variable unless it is shadowed by an
    532     // 'eval' introduced binding.
    533     UNBOUND_EVAL_SHADOWED,
    534 
    535     // The variable could not be statically resolved and needs to be looked up
    536     // dynamically. NULL is returned. There are two possible reasons:
    537     // * A 'with' statement has been encountered and there is no variable
    538     //   binding for the name between the variable reference and the 'with'.
    539     //   The variable potentially references a property of the 'with' object.
    540     // * The code is being executed as part of a call to 'eval' and the calling
    541     //   context chain contains either a variable binding for the name or it
    542     //   contains a 'with' context.
    543     DYNAMIC_LOOKUP
    544   };
    545 
    546   // Lookup a variable reference given by name recursively starting with this
    547   // scope. If the code is executed because of a call to 'eval', the context
    548   // parameter should be set to the calling context of 'eval'.
    549   Variable* LookupRecursive(Handle<String> name,
    550                             BindingKind* binding_kind,
    551                             AstNodeFactory<AstNullVisitor>* factory);
    552   MUST_USE_RESULT
    553   bool ResolveVariable(CompilationInfo* info,
    554                        VariableProxy* proxy,
    555                        AstNodeFactory<AstNullVisitor>* factory);
    556   MUST_USE_RESULT
    557   bool ResolveVariablesRecursively(CompilationInfo* info,
    558                                    AstNodeFactory<AstNullVisitor>* factory);
    559 
    560   // Scope analysis.
    561   bool PropagateScopeInfo(bool outer_scope_calls_non_strict_eval);
    562   bool HasTrivialContext() const;
    563 
    564   // Predicates.
    565   bool MustAllocate(Variable* var);
    566   bool MustAllocateInContext(Variable* var);
    567   bool HasArgumentsParameter();
    568 
    569   // Variable allocation.
    570   void AllocateStackSlot(Variable* var);
    571   void AllocateHeapSlot(Variable* var);
    572   void AllocateParameterLocals();
    573   void AllocateNonParameterLocal(Variable* var);
    574   void AllocateNonParameterLocals();
    575   void AllocateVariablesRecursively();
    576 
    577   // Resolve and fill in the allocation information for all variables
    578   // in this scopes. Must be called *after* all scopes have been
    579   // processed (parsed) to ensure that unresolved variables can be
    580   // resolved properly.
    581   //
    582   // In the case of code compiled and run using 'eval', the context
    583   // parameter is the context in which eval was called.  In all other
    584   // cases the context parameter is an empty handle.
    585   MUST_USE_RESULT
    586   bool AllocateVariables(CompilationInfo* info,
    587                          AstNodeFactory<AstNullVisitor>* factory);
    588 
    589  private:
    590   // Construct a scope based on the scope info.
    591   Scope(Scope* inner_scope, ScopeType type, Handle<ScopeInfo> scope_info);
    592 
    593   // Construct a catch scope with a binding for the name.
    594   Scope(Scope* inner_scope, Handle<String> catch_variable_name);
    595 
    596   void AddInnerScope(Scope* inner_scope) {
    597     if (inner_scope != NULL) {
    598       inner_scopes_.Add(inner_scope);
    599       inner_scope->outer_scope_ = this;
    600     }
    601   }
    602 
    603   void SetDefaults(ScopeType type,
    604                    Scope* outer_scope,
    605                    Handle<ScopeInfo> scope_info);
    606 };
    607 
    608 } }  // namespace v8::internal
    609 
    610 #endif  // V8_SCOPES_H_
    611