1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "EventHub" 18 19 // #define LOG_NDEBUG 0 20 21 #include "EventHub.h" 22 23 #include <hardware_legacy/power.h> 24 25 #include <cutils/properties.h> 26 #include <utils/Log.h> 27 #include <utils/Timers.h> 28 #include <utils/threads.h> 29 #include <utils/Errors.h> 30 31 #include <stdlib.h> 32 #include <stdio.h> 33 #include <unistd.h> 34 #include <fcntl.h> 35 #include <memory.h> 36 #include <errno.h> 37 #include <assert.h> 38 39 #include <input/KeyLayoutMap.h> 40 #include <input/KeyCharacterMap.h> 41 #include <input/VirtualKeyMap.h> 42 43 #include <string.h> 44 #include <stdint.h> 45 #include <dirent.h> 46 47 #include <sys/inotify.h> 48 #include <sys/epoll.h> 49 #include <sys/ioctl.h> 50 #include <sys/limits.h> 51 #include <sys/sha1.h> 52 53 /* this macro is used to tell if "bit" is set in "array" 54 * it selects a byte from the array, and does a boolean AND 55 * operation with a byte that only has the relevant bit set. 56 * eg. to check for the 12th bit, we do (array[1] & 1<<4) 57 */ 58 #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) 59 60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */ 61 #define sizeof_bit_array(bits) ((bits + 7) / 8) 62 63 #define INDENT " " 64 #define INDENT2 " " 65 #define INDENT3 " " 66 67 namespace android { 68 69 static const char *WAKE_LOCK_ID = "KeyEvents"; 70 static const char *DEVICE_PATH = "/dev/input"; 71 72 /* return the larger integer */ 73 static inline int max(int v1, int v2) 74 { 75 return (v1 > v2) ? v1 : v2; 76 } 77 78 static inline const char* toString(bool value) { 79 return value ? "true" : "false"; 80 } 81 82 static String8 sha1(const String8& in) { 83 SHA1_CTX ctx; 84 SHA1Init(&ctx); 85 SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size()); 86 u_char digest[SHA1_DIGEST_LENGTH]; 87 SHA1Final(digest, &ctx); 88 89 String8 out; 90 for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) { 91 out.appendFormat("%02x", digest[i]); 92 } 93 return out; 94 } 95 96 static void setDescriptor(InputDeviceIdentifier& identifier) { 97 // Compute a device descriptor that uniquely identifies the device. 98 // The descriptor is assumed to be a stable identifier. Its value should not 99 // change between reboots, reconnections, firmware updates or new releases of Android. 100 // Ideally, we also want the descriptor to be short and relatively opaque. 101 String8 rawDescriptor; 102 rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product); 103 if (!identifier.uniqueId.isEmpty()) { 104 rawDescriptor.append("uniqueId:"); 105 rawDescriptor.append(identifier.uniqueId); 106 } if (identifier.vendor == 0 && identifier.product == 0) { 107 // If we don't know the vendor and product id, then the device is probably 108 // built-in so we need to rely on other information to uniquely identify 109 // the input device. Usually we try to avoid relying on the device name or 110 // location but for built-in input device, they are unlikely to ever change. 111 if (!identifier.name.isEmpty()) { 112 rawDescriptor.append("name:"); 113 rawDescriptor.append(identifier.name); 114 } else if (!identifier.location.isEmpty()) { 115 rawDescriptor.append("location:"); 116 rawDescriptor.append(identifier.location); 117 } 118 } 119 identifier.descriptor = sha1(rawDescriptor); 120 ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), 121 identifier.descriptor.string()); 122 } 123 124 // --- Global Functions --- 125 126 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { 127 // Touch devices get dibs on touch-related axes. 128 if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { 129 switch (axis) { 130 case ABS_X: 131 case ABS_Y: 132 case ABS_PRESSURE: 133 case ABS_TOOL_WIDTH: 134 case ABS_DISTANCE: 135 case ABS_TILT_X: 136 case ABS_TILT_Y: 137 case ABS_MT_SLOT: 138 case ABS_MT_TOUCH_MAJOR: 139 case ABS_MT_TOUCH_MINOR: 140 case ABS_MT_WIDTH_MAJOR: 141 case ABS_MT_WIDTH_MINOR: 142 case ABS_MT_ORIENTATION: 143 case ABS_MT_POSITION_X: 144 case ABS_MT_POSITION_Y: 145 case ABS_MT_TOOL_TYPE: 146 case ABS_MT_BLOB_ID: 147 case ABS_MT_TRACKING_ID: 148 case ABS_MT_PRESSURE: 149 case ABS_MT_DISTANCE: 150 return INPUT_DEVICE_CLASS_TOUCH; 151 } 152 } 153 154 // Joystick devices get the rest. 155 return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; 156 } 157 158 // --- EventHub::Device --- 159 160 EventHub::Device::Device(int fd, int32_t id, const String8& path, 161 const InputDeviceIdentifier& identifier) : 162 next(NULL), 163 fd(fd), id(id), path(path), identifier(identifier), 164 classes(0), configuration(NULL), virtualKeyMap(NULL), 165 ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), 166 timestampOverrideSec(0), timestampOverrideUsec(0) { 167 memset(keyBitmask, 0, sizeof(keyBitmask)); 168 memset(absBitmask, 0, sizeof(absBitmask)); 169 memset(relBitmask, 0, sizeof(relBitmask)); 170 memset(swBitmask, 0, sizeof(swBitmask)); 171 memset(ledBitmask, 0, sizeof(ledBitmask)); 172 memset(ffBitmask, 0, sizeof(ffBitmask)); 173 memset(propBitmask, 0, sizeof(propBitmask)); 174 } 175 176 EventHub::Device::~Device() { 177 close(); 178 delete configuration; 179 delete virtualKeyMap; 180 } 181 182 void EventHub::Device::close() { 183 if (fd >= 0) { 184 ::close(fd); 185 fd = -1; 186 } 187 } 188 189 190 // --- EventHub --- 191 192 const uint32_t EventHub::EPOLL_ID_INOTIFY; 193 const uint32_t EventHub::EPOLL_ID_WAKE; 194 const int EventHub::EPOLL_SIZE_HINT; 195 const int EventHub::EPOLL_MAX_EVENTS; 196 197 EventHub::EventHub(void) : 198 mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), 199 mOpeningDevices(0), mClosingDevices(0), 200 mNeedToSendFinishedDeviceScan(false), 201 mNeedToReopenDevices(false), mNeedToScanDevices(true), 202 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { 203 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 204 205 mEpollFd = epoll_create(EPOLL_SIZE_HINT); 206 LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); 207 208 mINotifyFd = inotify_init(); 209 int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); 210 LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", 211 DEVICE_PATH, errno); 212 213 struct epoll_event eventItem; 214 memset(&eventItem, 0, sizeof(eventItem)); 215 eventItem.events = EPOLLIN; 216 eventItem.data.u32 = EPOLL_ID_INOTIFY; 217 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); 218 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); 219 220 int wakeFds[2]; 221 result = pipe(wakeFds); 222 LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); 223 224 mWakeReadPipeFd = wakeFds[0]; 225 mWakeWritePipeFd = wakeFds[1]; 226 227 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); 228 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", 229 errno); 230 231 result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); 232 LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", 233 errno); 234 235 eventItem.data.u32 = EPOLL_ID_WAKE; 236 result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); 237 LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", 238 errno); 239 } 240 241 EventHub::~EventHub(void) { 242 closeAllDevicesLocked(); 243 244 while (mClosingDevices) { 245 Device* device = mClosingDevices; 246 mClosingDevices = device->next; 247 delete device; 248 } 249 250 ::close(mEpollFd); 251 ::close(mINotifyFd); 252 ::close(mWakeReadPipeFd); 253 ::close(mWakeWritePipeFd); 254 255 release_wake_lock(WAKE_LOCK_ID); 256 } 257 258 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { 259 AutoMutex _l(mLock); 260 Device* device = getDeviceLocked(deviceId); 261 if (device == NULL) return InputDeviceIdentifier(); 262 return device->identifier; 263 } 264 265 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { 266 AutoMutex _l(mLock); 267 Device* device = getDeviceLocked(deviceId); 268 if (device == NULL) return 0; 269 return device->classes; 270 } 271 272 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { 273 AutoMutex _l(mLock); 274 Device* device = getDeviceLocked(deviceId); 275 if (device == NULL) return 0; 276 return device->controllerNumber; 277 } 278 279 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { 280 AutoMutex _l(mLock); 281 Device* device = getDeviceLocked(deviceId); 282 if (device && device->configuration) { 283 *outConfiguration = *device->configuration; 284 } else { 285 outConfiguration->clear(); 286 } 287 } 288 289 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, 290 RawAbsoluteAxisInfo* outAxisInfo) const { 291 outAxisInfo->clear(); 292 293 if (axis >= 0 && axis <= ABS_MAX) { 294 AutoMutex _l(mLock); 295 296 Device* device = getDeviceLocked(deviceId); 297 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { 298 struct input_absinfo info; 299 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 300 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 301 axis, device->identifier.name.string(), device->fd, errno); 302 return -errno; 303 } 304 305 if (info.minimum != info.maximum) { 306 outAxisInfo->valid = true; 307 outAxisInfo->minValue = info.minimum; 308 outAxisInfo->maxValue = info.maximum; 309 outAxisInfo->flat = info.flat; 310 outAxisInfo->fuzz = info.fuzz; 311 outAxisInfo->resolution = info.resolution; 312 } 313 return OK; 314 } 315 } 316 return -1; 317 } 318 319 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { 320 if (axis >= 0 && axis <= REL_MAX) { 321 AutoMutex _l(mLock); 322 323 Device* device = getDeviceLocked(deviceId); 324 if (device) { 325 return test_bit(axis, device->relBitmask); 326 } 327 } 328 return false; 329 } 330 331 bool EventHub::hasInputProperty(int32_t deviceId, int property) const { 332 if (property >= 0 && property <= INPUT_PROP_MAX) { 333 AutoMutex _l(mLock); 334 335 Device* device = getDeviceLocked(deviceId); 336 if (device) { 337 return test_bit(property, device->propBitmask); 338 } 339 } 340 return false; 341 } 342 343 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { 344 if (scanCode >= 0 && scanCode <= KEY_MAX) { 345 AutoMutex _l(mLock); 346 347 Device* device = getDeviceLocked(deviceId); 348 if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) { 349 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 350 memset(keyState, 0, sizeof(keyState)); 351 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 352 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 353 } 354 } 355 } 356 return AKEY_STATE_UNKNOWN; 357 } 358 359 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { 360 AutoMutex _l(mLock); 361 362 Device* device = getDeviceLocked(deviceId); 363 if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) { 364 Vector<int32_t> scanCodes; 365 device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); 366 if (scanCodes.size() != 0) { 367 uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; 368 memset(keyState, 0, sizeof(keyState)); 369 if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { 370 for (size_t i = 0; i < scanCodes.size(); i++) { 371 int32_t sc = scanCodes.itemAt(i); 372 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { 373 return AKEY_STATE_DOWN; 374 } 375 } 376 return AKEY_STATE_UP; 377 } 378 } 379 } 380 return AKEY_STATE_UNKNOWN; 381 } 382 383 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { 384 if (sw >= 0 && sw <= SW_MAX) { 385 AutoMutex _l(mLock); 386 387 Device* device = getDeviceLocked(deviceId); 388 if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) { 389 uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; 390 memset(swState, 0, sizeof(swState)); 391 if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { 392 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; 393 } 394 } 395 } 396 return AKEY_STATE_UNKNOWN; 397 } 398 399 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { 400 *outValue = 0; 401 402 if (axis >= 0 && axis <= ABS_MAX) { 403 AutoMutex _l(mLock); 404 405 Device* device = getDeviceLocked(deviceId); 406 if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { 407 struct input_absinfo info; 408 if(ioctl(device->fd, EVIOCGABS(axis), &info)) { 409 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", 410 axis, device->identifier.name.string(), device->fd, errno); 411 return -errno; 412 } 413 414 *outValue = info.value; 415 return OK; 416 } 417 } 418 return -1; 419 } 420 421 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, 422 const int32_t* keyCodes, uint8_t* outFlags) const { 423 AutoMutex _l(mLock); 424 425 Device* device = getDeviceLocked(deviceId); 426 if (device && device->keyMap.haveKeyLayout()) { 427 Vector<int32_t> scanCodes; 428 for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { 429 scanCodes.clear(); 430 431 status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( 432 keyCodes[codeIndex], &scanCodes); 433 if (! err) { 434 // check the possible scan codes identified by the layout map against the 435 // map of codes actually emitted by the driver 436 for (size_t sc = 0; sc < scanCodes.size(); sc++) { 437 if (test_bit(scanCodes[sc], device->keyBitmask)) { 438 outFlags[codeIndex] = 1; 439 break; 440 } 441 } 442 } 443 } 444 return true; 445 } 446 return false; 447 } 448 449 status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, 450 int32_t* outKeycode, uint32_t* outFlags) const { 451 AutoMutex _l(mLock); 452 Device* device = getDeviceLocked(deviceId); 453 454 if (device) { 455 // Check the key character map first. 456 sp<KeyCharacterMap> kcm = device->getKeyCharacterMap(); 457 if (kcm != NULL) { 458 if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { 459 *outFlags = 0; 460 return NO_ERROR; 461 } 462 } 463 464 // Check the key layout next. 465 if (device->keyMap.haveKeyLayout()) { 466 if (!device->keyMap.keyLayoutMap->mapKey( 467 scanCode, usageCode, outKeycode, outFlags)) { 468 return NO_ERROR; 469 } 470 } 471 } 472 473 *outKeycode = 0; 474 *outFlags = 0; 475 return NAME_NOT_FOUND; 476 } 477 478 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { 479 AutoMutex _l(mLock); 480 Device* device = getDeviceLocked(deviceId); 481 482 if (device && device->keyMap.haveKeyLayout()) { 483 status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); 484 if (err == NO_ERROR) { 485 return NO_ERROR; 486 } 487 } 488 489 return NAME_NOT_FOUND; 490 } 491 492 void EventHub::setExcludedDevices(const Vector<String8>& devices) { 493 AutoMutex _l(mLock); 494 495 mExcludedDevices = devices; 496 } 497 498 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { 499 AutoMutex _l(mLock); 500 Device* device = getDeviceLocked(deviceId); 501 if (device && scanCode >= 0 && scanCode <= KEY_MAX) { 502 if (test_bit(scanCode, device->keyBitmask)) { 503 return true; 504 } 505 } 506 return false; 507 } 508 509 bool EventHub::hasLed(int32_t deviceId, int32_t led) const { 510 AutoMutex _l(mLock); 511 Device* device = getDeviceLocked(deviceId); 512 if (device && led >= 0 && led <= LED_MAX) { 513 if (test_bit(led, device->ledBitmask)) { 514 return true; 515 } 516 } 517 return false; 518 } 519 520 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { 521 AutoMutex _l(mLock); 522 Device* device = getDeviceLocked(deviceId); 523 if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) { 524 struct input_event ev; 525 ev.time.tv_sec = 0; 526 ev.time.tv_usec = 0; 527 ev.type = EV_LED; 528 ev.code = led; 529 ev.value = on ? 1 : 0; 530 531 ssize_t nWrite; 532 do { 533 nWrite = write(device->fd, &ev, sizeof(struct input_event)); 534 } while (nWrite == -1 && errno == EINTR); 535 } 536 } 537 538 void EventHub::getVirtualKeyDefinitions(int32_t deviceId, 539 Vector<VirtualKeyDefinition>& outVirtualKeys) const { 540 outVirtualKeys.clear(); 541 542 AutoMutex _l(mLock); 543 Device* device = getDeviceLocked(deviceId); 544 if (device && device->virtualKeyMap) { 545 outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); 546 } 547 } 548 549 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { 550 AutoMutex _l(mLock); 551 Device* device = getDeviceLocked(deviceId); 552 if (device) { 553 return device->getKeyCharacterMap(); 554 } 555 return NULL; 556 } 557 558 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, 559 const sp<KeyCharacterMap>& map) { 560 AutoMutex _l(mLock); 561 Device* device = getDeviceLocked(deviceId); 562 if (device) { 563 if (map != device->overlayKeyMap) { 564 device->overlayKeyMap = map; 565 device->combinedKeyMap = KeyCharacterMap::combine( 566 device->keyMap.keyCharacterMap, map); 567 return true; 568 } 569 } 570 return false; 571 } 572 573 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { 574 AutoMutex _l(mLock); 575 Device* device = getDeviceLocked(deviceId); 576 if (device && !device->isVirtual()) { 577 ff_effect effect; 578 memset(&effect, 0, sizeof(effect)); 579 effect.type = FF_RUMBLE; 580 effect.id = device->ffEffectId; 581 effect.u.rumble.strong_magnitude = 0xc000; 582 effect.u.rumble.weak_magnitude = 0xc000; 583 effect.replay.length = (duration + 999999LL) / 1000000LL; 584 effect.replay.delay = 0; 585 if (ioctl(device->fd, EVIOCSFF, &effect)) { 586 ALOGW("Could not upload force feedback effect to device %s due to error %d.", 587 device->identifier.name.string(), errno); 588 return; 589 } 590 device->ffEffectId = effect.id; 591 592 struct input_event ev; 593 ev.time.tv_sec = 0; 594 ev.time.tv_usec = 0; 595 ev.type = EV_FF; 596 ev.code = device->ffEffectId; 597 ev.value = 1; 598 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 599 ALOGW("Could not start force feedback effect on device %s due to error %d.", 600 device->identifier.name.string(), errno); 601 return; 602 } 603 device->ffEffectPlaying = true; 604 } 605 } 606 607 void EventHub::cancelVibrate(int32_t deviceId) { 608 AutoMutex _l(mLock); 609 Device* device = getDeviceLocked(deviceId); 610 if (device && !device->isVirtual()) { 611 if (device->ffEffectPlaying) { 612 device->ffEffectPlaying = false; 613 614 struct input_event ev; 615 ev.time.tv_sec = 0; 616 ev.time.tv_usec = 0; 617 ev.type = EV_FF; 618 ev.code = device->ffEffectId; 619 ev.value = 0; 620 if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { 621 ALOGW("Could not stop force feedback effect on device %s due to error %d.", 622 device->identifier.name.string(), errno); 623 return; 624 } 625 } 626 } 627 } 628 629 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { 630 if (deviceId == BUILT_IN_KEYBOARD_ID) { 631 deviceId = mBuiltInKeyboardId; 632 } 633 ssize_t index = mDevices.indexOfKey(deviceId); 634 return index >= 0 ? mDevices.valueAt(index) : NULL; 635 } 636 637 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { 638 for (size_t i = 0; i < mDevices.size(); i++) { 639 Device* device = mDevices.valueAt(i); 640 if (device->path == devicePath) { 641 return device; 642 } 643 } 644 return NULL; 645 } 646 647 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { 648 ALOG_ASSERT(bufferSize >= 1); 649 650 AutoMutex _l(mLock); 651 652 struct input_event readBuffer[bufferSize]; 653 654 RawEvent* event = buffer; 655 size_t capacity = bufferSize; 656 bool awoken = false; 657 for (;;) { 658 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); 659 660 // Reopen input devices if needed. 661 if (mNeedToReopenDevices) { 662 mNeedToReopenDevices = false; 663 664 ALOGI("Reopening all input devices due to a configuration change."); 665 666 closeAllDevicesLocked(); 667 mNeedToScanDevices = true; 668 break; // return to the caller before we actually rescan 669 } 670 671 // Report any devices that had last been added/removed. 672 while (mClosingDevices) { 673 Device* device = mClosingDevices; 674 ALOGV("Reporting device closed: id=%d, name=%s\n", 675 device->id, device->path.string()); 676 mClosingDevices = device->next; 677 event->when = now; 678 event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; 679 event->type = DEVICE_REMOVED; 680 event += 1; 681 delete device; 682 mNeedToSendFinishedDeviceScan = true; 683 if (--capacity == 0) { 684 break; 685 } 686 } 687 688 if (mNeedToScanDevices) { 689 mNeedToScanDevices = false; 690 scanDevicesLocked(); 691 mNeedToSendFinishedDeviceScan = true; 692 } 693 694 while (mOpeningDevices != NULL) { 695 Device* device = mOpeningDevices; 696 ALOGV("Reporting device opened: id=%d, name=%s\n", 697 device->id, device->path.string()); 698 mOpeningDevices = device->next; 699 event->when = now; 700 event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 701 event->type = DEVICE_ADDED; 702 event += 1; 703 mNeedToSendFinishedDeviceScan = true; 704 if (--capacity == 0) { 705 break; 706 } 707 } 708 709 if (mNeedToSendFinishedDeviceScan) { 710 mNeedToSendFinishedDeviceScan = false; 711 event->when = now; 712 event->type = FINISHED_DEVICE_SCAN; 713 event += 1; 714 if (--capacity == 0) { 715 break; 716 } 717 } 718 719 // Grab the next input event. 720 bool deviceChanged = false; 721 while (mPendingEventIndex < mPendingEventCount) { 722 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; 723 if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { 724 if (eventItem.events & EPOLLIN) { 725 mPendingINotify = true; 726 } else { 727 ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); 728 } 729 continue; 730 } 731 732 if (eventItem.data.u32 == EPOLL_ID_WAKE) { 733 if (eventItem.events & EPOLLIN) { 734 ALOGV("awoken after wake()"); 735 awoken = true; 736 char buffer[16]; 737 ssize_t nRead; 738 do { 739 nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); 740 } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); 741 } else { 742 ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", 743 eventItem.events); 744 } 745 continue; 746 } 747 748 ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); 749 if (deviceIndex < 0) { 750 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", 751 eventItem.events, eventItem.data.u32); 752 continue; 753 } 754 755 Device* device = mDevices.valueAt(deviceIndex); 756 if (eventItem.events & EPOLLIN) { 757 int32_t readSize = read(device->fd, readBuffer, 758 sizeof(struct input_event) * capacity); 759 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { 760 // Device was removed before INotify noticed. 761 ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d " 762 "capacity: %d errno: %d)\n", 763 device->fd, readSize, bufferSize, capacity, errno); 764 deviceChanged = true; 765 closeDeviceLocked(device); 766 } else if (readSize < 0) { 767 if (errno != EAGAIN && errno != EINTR) { 768 ALOGW("could not get event (errno=%d)", errno); 769 } 770 } else if ((readSize % sizeof(struct input_event)) != 0) { 771 ALOGE("could not get event (wrong size: %d)", readSize); 772 } else { 773 int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; 774 775 size_t count = size_t(readSize) / sizeof(struct input_event); 776 for (size_t i = 0; i < count; i++) { 777 struct input_event& iev = readBuffer[i]; 778 ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", 779 device->path.string(), 780 (int) iev.time.tv_sec, (int) iev.time.tv_usec, 781 iev.type, iev.code, iev.value); 782 783 // Some input devices may have a better concept of the time 784 // when an input event was actually generated than the kernel 785 // which simply timestamps all events on entry to evdev. 786 // This is a custom Android extension of the input protocol 787 // mainly intended for use with uinput based device drivers. 788 if (iev.type == EV_MSC) { 789 if (iev.code == MSC_ANDROID_TIME_SEC) { 790 device->timestampOverrideSec = iev.value; 791 continue; 792 } else if (iev.code == MSC_ANDROID_TIME_USEC) { 793 device->timestampOverrideUsec = iev.value; 794 continue; 795 } 796 } 797 if (device->timestampOverrideSec || device->timestampOverrideUsec) { 798 iev.time.tv_sec = device->timestampOverrideSec; 799 iev.time.tv_usec = device->timestampOverrideUsec; 800 if (iev.type == EV_SYN && iev.code == SYN_REPORT) { 801 device->timestampOverrideSec = 0; 802 device->timestampOverrideUsec = 0; 803 } 804 ALOGV("applied override time %d.%06d", 805 int(iev.time.tv_sec), int(iev.time.tv_usec)); 806 } 807 808 #ifdef HAVE_POSIX_CLOCKS 809 // Use the time specified in the event instead of the current time 810 // so that downstream code can get more accurate estimates of 811 // event dispatch latency from the time the event is enqueued onto 812 // the evdev client buffer. 813 // 814 // The event's timestamp fortuitously uses the same monotonic clock 815 // time base as the rest of Android. The kernel event device driver 816 // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). 817 // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere 818 // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a 819 // system call that also queries ktime_get_ts(). 820 event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL 821 + nsecs_t(iev.time.tv_usec) * 1000LL; 822 ALOGV("event time %lld, now %lld", event->when, now); 823 824 // Bug 7291243: Add a guard in case the kernel generates timestamps 825 // that appear to be far into the future because they were generated 826 // using the wrong clock source. 827 // 828 // This can happen because when the input device is initially opened 829 // it has a default clock source of CLOCK_REALTIME. Any input events 830 // enqueued right after the device is opened will have timestamps 831 // generated using CLOCK_REALTIME. We later set the clock source 832 // to CLOCK_MONOTONIC but it is already too late. 833 // 834 // Invalid input event timestamps can result in ANRs, crashes and 835 // and other issues that are hard to track down. We must not let them 836 // propagate through the system. 837 // 838 // Log a warning so that we notice the problem and recover gracefully. 839 if (event->when >= now + 10 * 1000000000LL) { 840 // Double-check. Time may have moved on. 841 nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); 842 if (event->when > time) { 843 ALOGW("An input event from %s has a timestamp that appears to " 844 "have been generated using the wrong clock source " 845 "(expected CLOCK_MONOTONIC): " 846 "event time %lld, current time %lld, call time %lld. " 847 "Using current time instead.", 848 device->path.string(), event->when, time, now); 849 event->when = time; 850 } else { 851 ALOGV("Event time is ok but failed the fast path and required " 852 "an extra call to systemTime: " 853 "event time %lld, current time %lld, call time %lld.", 854 event->when, time, now); 855 } 856 } 857 #else 858 event->when = now; 859 #endif 860 event->deviceId = deviceId; 861 event->type = iev.type; 862 event->code = iev.code; 863 event->value = iev.value; 864 event += 1; 865 capacity -= 1; 866 } 867 if (capacity == 0) { 868 // The result buffer is full. Reset the pending event index 869 // so we will try to read the device again on the next iteration. 870 mPendingEventIndex -= 1; 871 break; 872 } 873 } 874 } else if (eventItem.events & EPOLLHUP) { 875 ALOGI("Removing device %s due to epoll hang-up event.", 876 device->identifier.name.string()); 877 deviceChanged = true; 878 closeDeviceLocked(device); 879 } else { 880 ALOGW("Received unexpected epoll event 0x%08x for device %s.", 881 eventItem.events, device->identifier.name.string()); 882 } 883 } 884 885 // readNotify() will modify the list of devices so this must be done after 886 // processing all other events to ensure that we read all remaining events 887 // before closing the devices. 888 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { 889 mPendingINotify = false; 890 readNotifyLocked(); 891 deviceChanged = true; 892 } 893 894 // Report added or removed devices immediately. 895 if (deviceChanged) { 896 continue; 897 } 898 899 // Return now if we have collected any events or if we were explicitly awoken. 900 if (event != buffer || awoken) { 901 break; 902 } 903 904 // Poll for events. Mind the wake lock dance! 905 // We hold a wake lock at all times except during epoll_wait(). This works due to some 906 // subtle choreography. When a device driver has pending (unread) events, it acquires 907 // a kernel wake lock. However, once the last pending event has been read, the device 908 // driver will release the kernel wake lock. To prevent the system from going to sleep 909 // when this happens, the EventHub holds onto its own user wake lock while the client 910 // is processing events. Thus the system can only sleep if there are no events 911 // pending or currently being processed. 912 // 913 // The timeout is advisory only. If the device is asleep, it will not wake just to 914 // service the timeout. 915 mPendingEventIndex = 0; 916 917 mLock.unlock(); // release lock before poll, must be before release_wake_lock 918 release_wake_lock(WAKE_LOCK_ID); 919 920 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); 921 922 acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); 923 mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock 924 925 if (pollResult == 0) { 926 // Timed out. 927 mPendingEventCount = 0; 928 break; 929 } 930 931 if (pollResult < 0) { 932 // An error occurred. 933 mPendingEventCount = 0; 934 935 // Sleep after errors to avoid locking up the system. 936 // Hopefully the error is transient. 937 if (errno != EINTR) { 938 ALOGW("poll failed (errno=%d)\n", errno); 939 usleep(100000); 940 } 941 } else { 942 // Some events occurred. 943 mPendingEventCount = size_t(pollResult); 944 } 945 } 946 947 // All done, return the number of events we read. 948 return event - buffer; 949 } 950 951 void EventHub::wake() { 952 ALOGV("wake() called"); 953 954 ssize_t nWrite; 955 do { 956 nWrite = write(mWakeWritePipeFd, "W", 1); 957 } while (nWrite == -1 && errno == EINTR); 958 959 if (nWrite != 1 && errno != EAGAIN) { 960 ALOGW("Could not write wake signal, errno=%d", errno); 961 } 962 } 963 964 void EventHub::scanDevicesLocked() { 965 status_t res = scanDirLocked(DEVICE_PATH); 966 if(res < 0) { 967 ALOGE("scan dir failed for %s\n", DEVICE_PATH); 968 } 969 if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { 970 createVirtualKeyboardLocked(); 971 } 972 } 973 974 // ---------------------------------------------------------------------------- 975 976 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { 977 const uint8_t* end = array + endIndex; 978 array += startIndex; 979 while (array != end) { 980 if (*(array++) != 0) { 981 return true; 982 } 983 } 984 return false; 985 } 986 987 static const int32_t GAMEPAD_KEYCODES[] = { 988 AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, 989 AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, 990 AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, 991 AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, 992 AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, 993 AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, 994 AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4, 995 AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8, 996 AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12, 997 AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16, 998 }; 999 1000 status_t EventHub::openDeviceLocked(const char *devicePath) { 1001 char buffer[80]; 1002 1003 ALOGV("Opening device: %s", devicePath); 1004 1005 int fd = open(devicePath, O_RDWR | O_CLOEXEC); 1006 if(fd < 0) { 1007 ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); 1008 return -1; 1009 } 1010 1011 InputDeviceIdentifier identifier; 1012 1013 // Get device name. 1014 if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { 1015 //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); 1016 } else { 1017 buffer[sizeof(buffer) - 1] = '\0'; 1018 identifier.name.setTo(buffer); 1019 } 1020 1021 // Check to see if the device is on our excluded list 1022 for (size_t i = 0; i < mExcludedDevices.size(); i++) { 1023 const String8& item = mExcludedDevices.itemAt(i); 1024 if (identifier.name == item) { 1025 ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); 1026 close(fd); 1027 return -1; 1028 } 1029 } 1030 1031 // Get device driver version. 1032 int driverVersion; 1033 if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { 1034 ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); 1035 close(fd); 1036 return -1; 1037 } 1038 1039 // Get device identifier. 1040 struct input_id inputId; 1041 if(ioctl(fd, EVIOCGID, &inputId)) { 1042 ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); 1043 close(fd); 1044 return -1; 1045 } 1046 identifier.bus = inputId.bustype; 1047 identifier.product = inputId.product; 1048 identifier.vendor = inputId.vendor; 1049 identifier.version = inputId.version; 1050 1051 // Get device physical location. 1052 if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { 1053 //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); 1054 } else { 1055 buffer[sizeof(buffer) - 1] = '\0'; 1056 identifier.location.setTo(buffer); 1057 } 1058 1059 // Get device unique id. 1060 if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { 1061 //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); 1062 } else { 1063 buffer[sizeof(buffer) - 1] = '\0'; 1064 identifier.uniqueId.setTo(buffer); 1065 } 1066 1067 // Fill in the descriptor. 1068 setDescriptor(identifier); 1069 1070 // Make file descriptor non-blocking for use with poll(). 1071 if (fcntl(fd, F_SETFL, O_NONBLOCK)) { 1072 ALOGE("Error %d making device file descriptor non-blocking.", errno); 1073 close(fd); 1074 return -1; 1075 } 1076 1077 // Allocate device. (The device object takes ownership of the fd at this point.) 1078 int32_t deviceId = mNextDeviceId++; 1079 Device* device = new Device(fd, deviceId, String8(devicePath), identifier); 1080 1081 ALOGV("add device %d: %s\n", deviceId, devicePath); 1082 ALOGV(" bus: %04x\n" 1083 " vendor %04x\n" 1084 " product %04x\n" 1085 " version %04x\n", 1086 identifier.bus, identifier.vendor, identifier.product, identifier.version); 1087 ALOGV(" name: \"%s\"\n", identifier.name.string()); 1088 ALOGV(" location: \"%s\"\n", identifier.location.string()); 1089 ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); 1090 ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); 1091 ALOGV(" driver: v%d.%d.%d\n", 1092 driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); 1093 1094 // Load the configuration file for the device. 1095 loadConfigurationLocked(device); 1096 1097 // Figure out the kinds of events the device reports. 1098 ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); 1099 ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); 1100 ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); 1101 ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); 1102 ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); 1103 ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); 1104 ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); 1105 1106 // See if this is a keyboard. Ignore everything in the button range except for 1107 // joystick and gamepad buttons which are handled like keyboards for the most part. 1108 bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) 1109 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), 1110 sizeof_bit_array(KEY_MAX + 1)); 1111 bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), 1112 sizeof_bit_array(BTN_MOUSE)) 1113 || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), 1114 sizeof_bit_array(BTN_DIGI)); 1115 if (haveKeyboardKeys || haveGamepadButtons) { 1116 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1117 } 1118 1119 // See if this is a cursor device such as a trackball or mouse. 1120 if (test_bit(BTN_MOUSE, device->keyBitmask) 1121 && test_bit(REL_X, device->relBitmask) 1122 && test_bit(REL_Y, device->relBitmask)) { 1123 device->classes |= INPUT_DEVICE_CLASS_CURSOR; 1124 } 1125 1126 // See if this is a touch pad. 1127 // Is this a new modern multi-touch driver? 1128 if (test_bit(ABS_MT_POSITION_X, device->absBitmask) 1129 && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { 1130 // Some joysticks such as the PS3 controller report axes that conflict 1131 // with the ABS_MT range. Try to confirm that the device really is 1132 // a touch screen. 1133 if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { 1134 device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; 1135 } 1136 // Is this an old style single-touch driver? 1137 } else if (test_bit(BTN_TOUCH, device->keyBitmask) 1138 && test_bit(ABS_X, device->absBitmask) 1139 && test_bit(ABS_Y, device->absBitmask)) { 1140 device->classes |= INPUT_DEVICE_CLASS_TOUCH; 1141 } 1142 1143 // See if this device is a joystick. 1144 // Assumes that joysticks always have gamepad buttons in order to distinguish them 1145 // from other devices such as accelerometers that also have absolute axes. 1146 if (haveGamepadButtons) { 1147 uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; 1148 for (int i = 0; i <= ABS_MAX; i++) { 1149 if (test_bit(i, device->absBitmask) 1150 && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { 1151 device->classes = assumedClasses; 1152 break; 1153 } 1154 } 1155 } 1156 1157 // Check whether this device has switches. 1158 for (int i = 0; i <= SW_MAX; i++) { 1159 if (test_bit(i, device->swBitmask)) { 1160 device->classes |= INPUT_DEVICE_CLASS_SWITCH; 1161 break; 1162 } 1163 } 1164 1165 // Check whether this device supports the vibrator. 1166 if (test_bit(FF_RUMBLE, device->ffBitmask)) { 1167 device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; 1168 } 1169 1170 // Configure virtual keys. 1171 if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { 1172 // Load the virtual keys for the touch screen, if any. 1173 // We do this now so that we can make sure to load the keymap if necessary. 1174 status_t status = loadVirtualKeyMapLocked(device); 1175 if (!status) { 1176 device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; 1177 } 1178 } 1179 1180 // Load the key map. 1181 // We need to do this for joysticks too because the key layout may specify axes. 1182 status_t keyMapStatus = NAME_NOT_FOUND; 1183 if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { 1184 // Load the keymap for the device. 1185 keyMapStatus = loadKeyMapLocked(device); 1186 } 1187 1188 // Configure the keyboard, gamepad or virtual keyboard. 1189 if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { 1190 // Register the keyboard as a built-in keyboard if it is eligible. 1191 if (!keyMapStatus 1192 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD 1193 && isEligibleBuiltInKeyboard(device->identifier, 1194 device->configuration, &device->keyMap)) { 1195 mBuiltInKeyboardId = device->id; 1196 } 1197 1198 // 'Q' key support = cheap test of whether this is an alpha-capable kbd 1199 if (hasKeycodeLocked(device, AKEYCODE_Q)) { 1200 device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; 1201 } 1202 1203 // See if this device has a DPAD. 1204 if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && 1205 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && 1206 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && 1207 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && 1208 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { 1209 device->classes |= INPUT_DEVICE_CLASS_DPAD; 1210 } 1211 1212 // See if this device has a gamepad. 1213 for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { 1214 if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { 1215 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; 1216 break; 1217 } 1218 } 1219 1220 // Disable kernel key repeat since we handle it ourselves 1221 unsigned int repeatRate[] = {0,0}; 1222 if (ioctl(fd, EVIOCSREP, repeatRate)) { 1223 ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno)); 1224 } 1225 } 1226 1227 // If the device isn't recognized as something we handle, don't monitor it. 1228 if (device->classes == 0) { 1229 ALOGV("Dropping device: id=%d, path='%s', name='%s'", 1230 deviceId, devicePath, device->identifier.name.string()); 1231 delete device; 1232 return -1; 1233 } 1234 1235 // Determine whether the device is external or internal. 1236 if (isExternalDeviceLocked(device)) { 1237 device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; 1238 } 1239 1240 if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_GAMEPAD)) { 1241 device->controllerNumber = getNextControllerNumberLocked(device); 1242 } 1243 1244 // Register with epoll. 1245 struct epoll_event eventItem; 1246 memset(&eventItem, 0, sizeof(eventItem)); 1247 eventItem.events = EPOLLIN; 1248 eventItem.data.u32 = deviceId; 1249 if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { 1250 ALOGE("Could not add device fd to epoll instance. errno=%d", errno); 1251 delete device; 1252 return -1; 1253 } 1254 1255 // Enable wake-lock behavior on kernels that support it. 1256 // TODO: Only need this for devices that can really wake the system. 1257 bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1); 1258 1259 // Tell the kernel that we want to use the monotonic clock for reporting timestamps 1260 // associated with input events. This is important because the input system 1261 // uses the timestamps extensively and assumes they were recorded using the monotonic 1262 // clock. 1263 // 1264 // In older kernel, before Linux 3.4, there was no way to tell the kernel which 1265 // clock to use to input event timestamps. The standard kernel behavior was to 1266 // record a real time timestamp, which isn't what we want. Android kernels therefore 1267 // contained a patch to the evdev_event() function in drivers/input/evdev.c to 1268 // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic 1269 // clock to be used instead of the real time clock. 1270 // 1271 // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock. 1272 // Therefore, we no longer require the Android-specific kernel patch described above 1273 // as long as we make sure to set select the monotonic clock. We do that here. 1274 int clockId = CLOCK_MONOTONIC; 1275 bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); 1276 1277 ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " 1278 "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, " 1279 "usingSuspendBlockIoctl=%s, usingClockIoctl=%s", 1280 deviceId, fd, devicePath, device->identifier.name.string(), 1281 device->classes, 1282 device->configurationFile.string(), 1283 device->keyMap.keyLayoutFile.string(), 1284 device->keyMap.keyCharacterMapFile.string(), 1285 toString(mBuiltInKeyboardId == deviceId), 1286 toString(usingSuspendBlockIoctl), toString(usingClockIoctl)); 1287 1288 addDeviceLocked(device); 1289 return 0; 1290 } 1291 1292 void EventHub::createVirtualKeyboardLocked() { 1293 InputDeviceIdentifier identifier; 1294 identifier.name = "Virtual"; 1295 identifier.uniqueId = "<virtual>"; 1296 setDescriptor(identifier); 1297 1298 Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier); 1299 device->classes = INPUT_DEVICE_CLASS_KEYBOARD 1300 | INPUT_DEVICE_CLASS_ALPHAKEY 1301 | INPUT_DEVICE_CLASS_DPAD 1302 | INPUT_DEVICE_CLASS_VIRTUAL; 1303 loadKeyMapLocked(device); 1304 addDeviceLocked(device); 1305 } 1306 1307 void EventHub::addDeviceLocked(Device* device) { 1308 mDevices.add(device->id, device); 1309 device->next = mOpeningDevices; 1310 mOpeningDevices = device; 1311 } 1312 1313 void EventHub::loadConfigurationLocked(Device* device) { 1314 device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( 1315 device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); 1316 if (device->configurationFile.isEmpty()) { 1317 ALOGD("No input device configuration file found for device '%s'.", 1318 device->identifier.name.string()); 1319 } else { 1320 status_t status = PropertyMap::load(device->configurationFile, 1321 &device->configuration); 1322 if (status) { 1323 ALOGE("Error loading input device configuration file for device '%s'. " 1324 "Using default configuration.", 1325 device->identifier.name.string()); 1326 } 1327 } 1328 } 1329 1330 status_t EventHub::loadVirtualKeyMapLocked(Device* device) { 1331 // The virtual key map is supplied by the kernel as a system board property file. 1332 String8 path; 1333 path.append("/sys/board_properties/virtualkeys."); 1334 path.append(device->identifier.name); 1335 if (access(path.string(), R_OK)) { 1336 return NAME_NOT_FOUND; 1337 } 1338 return VirtualKeyMap::load(path, &device->virtualKeyMap); 1339 } 1340 1341 status_t EventHub::loadKeyMapLocked(Device* device) { 1342 return device->keyMap.load(device->identifier, device->configuration); 1343 } 1344 1345 bool EventHub::isExternalDeviceLocked(Device* device) { 1346 if (device->configuration) { 1347 bool value; 1348 if (device->configuration->tryGetProperty(String8("device.internal"), value)) { 1349 return !value; 1350 } 1351 } 1352 return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; 1353 } 1354 1355 int32_t EventHub::getNextControllerNumberLocked(Device* device) { 1356 if (mControllerNumbers.isFull()) { 1357 ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", 1358 device->identifier.name.string()); 1359 return 0; 1360 } 1361 // Since the controller number 0 is reserved for non-controllers, translate all numbers up by 1362 // one 1363 return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); 1364 } 1365 1366 void EventHub::releaseControllerNumberLocked(Device* device) { 1367 int32_t num = device->controllerNumber; 1368 device->controllerNumber= 0; 1369 if (num == 0) { 1370 return; 1371 } 1372 mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); 1373 } 1374 1375 1376 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { 1377 if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) { 1378 return false; 1379 } 1380 1381 Vector<int32_t> scanCodes; 1382 device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); 1383 const size_t N = scanCodes.size(); 1384 for (size_t i=0; i<N && i<=KEY_MAX; i++) { 1385 int32_t sc = scanCodes.itemAt(i); 1386 if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { 1387 return true; 1388 } 1389 } 1390 1391 return false; 1392 } 1393 1394 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { 1395 Device* device = getDeviceByPathLocked(devicePath); 1396 if (device) { 1397 closeDeviceLocked(device); 1398 return 0; 1399 } 1400 ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); 1401 return -1; 1402 } 1403 1404 void EventHub::closeAllDevicesLocked() { 1405 while (mDevices.size() > 0) { 1406 closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); 1407 } 1408 } 1409 1410 void EventHub::closeDeviceLocked(Device* device) { 1411 ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", 1412 device->path.string(), device->identifier.name.string(), device->id, 1413 device->fd, device->classes); 1414 1415 if (device->id == mBuiltInKeyboardId) { 1416 ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", 1417 device->path.string(), mBuiltInKeyboardId); 1418 mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; 1419 } 1420 1421 if (!device->isVirtual()) { 1422 if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { 1423 ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); 1424 } 1425 } 1426 1427 releaseControllerNumberLocked(device); 1428 1429 mDevices.removeItem(device->id); 1430 device->close(); 1431 1432 // Unlink for opening devices list if it is present. 1433 Device* pred = NULL; 1434 bool found = false; 1435 for (Device* entry = mOpeningDevices; entry != NULL; ) { 1436 if (entry == device) { 1437 found = true; 1438 break; 1439 } 1440 pred = entry; 1441 entry = entry->next; 1442 } 1443 if (found) { 1444 // Unlink the device from the opening devices list then delete it. 1445 // We don't need to tell the client that the device was closed because 1446 // it does not even know it was opened in the first place. 1447 ALOGI("Device %s was immediately closed after opening.", device->path.string()); 1448 if (pred) { 1449 pred->next = device->next; 1450 } else { 1451 mOpeningDevices = device->next; 1452 } 1453 delete device; 1454 } else { 1455 // Link into closing devices list. 1456 // The device will be deleted later after we have informed the client. 1457 device->next = mClosingDevices; 1458 mClosingDevices = device; 1459 } 1460 } 1461 1462 status_t EventHub::readNotifyLocked() { 1463 int res; 1464 char devname[PATH_MAX]; 1465 char *filename; 1466 char event_buf[512]; 1467 int event_size; 1468 int event_pos = 0; 1469 struct inotify_event *event; 1470 1471 ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); 1472 res = read(mINotifyFd, event_buf, sizeof(event_buf)); 1473 if(res < (int)sizeof(*event)) { 1474 if(errno == EINTR) 1475 return 0; 1476 ALOGW("could not get event, %s\n", strerror(errno)); 1477 return -1; 1478 } 1479 //printf("got %d bytes of event information\n", res); 1480 1481 strcpy(devname, DEVICE_PATH); 1482 filename = devname + strlen(devname); 1483 *filename++ = '/'; 1484 1485 while(res >= (int)sizeof(*event)) { 1486 event = (struct inotify_event *)(event_buf + event_pos); 1487 //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); 1488 if(event->len) { 1489 strcpy(filename, event->name); 1490 if(event->mask & IN_CREATE) { 1491 openDeviceLocked(devname); 1492 } else { 1493 ALOGI("Removing device '%s' due to inotify event\n", devname); 1494 closeDeviceByPathLocked(devname); 1495 } 1496 } 1497 event_size = sizeof(*event) + event->len; 1498 res -= event_size; 1499 event_pos += event_size; 1500 } 1501 return 0; 1502 } 1503 1504 status_t EventHub::scanDirLocked(const char *dirname) 1505 { 1506 char devname[PATH_MAX]; 1507 char *filename; 1508 DIR *dir; 1509 struct dirent *de; 1510 dir = opendir(dirname); 1511 if(dir == NULL) 1512 return -1; 1513 strcpy(devname, dirname); 1514 filename = devname + strlen(devname); 1515 *filename++ = '/'; 1516 while((de = readdir(dir))) { 1517 if(de->d_name[0] == '.' && 1518 (de->d_name[1] == '\0' || 1519 (de->d_name[1] == '.' && de->d_name[2] == '\0'))) 1520 continue; 1521 strcpy(filename, de->d_name); 1522 openDeviceLocked(devname); 1523 } 1524 closedir(dir); 1525 return 0; 1526 } 1527 1528 void EventHub::requestReopenDevices() { 1529 ALOGV("requestReopenDevices() called"); 1530 1531 AutoMutex _l(mLock); 1532 mNeedToReopenDevices = true; 1533 } 1534 1535 void EventHub::dump(String8& dump) { 1536 dump.append("Event Hub State:\n"); 1537 1538 { // acquire lock 1539 AutoMutex _l(mLock); 1540 1541 dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); 1542 1543 dump.append(INDENT "Devices:\n"); 1544 1545 for (size_t i = 0; i < mDevices.size(); i++) { 1546 const Device* device = mDevices.valueAt(i); 1547 if (mBuiltInKeyboardId == device->id) { 1548 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", 1549 device->id, device->identifier.name.string()); 1550 } else { 1551 dump.appendFormat(INDENT2 "%d: %s\n", device->id, 1552 device->identifier.name.string()); 1553 } 1554 dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); 1555 dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); 1556 dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); 1557 dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string()); 1558 dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); 1559 dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); 1560 dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " 1561 "product=0x%04x, version=0x%04x\n", 1562 device->identifier.bus, device->identifier.vendor, 1563 device->identifier.product, device->identifier.version); 1564 dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", 1565 device->keyMap.keyLayoutFile.string()); 1566 dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", 1567 device->keyMap.keyCharacterMapFile.string()); 1568 dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", 1569 device->configurationFile.string()); 1570 dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", 1571 toString(device->overlayKeyMap != NULL)); 1572 } 1573 } // release lock 1574 } 1575 1576 void EventHub::monitor() { 1577 // Acquire and release the lock to ensure that the event hub has not deadlocked. 1578 mLock.lock(); 1579 mLock.unlock(); 1580 } 1581 1582 1583 }; // namespace android 1584