Home | History | Annotate | Download | only in Effects
      1 /*
      2  * Copyright 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "Daltonizer.h"
     18 #include <ui/mat4.h>
     19 
     20 namespace android {
     21 
     22 Daltonizer::Daltonizer() :
     23     mType(deuteranomaly), mMode(simulation), mDirty(true) {
     24 }
     25 
     26 Daltonizer::~Daltonizer() {
     27 }
     28 
     29 void Daltonizer::setType(Daltonizer::ColorBlindnessTypes type) {
     30     if (type != mType) {
     31         mDirty = true;
     32         mType = type;
     33     }
     34 }
     35 
     36 void Daltonizer::setMode(Daltonizer::Mode mode) {
     37     if (mode != mMode) {
     38         mDirty = true;
     39         mMode = mode;
     40     }
     41 }
     42 
     43 const mat4& Daltonizer::operator()() {
     44     if (mDirty) {
     45         mDirty = false;
     46         update();
     47     }
     48     return mColorTransform;
     49 }
     50 
     51 void Daltonizer::update() {
     52     // converts a linear RGB color to the XYZ space
     53     const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
     54                         0.3576, 0.7152, 0.1192, 0,
     55                         0.1805, 0.0722, 0.9505, 0,
     56                         0     , 0     , 0     , 1);
     57 
     58     // converts a XYZ color to the LMS space.
     59     const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
     60                         0.4296, 1.6975, 0.0136, 0,
     61                        -0.1624, 0.0061, 0.9834, 0,
     62                         0     , 0     , 0     , 1);
     63 
     64     // Direct conversion from linear RGB to LMS
     65     const mat4 rgb2lms(xyz2lms*rgb2xyz);
     66 
     67     // And back from LMS to linear RGB
     68     const mat4 lms2rgb(inverse(rgb2lms));
     69 
     70     // To simulate color blindness we need to "remove" the data lost by the absence of
     71     // a cone. This cannot be done by just zeroing out the corresponding LMS component
     72     // because it would create a color outside of the RGB gammut.
     73     // Instead we project the color along the axis of the missing component onto a plane
     74     // within the RGB gammut:
     75     //  - since the projection happens along the axis of the missing component, a
     76     //    color blind viewer perceives the projected color the same.
     77     //  - We use the plane defined by 3 points in LMS space: black, white and
     78     //    blue and red for protanopia/deuteranopia and tritanopia respectively.
     79 
     80     // LMS space red
     81     const vec3& lms_r(rgb2lms[0].rgb);
     82     // LMS space blue
     83     const vec3& lms_b(rgb2lms[2].rgb);
     84     // LMS space white
     85     const vec3 lms_w((rgb2lms * vec4(1)).rgb);
     86 
     87     // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
     88     // of the three known points. This equation is trivially solved, and has for
     89     // solution the following cross-products:
     90     const vec3 p0 = cross(lms_w, lms_b);    // protanopia/deuteranopia
     91     const vec3 p1 = cross(lms_w, lms_r);    // tritanopia
     92 
     93     // The following 3 matrices perform the projection of a LMS color onto the given plane
     94     // along the selected axis
     95 
     96     // projection for protanopia (L = 0)
     97     const mat4 lms2lmsp(  0.0000, 0.0000, 0.0000, 0,
     98                     -p0.y / p0.x, 1.0000, 0.0000, 0,
     99                     -p0.z / p0.x, 0.0000, 1.0000, 0,
    100                           0     , 0     , 0     , 1);
    101 
    102     // projection for deuteranopia (M = 0)
    103     const mat4 lms2lmsd(  1.0000, -p0.x / p0.y, 0.0000, 0,
    104                           0.0000,       0.0000, 0.0000, 0,
    105                           0.0000, -p0.z / p0.y, 1.0000, 0,
    106                           0     ,       0     , 0     , 1);
    107 
    108     // projection for tritanopia (S = 0)
    109     const mat4 lms2lmst(  1.0000, 0.0000, -p1.x / p1.z, 0,
    110                           0.0000, 1.0000, -p1.y / p1.z, 0,
    111                           0.0000, 0.0000,       0.0000, 0,
    112                           0     ,       0     , 0     , 1);
    113 
    114     // We will calculate the error between the color and the color viewed by
    115     // a color blind user and "spread" this error onto the healthy cones.
    116     // The matrices below perform this last step and have been chosen arbitrarily.
    117 
    118     // The amount of correction can be adjusted here.
    119 
    120     // error spread for protanopia
    121     const mat4 errp(    1.0, 0.7, 0.7, 0,
    122                         0.0, 1.0, 0.0, 0,
    123                         0.0, 0.0, 1.0, 0,
    124                           0,   0,   0, 1);
    125 
    126     // error spread for deuteranopia
    127     const mat4 errd(    1.0, 0.0, 0.0, 0,
    128                         0.7, 1.0, 0.7, 0,
    129                         0.0, 0.0, 1.0, 0,
    130                           0,   0,   0, 1);
    131 
    132     // error spread for tritanopia
    133     const mat4 errt(    1.0, 0.0, 0.0, 0,
    134                         0.0, 1.0, 0.0, 0,
    135                         0.7, 0.7, 1.0, 0,
    136                           0,   0,   0, 1);
    137 
    138     const mat4 identity;
    139 
    140     // And the magic happens here...
    141     // We construct the matrix that will perform the whole correction.
    142 
    143     // simulation: type of color blindness to simulate:
    144     // set to either lms2lmsp, lms2lmsd, lms2lmst
    145     mat4 simulation;
    146 
    147     // correction: type of color blindness correction (should match the simulation above):
    148     // set to identity, errp, errd, errt ([0] for simulation only)
    149     mat4 correction(0);
    150 
    151     // control: simulation post-correction (used for debugging):
    152     // set to identity or lms2lmsp, lms2lmsd, lms2lmst
    153     mat4 control;
    154     switch (mType) {
    155         case protanopia:
    156         case protanomaly:
    157             simulation = lms2lmsp;
    158             if (mMode == Daltonizer::correction)
    159                 correction = errp;
    160             break;
    161         case deuteranopia:
    162         case deuteranomaly:
    163             simulation = lms2lmsd;
    164             if (mMode == Daltonizer::correction)
    165                 correction = errd;
    166             break;
    167         case tritanopia:
    168         case tritanomaly:
    169             simulation = lms2lmst;
    170             if (mMode == Daltonizer::correction)
    171                 correction = errt;
    172             break;
    173     }
    174 
    175     if (true) {
    176         control = simulation;
    177     }
    178 
    179     mColorTransform = lms2rgb * control *
    180             (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
    181 }
    182 
    183 } /* namespace android */
    184