1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "rsMatrix2x2.h" 18 #include "rsMatrix3x3.h" 19 #include "rsMatrix4x4.h" 20 21 #include "stdlib.h" 22 #include "string.h" 23 #include "math.h" 24 25 using namespace android; 26 using namespace android::renderscript; 27 28 ////////////////////////////////////////////////////////////////////////////// 29 // Heavy math functions 30 ////////////////////////////////////////////////////////////////////////////// 31 32 33 34 35 36 // Returns true if the matrix was successfully inversed 37 bool Matrix4x4::inverse() { 38 rs_matrix4x4 result; 39 40 int i, j; 41 for (i = 0; i < 4; ++i) { 42 for (j = 0; j < 4; ++j) { 43 // computeCofactor for int i, int j 44 int c0 = (i+1) % 4; 45 int c1 = (i+2) % 4; 46 int c2 = (i+3) % 4; 47 int r0 = (j+1) % 4; 48 int r1 = (j+2) % 4; 49 int r2 = (j+3) % 4; 50 51 float minor = 52 (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) 53 - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) 54 + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); 55 56 float cofactor = (i+j) & 1 ? -minor : minor; 57 58 result.m[4*i + j] = cofactor; 59 } 60 } 61 62 // Dot product of 0th column of source and 0th row of result 63 float det = m[0]*result.m[0] + m[4]*result.m[1] + 64 m[8]*result.m[2] + m[12]*result.m[3]; 65 66 if (fabs(det) < 1e-6) { 67 return false; 68 } 69 70 det = 1.0f / det; 71 for (i = 0; i < 16; ++i) { 72 m[i] = result.m[i] * det; 73 } 74 75 return true; 76 } 77 78 // Returns true if the matrix was successfully inversed 79 bool Matrix4x4::inverseTranspose() { 80 rs_matrix4x4 result; 81 82 int i, j; 83 for (i = 0; i < 4; ++i) { 84 for (j = 0; j < 4; ++j) { 85 // computeCofactor for int i, int j 86 int c0 = (i+1) % 4; 87 int c1 = (i+2) % 4; 88 int c2 = (i+3) % 4; 89 int r0 = (j+1) % 4; 90 int r1 = (j+2) % 4; 91 int r2 = (j+3) % 4; 92 93 float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) 94 - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) 95 + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); 96 97 float cofactor = (i+j) & 1 ? -minor : minor; 98 99 result.m[4*j + i] = cofactor; 100 } 101 } 102 103 // Dot product of 0th column of source and 0th column of result 104 float det = m[0]*result.m[0] + m[4]*result.m[4] + 105 m[8]*result.m[8] + m[12]*result.m[12]; 106 107 if (fabs(det) < 1e-6) { 108 return false; 109 } 110 111 det = 1.0f / det; 112 for (i = 0; i < 16; ++i) { 113 m[i] = result.m[i] * det; 114 } 115 116 return true; 117 } 118 119 void Matrix4x4::transpose() { 120 int i, j; 121 float temp; 122 for (i = 0; i < 3; ++i) { 123 for (j = i + 1; j < 4; ++j) { 124 temp = m[i*4 + j]; 125 m[i*4 + j] = m[j*4 + i]; 126 m[j*4 + i] = temp; 127 } 128 } 129 } 130 131 132 /////////////////////////////////////////////////////////////////////////////////// 133 134 void Matrix4x4::loadIdentity() { 135 m[0] = 1.f; 136 m[1] = 0.f; 137 m[2] = 0.f; 138 m[3] = 0.f; 139 m[4] = 0.f; 140 m[5] = 1.f; 141 m[6] = 0.f; 142 m[7] = 0.f; 143 m[8] = 0.f; 144 m[9] = 0.f; 145 m[10] = 1.f; 146 m[11] = 0.f; 147 m[12] = 0.f; 148 m[13] = 0.f; 149 m[14] = 0.f; 150 m[15] = 1.f; 151 } 152 153 void Matrix4x4::load(const float *v) { 154 memcpy(m, v, sizeof(m)); 155 } 156 157 void Matrix4x4::load(const rs_matrix4x4 *v) { 158 memcpy(m, v->m, sizeof(m)); 159 } 160 161 void Matrix4x4::load(const rs_matrix3x3 *v) { 162 m[0] = v->m[0]; 163 m[1] = v->m[1]; 164 m[2] = v->m[2]; 165 m[3] = 0.f; 166 m[4] = v->m[3]; 167 m[5] = v->m[4]; 168 m[6] = v->m[5]; 169 m[7] = 0.f; 170 m[8] = v->m[6]; 171 m[9] = v->m[7]; 172 m[10] = v->m[8]; 173 m[11] = 0.f; 174 m[12] = 0.f; 175 m[13] = 0.f; 176 m[14] = 0.f; 177 m[15] = 1.f; 178 } 179 180 void Matrix4x4::load(const rs_matrix2x2 *v) { 181 m[0] = v->m[0]; 182 m[1] = v->m[1]; 183 m[2] = 0.f; 184 m[3] = 0.f; 185 m[4] = v->m[2]; 186 m[5] = v->m[3]; 187 m[6] = 0.f; 188 m[7] = 0.f; 189 m[8] = 0.f; 190 m[9] = 0.f; 191 m[10] = 1.f; 192 m[11] = 0.f; 193 m[12] = 0.f; 194 m[13] = 0.f; 195 m[14] = 0.f; 196 m[15] = 1.f; 197 } 198 199 200 void Matrix4x4::loadRotate(float rot, float x, float y, float z) { 201 float c, s; 202 m[3] = 0; 203 m[7] = 0; 204 m[11]= 0; 205 m[12]= 0; 206 m[13]= 0; 207 m[14]= 0; 208 m[15]= 1; 209 rot *= float(M_PI / 180.0f); 210 c = cosf(rot); 211 s = sinf(rot); 212 213 const float len = x*x + y*y + z*z; 214 if (len != 1) { 215 const float recipLen = 1.f / sqrtf(len); 216 x *= recipLen; 217 y *= recipLen; 218 z *= recipLen; 219 } 220 const float nc = 1.0f - c; 221 const float xy = x * y; 222 const float yz = y * z; 223 const float zx = z * x; 224 const float xs = x * s; 225 const float ys = y * s; 226 const float zs = z * s; 227 m[ 0] = x*x*nc + c; 228 m[ 4] = xy*nc - zs; 229 m[ 8] = zx*nc + ys; 230 m[ 1] = xy*nc + zs; 231 m[ 5] = y*y*nc + c; 232 m[ 9] = yz*nc - xs; 233 m[ 2] = zx*nc - ys; 234 m[ 6] = yz*nc + xs; 235 m[10] = z*z*nc + c; 236 } 237 238 void Matrix4x4::loadScale(float x, float y, float z) { 239 loadIdentity(); 240 set(0, 0, x); 241 set(1, 1, y); 242 set(2, 2, z); 243 } 244 245 void Matrix4x4::loadTranslate(float x, float y, float z) { 246 loadIdentity(); 247 m[12] = x; 248 m[13] = y; 249 m[14] = z; 250 } 251 252 void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) { 253 for (int i=0 ; i<4 ; i++) { 254 float ri0 = 0; 255 float ri1 = 0; 256 float ri2 = 0; 257 float ri3 = 0; 258 for (int j=0 ; j<4 ; j++) { 259 const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j); 260 ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij; 261 ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij; 262 ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij; 263 ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij; 264 } 265 set(i,0, ri0); 266 set(i,1, ri1); 267 set(i,2, ri2); 268 set(i,3, ri3); 269 } 270 } 271 272 void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { 273 loadIdentity(); 274 m[0] = 2.f / (right - left); 275 m[5] = 2.f / (top - bottom); 276 m[10]= -2.f / (far - near); 277 m[12]= -(right + left) / (right - left); 278 m[13]= -(top + bottom) / (top - bottom); 279 m[14]= -(far + near) / (far - near); 280 } 281 282 void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) { 283 loadIdentity(); 284 m[0] = 2.f * near / (right - left); 285 m[5] = 2.f * near / (top - bottom); 286 m[8] = (right + left) / (right - left); 287 m[9] = (top + bottom) / (top - bottom); 288 m[10]= -(far + near) / (far - near); 289 m[11]= -1.f; 290 m[14]= -2.f * far * near / (far - near); 291 m[15]= 0.f; 292 } 293 294 void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) { 295 float top = near * tan((float) (fovy * M_PI / 360.0f)); 296 float bottom = -top; 297 float left = bottom * aspect; 298 float right = top * aspect; 299 loadFrustum(left, right, bottom, top, near, far); 300 } 301 302 void Matrix4x4::vectorMultiply(float *out, const float *in) const { 303 out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12]; 304 out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13]; 305 out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14]; 306 out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15]; 307 } 308 309 void Matrix4x4::logv(const char *s) const { 310 ALOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]); 311 ALOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]); 312 ALOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]); 313 ALOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]); 314 } 315