Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "function-lowering-info"
     16 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     17 #include "llvm/ADT/PostOrderIterator.h"
     18 #include "llvm/CodeGen/Analysis.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/CodeGen/MachineFunction.h"
     21 #include "llvm/CodeGen/MachineInstrBuilder.h"
     22 #include "llvm/CodeGen/MachineModuleInfo.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/DebugInfo.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 #include "llvm/Target/TargetLowering.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 #include "llvm/Target/TargetRegisterInfo.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     43 /// PHI nodes or outside of the basic block that defines it, or used by a
     44 /// switch or atomic instruction, which may expand to multiple basic blocks.
     45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     46   if (I->use_empty()) return false;
     47   if (isa<PHINode>(I)) return true;
     48   const BasicBlock *BB = I->getParent();
     49   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
     50         UI != E; ++UI) {
     51     const User *U = *UI;
     52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     53       return true;
     54   }
     55   return false;
     56 }
     57 
     58 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
     59   const TargetLowering *TLI = TM.getTargetLowering();
     60 
     61   Fn = &fn;
     62   MF = &mf;
     63   RegInfo = &MF->getRegInfo();
     64 
     65   // Check whether the function can return without sret-demotion.
     66   SmallVector<ISD::OutputArg, 4> Outs;
     67   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
     68   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
     69                                        Fn->isVarArg(),
     70                                        Outs, Fn->getContext());
     71 
     72   // Initialize the mapping of values to registers.  This is only set up for
     73   // instruction values that are used outside of the block that defines
     74   // them.
     75   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
     76   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
     77     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
     78       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
     79         Type *Ty = AI->getAllocatedType();
     80         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
     81         unsigned Align =
     82           std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
     83                    AI->getAlignment());
     84 
     85         TySize *= CUI->getZExtValue();   // Get total allocated size.
     86         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
     87 
     88         // The object may need to be placed onto the stack near the stack
     89         // protector if one exists. Determine here if this object is a suitable
     90         // candidate. I.e., it would trigger the creation of a stack protector.
     91         bool MayNeedSP =
     92           (AI->isArrayAllocation() ||
     93            (TySize >= 8 && isa<ArrayType>(Ty) &&
     94             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
     95         StaticAllocaMap[AI] =
     96           MF->getFrameInfo()->CreateStackObject(TySize, Align, false,
     97                                                 MayNeedSP, AI);
     98       }
     99 
    100   for (; BB != EB; ++BB)
    101     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    102          I != E; ++I) {
    103       // Mark values used outside their block as exported, by allocating
    104       // a virtual register for them.
    105       if (isUsedOutsideOfDefiningBlock(I))
    106         if (!isa<AllocaInst>(I) ||
    107             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    108           InitializeRegForValue(I);
    109 
    110       // Collect llvm.dbg.declare information. This is done now instead of
    111       // during the initial isel pass through the IR so that it is done
    112       // in a predictable order.
    113       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    114         MachineModuleInfo &MMI = MF->getMMI();
    115         DIVariable DIVar(DI->getVariable());
    116         assert((!DIVar || DIVar.isVariable()) &&
    117           "Variable in DbgDeclareInst should be either null or a DIVariable.");
    118         if (MMI.hasDebugInfo() &&
    119             DIVar &&
    120             !DI->getDebugLoc().isUnknown()) {
    121           // Don't handle byval struct arguments or VLAs, for example.
    122           // Non-byval arguments are handled here (they refer to the stack
    123           // temporary alloca at this point).
    124           const Value *Address = DI->getAddress();
    125           if (Address) {
    126             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    127               Address = BCI->getOperand(0);
    128             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    129               DenseMap<const AllocaInst *, int>::iterator SI =
    130                 StaticAllocaMap.find(AI);
    131               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    132                 int FI = SI->second;
    133                 MMI.setVariableDbgInfo(DI->getVariable(),
    134                                        FI, DI->getDebugLoc());
    135               }
    136             }
    137           }
    138         }
    139       }
    140     }
    141 
    142   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    143   // also creates the initial PHI MachineInstrs, though none of the input
    144   // operands are populated.
    145   for (BB = Fn->begin(); BB != EB; ++BB) {
    146     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    147     MBBMap[BB] = MBB;
    148     MF->push_back(MBB);
    149 
    150     // Transfer the address-taken flag. This is necessary because there could
    151     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    152     // the first one should be marked.
    153     if (BB->hasAddressTaken())
    154       MBB->setHasAddressTaken();
    155 
    156     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    157     // appropriate.
    158     for (BasicBlock::const_iterator I = BB->begin();
    159          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    160       if (PN->use_empty()) continue;
    161 
    162       // Skip empty types
    163       if (PN->getType()->isEmptyTy())
    164         continue;
    165 
    166       DebugLoc DL = PN->getDebugLoc();
    167       unsigned PHIReg = ValueMap[PN];
    168       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    169 
    170       SmallVector<EVT, 4> ValueVTs;
    171       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
    172       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    173         EVT VT = ValueVTs[vti];
    174         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
    175         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    176         for (unsigned i = 0; i != NumRegisters; ++i)
    177           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    178         PHIReg += NumRegisters;
    179       }
    180     }
    181   }
    182 
    183   // Mark landing pad blocks.
    184   for (BB = Fn->begin(); BB != EB; ++BB)
    185     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    186       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    187 }
    188 
    189 /// clear - Clear out all the function-specific state. This returns this
    190 /// FunctionLoweringInfo to an empty state, ready to be used for a
    191 /// different function.
    192 void FunctionLoweringInfo::clear() {
    193   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    194          "Not all catch info was assigned to a landing pad!");
    195 
    196   MBBMap.clear();
    197   ValueMap.clear();
    198   StaticAllocaMap.clear();
    199 #ifndef NDEBUG
    200   CatchInfoLost.clear();
    201   CatchInfoFound.clear();
    202 #endif
    203   LiveOutRegInfo.clear();
    204   VisitedBBs.clear();
    205   ArgDbgValues.clear();
    206   ByValArgFrameIndexMap.clear();
    207   RegFixups.clear();
    208 }
    209 
    210 /// CreateReg - Allocate a single virtual register for the given type.
    211 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    212   return RegInfo->
    213     createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT));
    214 }
    215 
    216 /// CreateRegs - Allocate the appropriate number of virtual registers of
    217 /// the correctly promoted or expanded types.  Assign these registers
    218 /// consecutive vreg numbers and return the first assigned number.
    219 ///
    220 /// In the case that the given value has struct or array type, this function
    221 /// will assign registers for each member or element.
    222 ///
    223 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    224   const TargetLowering *TLI = TM.getTargetLowering();
    225 
    226   SmallVector<EVT, 4> ValueVTs;
    227   ComputeValueVTs(*TLI, Ty, ValueVTs);
    228 
    229   unsigned FirstReg = 0;
    230   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    231     EVT ValueVT = ValueVTs[Value];
    232     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
    233 
    234     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    235     for (unsigned i = 0; i != NumRegs; ++i) {
    236       unsigned R = CreateReg(RegisterVT);
    237       if (!FirstReg) FirstReg = R;
    238     }
    239   }
    240   return FirstReg;
    241 }
    242 
    243 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    244 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    245 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    246 /// the larger bit width by zero extension. The bit width must be no smaller
    247 /// than the LiveOutInfo's existing bit width.
    248 const FunctionLoweringInfo::LiveOutInfo *
    249 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    250   if (!LiveOutRegInfo.inBounds(Reg))
    251     return NULL;
    252 
    253   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    254   if (!LOI->IsValid)
    255     return NULL;
    256 
    257   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    258     LOI->NumSignBits = 1;
    259     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    260     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    261   }
    262 
    263   return LOI;
    264 }
    265 
    266 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    267 /// register based on the LiveOutInfo of its operands.
    268 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    269   Type *Ty = PN->getType();
    270   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    271     return;
    272 
    273   const TargetLowering *TLI = TM.getTargetLowering();
    274 
    275   SmallVector<EVT, 1> ValueVTs;
    276   ComputeValueVTs(*TLI, Ty, ValueVTs);
    277   assert(ValueVTs.size() == 1 &&
    278          "PHIs with non-vector integer types should have a single VT.");
    279   EVT IntVT = ValueVTs[0];
    280 
    281   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    282     return;
    283   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
    284   unsigned BitWidth = IntVT.getSizeInBits();
    285 
    286   unsigned DestReg = ValueMap[PN];
    287   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    288     return;
    289   LiveOutRegInfo.grow(DestReg);
    290   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    291 
    292   Value *V = PN->getIncomingValue(0);
    293   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    294     DestLOI.NumSignBits = 1;
    295     APInt Zero(BitWidth, 0);
    296     DestLOI.KnownZero = Zero;
    297     DestLOI.KnownOne = Zero;
    298     return;
    299   }
    300 
    301   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    302     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    303     DestLOI.NumSignBits = Val.getNumSignBits();
    304     DestLOI.KnownZero = ~Val;
    305     DestLOI.KnownOne = Val;
    306   } else {
    307     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    308                                 "CopyToReg node was created.");
    309     unsigned SrcReg = ValueMap[V];
    310     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    311       DestLOI.IsValid = false;
    312       return;
    313     }
    314     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    315     if (!SrcLOI) {
    316       DestLOI.IsValid = false;
    317       return;
    318     }
    319     DestLOI = *SrcLOI;
    320   }
    321 
    322   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    323          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    324          "Masks should have the same bit width as the type.");
    325 
    326   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    327     Value *V = PN->getIncomingValue(i);
    328     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    329       DestLOI.NumSignBits = 1;
    330       APInt Zero(BitWidth, 0);
    331       DestLOI.KnownZero = Zero;
    332       DestLOI.KnownOne = Zero;
    333       return;
    334     }
    335 
    336     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    337       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    338       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    339       DestLOI.KnownZero &= ~Val;
    340       DestLOI.KnownOne &= Val;
    341       continue;
    342     }
    343 
    344     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    345                                 "its CopyToReg node was created.");
    346     unsigned SrcReg = ValueMap[V];
    347     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    348       DestLOI.IsValid = false;
    349       return;
    350     }
    351     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    352     if (!SrcLOI) {
    353       DestLOI.IsValid = false;
    354       return;
    355     }
    356     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    357     DestLOI.KnownZero &= SrcLOI->KnownZero;
    358     DestLOI.KnownOne &= SrcLOI->KnownOne;
    359   }
    360 }
    361 
    362 /// setArgumentFrameIndex - Record frame index for the byval
    363 /// argument. This overrides previous frame index entry for this argument,
    364 /// if any.
    365 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    366                                                  int FI) {
    367   ByValArgFrameIndexMap[A] = FI;
    368 }
    369 
    370 /// getArgumentFrameIndex - Get frame index for the byval argument.
    371 /// If the argument does not have any assigned frame index then 0 is
    372 /// returned.
    373 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    374   DenseMap<const Argument *, int>::iterator I =
    375     ByValArgFrameIndexMap.find(A);
    376   if (I != ByValArgFrameIndexMap.end())
    377     return I->second;
    378   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    379   return 0;
    380 }
    381 
    382 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    383 /// being passed to this variadic function, and set the MachineModuleInfo's
    384 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    385 /// reference to _fltused on Windows, which will link in MSVCRT's
    386 /// floating-point support.
    387 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    388                                       MachineModuleInfo *MMI)
    389 {
    390   FunctionType *FT = cast<FunctionType>(
    391     I.getCalledValue()->getType()->getContainedType(0));
    392   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    393     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    394       Type* T = I.getArgOperand(i)->getType();
    395       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
    396            i != e; ++i) {
    397         if (i->isFloatingPointTy()) {
    398           MMI->setUsesVAFloatArgument(true);
    399           return;
    400         }
    401       }
    402     }
    403   }
    404 }
    405 
    406 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
    407 /// call, and add them to the specified machine basic block.
    408 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
    409                         MachineBasicBlock *MBB) {
    410   // Inform the MachineModuleInfo of the personality for this landing pad.
    411   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
    412   assert(CE->getOpcode() == Instruction::BitCast &&
    413          isa<Function>(CE->getOperand(0)) &&
    414          "Personality should be a function");
    415   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
    416 
    417   // Gather all the type infos for this landing pad and pass them along to
    418   // MachineModuleInfo.
    419   std::vector<const GlobalVariable *> TyInfo;
    420   unsigned N = I.getNumArgOperands();
    421 
    422   for (unsigned i = N - 1; i > 1; --i) {
    423     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
    424       unsigned FilterLength = CI->getZExtValue();
    425       unsigned FirstCatch = i + FilterLength + !FilterLength;
    426       assert(FirstCatch <= N && "Invalid filter length");
    427 
    428       if (FirstCatch < N) {
    429         TyInfo.reserve(N - FirstCatch);
    430         for (unsigned j = FirstCatch; j < N; ++j)
    431           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    432         MMI->addCatchTypeInfo(MBB, TyInfo);
    433         TyInfo.clear();
    434       }
    435 
    436       if (!FilterLength) {
    437         // Cleanup.
    438         MMI->addCleanup(MBB);
    439       } else {
    440         // Filter.
    441         TyInfo.reserve(FilterLength - 1);
    442         for (unsigned j = i + 1; j < FirstCatch; ++j)
    443           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    444         MMI->addFilterTypeInfo(MBB, TyInfo);
    445         TyInfo.clear();
    446       }
    447 
    448       N = i;
    449     }
    450   }
    451 
    452   if (N > 2) {
    453     TyInfo.reserve(N - 2);
    454     for (unsigned j = 2; j < N; ++j)
    455       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    456     MMI->addCatchTypeInfo(MBB, TyInfo);
    457   }
    458 }
    459 
    460 /// AddLandingPadInfo - Extract the exception handling information from the
    461 /// landingpad instruction and add them to the specified machine module info.
    462 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    463                              MachineBasicBlock *MBB) {
    464   MMI.addPersonality(MBB,
    465                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    466 
    467   if (I.isCleanup())
    468     MMI.addCleanup(MBB);
    469 
    470   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    471   //        but we need to do it this way because of how the DWARF EH emitter
    472   //        processes the clauses.
    473   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    474     Value *Val = I.getClause(i - 1);
    475     if (I.isCatch(i - 1)) {
    476       MMI.addCatchTypeInfo(MBB,
    477                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
    478     } else {
    479       // Add filters in a list.
    480       Constant *CVal = cast<Constant>(Val);
    481       SmallVector<const GlobalVariable*, 4> FilterList;
    482       for (User::op_iterator
    483              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    484         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
    485 
    486       MMI.addFilterTypeInfo(MBB, FilterList);
    487     }
    488   }
    489 }
    490