1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating functions from LLVM IR into 11 // Machine IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "function-lowering-info" 16 #include "llvm/CodeGen/FunctionLoweringInfo.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineModuleInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/DebugInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetLowering.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by 43 /// PHI nodes or outside of the basic block that defines it, or used by a 44 /// switch or atomic instruction, which may expand to multiple basic blocks. 45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { 46 if (I->use_empty()) return false; 47 if (isa<PHINode>(I)) return true; 48 const BasicBlock *BB = I->getParent(); 49 for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); 50 UI != E; ++UI) { 51 const User *U = *UI; 52 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) 53 return true; 54 } 55 return false; 56 } 57 58 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { 59 const TargetLowering *TLI = TM.getTargetLowering(); 60 61 Fn = &fn; 62 MF = &mf; 63 RegInfo = &MF->getRegInfo(); 64 65 // Check whether the function can return without sret-demotion. 66 SmallVector<ISD::OutputArg, 4> Outs; 67 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); 68 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, 69 Fn->isVarArg(), 70 Outs, Fn->getContext()); 71 72 // Initialize the mapping of values to registers. This is only set up for 73 // instruction values that are used outside of the block that defines 74 // them. 75 Function::const_iterator BB = Fn->begin(), EB = Fn->end(); 76 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 77 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) 78 if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { 79 Type *Ty = AI->getAllocatedType(); 80 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 81 unsigned Align = 82 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 83 AI->getAlignment()); 84 85 TySize *= CUI->getZExtValue(); // Get total allocated size. 86 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. 87 88 // The object may need to be placed onto the stack near the stack 89 // protector if one exists. Determine here if this object is a suitable 90 // candidate. I.e., it would trigger the creation of a stack protector. 91 bool MayNeedSP = 92 (AI->isArrayAllocation() || 93 (TySize >= 8 && isa<ArrayType>(Ty) && 94 cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); 95 StaticAllocaMap[AI] = 96 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, 97 MayNeedSP, AI); 98 } 99 100 for (; BB != EB; ++BB) 101 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 102 I != E; ++I) { 103 // Mark values used outside their block as exported, by allocating 104 // a virtual register for them. 105 if (isUsedOutsideOfDefiningBlock(I)) 106 if (!isa<AllocaInst>(I) || 107 !StaticAllocaMap.count(cast<AllocaInst>(I))) 108 InitializeRegForValue(I); 109 110 // Collect llvm.dbg.declare information. This is done now instead of 111 // during the initial isel pass through the IR so that it is done 112 // in a predictable order. 113 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { 114 MachineModuleInfo &MMI = MF->getMMI(); 115 DIVariable DIVar(DI->getVariable()); 116 assert((!DIVar || DIVar.isVariable()) && 117 "Variable in DbgDeclareInst should be either null or a DIVariable."); 118 if (MMI.hasDebugInfo() && 119 DIVar && 120 !DI->getDebugLoc().isUnknown()) { 121 // Don't handle byval struct arguments or VLAs, for example. 122 // Non-byval arguments are handled here (they refer to the stack 123 // temporary alloca at this point). 124 const Value *Address = DI->getAddress(); 125 if (Address) { 126 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 127 Address = BCI->getOperand(0); 128 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 129 DenseMap<const AllocaInst *, int>::iterator SI = 130 StaticAllocaMap.find(AI); 131 if (SI != StaticAllocaMap.end()) { // Check for VLAs. 132 int FI = SI->second; 133 MMI.setVariableDbgInfo(DI->getVariable(), 134 FI, DI->getDebugLoc()); 135 } 136 } 137 } 138 } 139 } 140 } 141 142 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This 143 // also creates the initial PHI MachineInstrs, though none of the input 144 // operands are populated. 145 for (BB = Fn->begin(); BB != EB; ++BB) { 146 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); 147 MBBMap[BB] = MBB; 148 MF->push_back(MBB); 149 150 // Transfer the address-taken flag. This is necessary because there could 151 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only 152 // the first one should be marked. 153 if (BB->hasAddressTaken()) 154 MBB->setHasAddressTaken(); 155 156 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as 157 // appropriate. 158 for (BasicBlock::const_iterator I = BB->begin(); 159 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 160 if (PN->use_empty()) continue; 161 162 // Skip empty types 163 if (PN->getType()->isEmptyTy()) 164 continue; 165 166 DebugLoc DL = PN->getDebugLoc(); 167 unsigned PHIReg = ValueMap[PN]; 168 assert(PHIReg && "PHI node does not have an assigned virtual register!"); 169 170 SmallVector<EVT, 4> ValueVTs; 171 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 172 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 173 EVT VT = ValueVTs[vti]; 174 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); 175 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 176 for (unsigned i = 0; i != NumRegisters; ++i) 177 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); 178 PHIReg += NumRegisters; 179 } 180 } 181 } 182 183 // Mark landing pad blocks. 184 for (BB = Fn->begin(); BB != EB; ++BB) 185 if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) 186 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); 187 } 188 189 /// clear - Clear out all the function-specific state. This returns this 190 /// FunctionLoweringInfo to an empty state, ready to be used for a 191 /// different function. 192 void FunctionLoweringInfo::clear() { 193 assert(CatchInfoFound.size() == CatchInfoLost.size() && 194 "Not all catch info was assigned to a landing pad!"); 195 196 MBBMap.clear(); 197 ValueMap.clear(); 198 StaticAllocaMap.clear(); 199 #ifndef NDEBUG 200 CatchInfoLost.clear(); 201 CatchInfoFound.clear(); 202 #endif 203 LiveOutRegInfo.clear(); 204 VisitedBBs.clear(); 205 ArgDbgValues.clear(); 206 ByValArgFrameIndexMap.clear(); 207 RegFixups.clear(); 208 } 209 210 /// CreateReg - Allocate a single virtual register for the given type. 211 unsigned FunctionLoweringInfo::CreateReg(MVT VT) { 212 return RegInfo-> 213 createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT)); 214 } 215 216 /// CreateRegs - Allocate the appropriate number of virtual registers of 217 /// the correctly promoted or expanded types. Assign these registers 218 /// consecutive vreg numbers and return the first assigned number. 219 /// 220 /// In the case that the given value has struct or array type, this function 221 /// will assign registers for each member or element. 222 /// 223 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { 224 const TargetLowering *TLI = TM.getTargetLowering(); 225 226 SmallVector<EVT, 4> ValueVTs; 227 ComputeValueVTs(*TLI, Ty, ValueVTs); 228 229 unsigned FirstReg = 0; 230 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 231 EVT ValueVT = ValueVTs[Value]; 232 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); 233 234 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); 235 for (unsigned i = 0; i != NumRegs; ++i) { 236 unsigned R = CreateReg(RegisterVT); 237 if (!FirstReg) FirstReg = R; 238 } 239 } 240 return FirstReg; 241 } 242 243 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the 244 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If 245 /// the register's LiveOutInfo is for a smaller bit width, it is extended to 246 /// the larger bit width by zero extension. The bit width must be no smaller 247 /// than the LiveOutInfo's existing bit width. 248 const FunctionLoweringInfo::LiveOutInfo * 249 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { 250 if (!LiveOutRegInfo.inBounds(Reg)) 251 return NULL; 252 253 LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; 254 if (!LOI->IsValid) 255 return NULL; 256 257 if (BitWidth > LOI->KnownZero.getBitWidth()) { 258 LOI->NumSignBits = 1; 259 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); 260 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); 261 } 262 263 return LOI; 264 } 265 266 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination 267 /// register based on the LiveOutInfo of its operands. 268 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { 269 Type *Ty = PN->getType(); 270 if (!Ty->isIntegerTy() || Ty->isVectorTy()) 271 return; 272 273 const TargetLowering *TLI = TM.getTargetLowering(); 274 275 SmallVector<EVT, 1> ValueVTs; 276 ComputeValueVTs(*TLI, Ty, ValueVTs); 277 assert(ValueVTs.size() == 1 && 278 "PHIs with non-vector integer types should have a single VT."); 279 EVT IntVT = ValueVTs[0]; 280 281 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) 282 return; 283 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); 284 unsigned BitWidth = IntVT.getSizeInBits(); 285 286 unsigned DestReg = ValueMap[PN]; 287 if (!TargetRegisterInfo::isVirtualRegister(DestReg)) 288 return; 289 LiveOutRegInfo.grow(DestReg); 290 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; 291 292 Value *V = PN->getIncomingValue(0); 293 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 294 DestLOI.NumSignBits = 1; 295 APInt Zero(BitWidth, 0); 296 DestLOI.KnownZero = Zero; 297 DestLOI.KnownOne = Zero; 298 return; 299 } 300 301 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 302 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 303 DestLOI.NumSignBits = Val.getNumSignBits(); 304 DestLOI.KnownZero = ~Val; 305 DestLOI.KnownOne = Val; 306 } else { 307 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" 308 "CopyToReg node was created."); 309 unsigned SrcReg = ValueMap[V]; 310 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 311 DestLOI.IsValid = false; 312 return; 313 } 314 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 315 if (!SrcLOI) { 316 DestLOI.IsValid = false; 317 return; 318 } 319 DestLOI = *SrcLOI; 320 } 321 322 assert(DestLOI.KnownZero.getBitWidth() == BitWidth && 323 DestLOI.KnownOne.getBitWidth() == BitWidth && 324 "Masks should have the same bit width as the type."); 325 326 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 327 Value *V = PN->getIncomingValue(i); 328 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { 329 DestLOI.NumSignBits = 1; 330 APInt Zero(BitWidth, 0); 331 DestLOI.KnownZero = Zero; 332 DestLOI.KnownOne = Zero; 333 return; 334 } 335 336 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 337 APInt Val = CI->getValue().zextOrTrunc(BitWidth); 338 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); 339 DestLOI.KnownZero &= ~Val; 340 DestLOI.KnownOne &= Val; 341 continue; 342 } 343 344 assert(ValueMap.count(V) && "V should have been placed in ValueMap when " 345 "its CopyToReg node was created."); 346 unsigned SrcReg = ValueMap[V]; 347 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { 348 DestLOI.IsValid = false; 349 return; 350 } 351 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); 352 if (!SrcLOI) { 353 DestLOI.IsValid = false; 354 return; 355 } 356 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); 357 DestLOI.KnownZero &= SrcLOI->KnownZero; 358 DestLOI.KnownOne &= SrcLOI->KnownOne; 359 } 360 } 361 362 /// setArgumentFrameIndex - Record frame index for the byval 363 /// argument. This overrides previous frame index entry for this argument, 364 /// if any. 365 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, 366 int FI) { 367 ByValArgFrameIndexMap[A] = FI; 368 } 369 370 /// getArgumentFrameIndex - Get frame index for the byval argument. 371 /// If the argument does not have any assigned frame index then 0 is 372 /// returned. 373 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { 374 DenseMap<const Argument *, int>::iterator I = 375 ByValArgFrameIndexMap.find(A); 376 if (I != ByValArgFrameIndexMap.end()) 377 return I->second; 378 DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); 379 return 0; 380 } 381 382 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are 383 /// being passed to this variadic function, and set the MachineModuleInfo's 384 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined 385 /// reference to _fltused on Windows, which will link in MSVCRT's 386 /// floating-point support. 387 void llvm::ComputeUsesVAFloatArgument(const CallInst &I, 388 MachineModuleInfo *MMI) 389 { 390 FunctionType *FT = cast<FunctionType>( 391 I.getCalledValue()->getType()->getContainedType(0)); 392 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { 393 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 394 Type* T = I.getArgOperand(i)->getType(); 395 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 396 i != e; ++i) { 397 if (i->isFloatingPointTy()) { 398 MMI->setUsesVAFloatArgument(true); 399 return; 400 } 401 } 402 } 403 } 404 } 405 406 /// AddCatchInfo - Extract the personality and type infos from an eh.selector 407 /// call, and add them to the specified machine basic block. 408 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, 409 MachineBasicBlock *MBB) { 410 // Inform the MachineModuleInfo of the personality for this landing pad. 411 const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); 412 assert(CE->getOpcode() == Instruction::BitCast && 413 isa<Function>(CE->getOperand(0)) && 414 "Personality should be a function"); 415 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); 416 417 // Gather all the type infos for this landing pad and pass them along to 418 // MachineModuleInfo. 419 std::vector<const GlobalVariable *> TyInfo; 420 unsigned N = I.getNumArgOperands(); 421 422 for (unsigned i = N - 1; i > 1; --i) { 423 if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { 424 unsigned FilterLength = CI->getZExtValue(); 425 unsigned FirstCatch = i + FilterLength + !FilterLength; 426 assert(FirstCatch <= N && "Invalid filter length"); 427 428 if (FirstCatch < N) { 429 TyInfo.reserve(N - FirstCatch); 430 for (unsigned j = FirstCatch; j < N; ++j) 431 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 432 MMI->addCatchTypeInfo(MBB, TyInfo); 433 TyInfo.clear(); 434 } 435 436 if (!FilterLength) { 437 // Cleanup. 438 MMI->addCleanup(MBB); 439 } else { 440 // Filter. 441 TyInfo.reserve(FilterLength - 1); 442 for (unsigned j = i + 1; j < FirstCatch; ++j) 443 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 444 MMI->addFilterTypeInfo(MBB, TyInfo); 445 TyInfo.clear(); 446 } 447 448 N = i; 449 } 450 } 451 452 if (N > 2) { 453 TyInfo.reserve(N - 2); 454 for (unsigned j = 2; j < N; ++j) 455 TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); 456 MMI->addCatchTypeInfo(MBB, TyInfo); 457 } 458 } 459 460 /// AddLandingPadInfo - Extract the exception handling information from the 461 /// landingpad instruction and add them to the specified machine module info. 462 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, 463 MachineBasicBlock *MBB) { 464 MMI.addPersonality(MBB, 465 cast<Function>(I.getPersonalityFn()->stripPointerCasts())); 466 467 if (I.isCleanup()) 468 MMI.addCleanup(MBB); 469 470 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, 471 // but we need to do it this way because of how the DWARF EH emitter 472 // processes the clauses. 473 for (unsigned i = I.getNumClauses(); i != 0; --i) { 474 Value *Val = I.getClause(i - 1); 475 if (I.isCatch(i - 1)) { 476 MMI.addCatchTypeInfo(MBB, 477 dyn_cast<GlobalVariable>(Val->stripPointerCasts())); 478 } else { 479 // Add filters in a list. 480 Constant *CVal = cast<Constant>(Val); 481 SmallVector<const GlobalVariable*, 4> FilterList; 482 for (User::op_iterator 483 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) 484 FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); 485 486 MMI.addFilterTypeInfo(MBB, FilterList); 487 } 488 } 489 } 490