1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This webpage shows layout of YV12 and other YUV formats 6 // http://www.fourcc.org/yuv.php 7 // The actual conversion is best described here 8 // http://en.wikipedia.org/wiki/YUV 9 // An article on optimizing YUV conversion using tables instead of multiplies 10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf 11 // 12 // YV12 is a full plane of Y and a half height, half width chroma planes 13 // YV16 is a full plane of Y and a full height, half width chroma planes 14 // 15 // ARGB pixel format is output, which on little endian is stored as BGRA. 16 // The alpha is set to 255, allowing the application to use RGBA or RGB32. 17 18 #include "media/base/yuv_convert.h" 19 20 #include "base/cpu.h" 21 #include "base/logging.h" 22 #include "base/memory/scoped_ptr.h" 23 #include "build/build_config.h" 24 #include "media/base/simd/convert_rgb_to_yuv.h" 25 #include "media/base/simd/convert_yuv_to_rgb.h" 26 #include "media/base/simd/filter_yuv.h" 27 28 #if defined(ARCH_CPU_X86_FAMILY) 29 #if defined(COMPILER_MSVC) 30 #include <intrin.h> 31 #else 32 #include <mmintrin.h> 33 #endif 34 #endif 35 36 // Assembly functions are declared without namespace. 37 extern "C" { void EmptyRegisterState_MMX(); } // extern "C" 38 39 namespace media { 40 41 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int); 42 43 typedef void (*ConvertRGBToYUVProc)(const uint8*, 44 uint8*, 45 uint8*, 46 uint8*, 47 int, 48 int, 49 int, 50 int, 51 int); 52 53 typedef void (*ConvertYUVToRGB32Proc)(const uint8*, 54 const uint8*, 55 const uint8*, 56 uint8*, 57 int, 58 int, 59 int, 60 int, 61 int, 62 YUVType); 63 64 typedef void (*ConvertYUVAToARGBProc)(const uint8*, 65 const uint8*, 66 const uint8*, 67 const uint8*, 68 uint8*, 69 int, 70 int, 71 int, 72 int, 73 int, 74 int, 75 YUVType); 76 77 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*, 78 const uint8*, 79 const uint8*, 80 uint8*, 81 ptrdiff_t); 82 83 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*, 84 const uint8*, 85 const uint8*, 86 const uint8*, 87 uint8*, 88 ptrdiff_t); 89 90 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*, 91 const uint8*, 92 const uint8*, 93 uint8*, 94 ptrdiff_t, 95 ptrdiff_t); 96 97 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL; 98 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL; 99 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL; 100 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL; 101 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL; 102 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL; 103 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL; 104 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL; 105 106 // Empty SIMD registers state after using them. 107 void EmptyRegisterStateStub() {} 108 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 109 void EmptyRegisterStateIntrinsic() { _mm_empty(); } 110 #endif 111 typedef void (*EmptyRegisterStateProc)(); 112 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL; 113 114 void InitializeCPUSpecificYUVConversions() { 115 CHECK(!g_filter_yuv_rows_proc_); 116 CHECK(!g_convert_yuv_to_rgb32_row_proc_); 117 CHECK(!g_scale_yuv_to_rgb32_row_proc_); 118 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_); 119 CHECK(!g_convert_rgb32_to_yuv_proc_); 120 CHECK(!g_convert_rgb24_to_yuv_proc_); 121 CHECK(!g_convert_yuv_to_rgb32_proc_); 122 CHECK(!g_convert_yuva_to_argb_proc_); 123 CHECK(!g_empty_register_state_proc_); 124 125 g_filter_yuv_rows_proc_ = FilterYUVRows_C; 126 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C; 127 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C; 128 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C; 129 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C; 130 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C; 131 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C; 132 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C; 133 g_empty_register_state_proc_ = EmptyRegisterStateStub; 134 135 #if defined(ARCH_CPU_X86_FAMILY) 136 base::CPU cpu; 137 if (cpu.has_mmx()) { 138 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX; 139 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX; 140 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX; 141 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX; 142 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX; 143 144 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 145 g_filter_yuv_rows_proc_ = FilterYUVRows_MMX; 146 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic; 147 #else 148 g_empty_register_state_proc_ = EmptyRegisterState_MMX; 149 #endif 150 } 151 152 if (cpu.has_sse()) { 153 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE; 154 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE; 155 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE; 156 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE; 157 } 158 159 if (cpu.has_sse2()) { 160 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2; 161 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2; 162 163 #if defined(ARCH_CPU_X86_64) 164 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64; 165 166 // Technically this should be in the MMX section, but MSVC will optimize out 167 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit 168 // tests, if that decision can be made at compile time. Since all X64 CPUs 169 // have SSE2, we can hack around this by making the selection here. 170 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64; 171 #endif 172 } 173 174 if (cpu.has_ssse3()) { 175 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3; 176 177 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved. 178 // See: crbug.com/100462 179 } 180 #endif 181 } 182 183 // Empty SIMD registers state after using them. 184 void EmptyRegisterState() { g_empty_register_state_proc_(); } 185 186 // 16.16 fixed point arithmetic 187 const int kFractionBits = 16; 188 const int kFractionMax = 1 << kFractionBits; 189 const int kFractionMask = ((1 << kFractionBits) - 1); 190 191 // Scale a frame of YUV to 32 bit ARGB. 192 void ScaleYUVToRGB32(const uint8* y_buf, 193 const uint8* u_buf, 194 const uint8* v_buf, 195 uint8* rgb_buf, 196 int source_width, 197 int source_height, 198 int width, 199 int height, 200 int y_pitch, 201 int uv_pitch, 202 int rgb_pitch, 203 YUVType yuv_type, 204 Rotate view_rotate, 205 ScaleFilter filter) { 206 // Handle zero sized sources and destinations. 207 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) || 208 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) || 209 width == 0 || height == 0) 210 return; 211 212 // 4096 allows 3 buffers to fit in 12k. 213 // Helps performance on CPU with 16K L1 cache. 214 // Large enough for 3830x2160 and 30" displays which are 2560x1600. 215 const int kFilterBufferSize = 4096; 216 // Disable filtering if the screen is too big (to avoid buffer overflows). 217 // This should never happen to regular users: they don't have monitors 218 // wider than 4096 pixels. 219 // TODO(fbarchard): Allow rotated videos to filter. 220 if (source_width > kFilterBufferSize || view_rotate) 221 filter = FILTER_NONE; 222 223 unsigned int y_shift = yuv_type; 224 // Diagram showing origin and direction of source sampling. 225 // ->0 4<- 226 // 7 3 227 // 228 // 6 5 229 // ->1 2<- 230 // Rotations that start at right side of image. 231 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || 232 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { 233 y_buf += source_width - 1; 234 u_buf += source_width / 2 - 1; 235 v_buf += source_width / 2 - 1; 236 source_width = -source_width; 237 } 238 // Rotations that start at bottom of image. 239 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || 240 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { 241 y_buf += (source_height - 1) * y_pitch; 242 u_buf += ((source_height >> y_shift) - 1) * uv_pitch; 243 v_buf += ((source_height >> y_shift) - 1) * uv_pitch; 244 source_height = -source_height; 245 } 246 247 int source_dx = source_width * kFractionMax / width; 248 249 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { 250 int tmp = height; 251 height = width; 252 width = tmp; 253 tmp = source_height; 254 source_height = source_width; 255 source_width = tmp; 256 int source_dy = source_height * kFractionMax / height; 257 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits; 258 if (view_rotate == ROTATE_90) { 259 y_pitch = -1; 260 uv_pitch = -1; 261 source_height = -source_height; 262 } else { 263 y_pitch = 1; 264 uv_pitch = 1; 265 } 266 } 267 268 // Need padding because FilterRows() will write 1 to 16 extra pixels 269 // after the end for SSE2 version. 270 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; 271 uint8* ybuf = 272 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); 273 uint8* ubuf = ybuf + kFilterBufferSize; 274 uint8* vbuf = ubuf + kFilterBufferSize; 275 276 // TODO(fbarchard): Fixed point math is off by 1 on negatives. 277 278 // We take a y-coordinate in [0,1] space in the source image space, and 279 // transform to a y-coordinate in [0,1] space in the destination image space. 280 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel 281 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and 282 // 0.75. The formula is as follows (in fixed-point arithmetic): 283 // y_dst = dst_height * ((y_src + 0.5) / src_height) 284 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5)) 285 // Implement this here as an accumulator + delta, to avoid expensive math 286 // in the loop. 287 int source_y_subpixel_accum = 288 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2); 289 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height; 290 291 // TODO(fbarchard): Split this into separate function for better efficiency. 292 for (int y = 0; y < height; ++y) { 293 uint8* dest_pixel = rgb_buf + y * rgb_pitch; 294 int source_y_subpixel = source_y_subpixel_accum; 295 source_y_subpixel_accum += source_y_subpixel_delta; 296 if (source_y_subpixel < 0) 297 source_y_subpixel = 0; 298 else if (source_y_subpixel > ((source_height - 1) << kFractionBits)) 299 source_y_subpixel = (source_height - 1) << kFractionBits; 300 301 const uint8* y_ptr = NULL; 302 const uint8* u_ptr = NULL; 303 const uint8* v_ptr = NULL; 304 // Apply vertical filtering if necessary. 305 // TODO(fbarchard): Remove memcpy when not necessary. 306 if (filter & media::FILTER_BILINEAR_V) { 307 int source_y = source_y_subpixel >> kFractionBits; 308 y_ptr = y_buf + source_y * y_pitch; 309 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 310 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 311 312 // Vertical scaler uses 16.8 fixed point. 313 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; 314 if (source_y_fraction != 0) { 315 g_filter_yuv_rows_proc_( 316 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction); 317 } else { 318 memcpy(ybuf, y_ptr, source_width); 319 } 320 y_ptr = ybuf; 321 ybuf[source_width] = ybuf[source_width - 1]; 322 323 int uv_source_width = (source_width + 1) / 2; 324 int source_uv_fraction; 325 326 // For formats with half-height UV planes, each even-numbered pixel row 327 // should not interpolate, since the next row to interpolate from should 328 // be a duplicate of the current row. 329 if (y_shift && (source_y & 0x1) == 0) 330 source_uv_fraction = 0; 331 else 332 source_uv_fraction = source_y_fraction; 333 334 if (source_uv_fraction != 0) { 335 g_filter_yuv_rows_proc_( 336 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction); 337 g_filter_yuv_rows_proc_( 338 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction); 339 } else { 340 memcpy(ubuf, u_ptr, uv_source_width); 341 memcpy(vbuf, v_ptr, uv_source_width); 342 } 343 u_ptr = ubuf; 344 v_ptr = vbuf; 345 ubuf[uv_source_width] = ubuf[uv_source_width - 1]; 346 vbuf[uv_source_width] = vbuf[uv_source_width - 1]; 347 } else { 348 // Offset by 1/2 pixel for center sampling. 349 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits; 350 y_ptr = y_buf + source_y * y_pitch; 351 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 352 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 353 } 354 if (source_dx == kFractionMax) { // Not scaled 355 g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width); 356 } else { 357 if (filter & FILTER_BILINEAR_H) { 358 g_linear_scale_yuv_to_rgb32_row_proc_( 359 y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); 360 } else { 361 g_scale_yuv_to_rgb32_row_proc_( 362 y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); 363 } 364 } 365 } 366 367 g_empty_register_state_proc_(); 368 } 369 370 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle. 371 void ScaleYUVToRGB32WithRect(const uint8* y_buf, 372 const uint8* u_buf, 373 const uint8* v_buf, 374 uint8* rgb_buf, 375 int source_width, 376 int source_height, 377 int dest_width, 378 int dest_height, 379 int dest_rect_left, 380 int dest_rect_top, 381 int dest_rect_right, 382 int dest_rect_bottom, 383 int y_pitch, 384 int uv_pitch, 385 int rgb_pitch) { 386 // This routine doesn't currently support up-scaling. 387 CHECK_LE(dest_width, source_width); 388 CHECK_LE(dest_height, source_height); 389 390 // Sanity-check the destination rectangle. 391 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width); 392 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height); 393 DCHECK(dest_rect_right > dest_rect_left); 394 DCHECK(dest_rect_bottom > dest_rect_top); 395 396 // Fixed-point value of vertical and horizontal scale down factor. 397 // Values are in the format 16.16. 398 int y_step = kFractionMax * source_height / dest_height; 399 int x_step = kFractionMax * source_width / dest_width; 400 401 // Determine the coordinates of the rectangle in 16.16 coords. 402 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left. 403 // If we're down-scaling by more than a factor of two, we start with a 50% 404 // fraction to avoid degenerating to point-sampling - we should really just 405 // fix the fraction at 50% for all pixels in that case. 406 int source_left = dest_rect_left * x_step; 407 int source_right = (dest_rect_right - 1) * x_step; 408 if (x_step < kFractionMax * 2) { 409 source_left += ((x_step - kFractionMax) / 2); 410 source_right += ((x_step - kFractionMax) / 2); 411 } else { 412 source_left += kFractionMax / 2; 413 source_right += kFractionMax / 2; 414 } 415 int source_top = dest_rect_top * y_step; 416 if (y_step < kFractionMax * 2) { 417 source_top += ((y_step - kFractionMax) / 2); 418 } else { 419 source_top += kFractionMax / 2; 420 } 421 422 // Determine the parts of the Y, U and V buffers to interpolate. 423 int source_y_left = source_left >> kFractionBits; 424 int source_y_right = 425 std::min((source_right >> kFractionBits) + 2, source_width + 1); 426 427 int source_uv_left = source_y_left / 2; 428 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2, 429 (source_width + 1) / 2); 430 431 int source_y_width = source_y_right - source_y_left; 432 int source_uv_width = source_uv_right - source_uv_left; 433 434 // Determine number of pixels in each output row. 435 int dest_rect_width = dest_rect_right - dest_rect_left; 436 437 // Intermediate buffer for vertical interpolation. 438 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache, 439 // and is bigger than most users will generally need. 440 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the 441 // FilterYUVRowProcs have alignment requirements, and the SSE version can 442 // write up to 16 bytes past the end of the buffer. 443 const int kFilterBufferSize = 4096; 444 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize; 445 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16]; 446 uint8* y_temp = reinterpret_cast<uint8*>( 447 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15); 448 uint8* u_temp = y_temp + kFilterBufferSize; 449 uint8* v_temp = u_temp + kFilterBufferSize; 450 451 // Move to the top-left pixel of output. 452 rgb_buf += dest_rect_top * rgb_pitch; 453 rgb_buf += dest_rect_left * 4; 454 455 // For each destination row perform interpolation and color space 456 // conversion to produce the output. 457 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) { 458 // Round the fixed-point y position to get the current row. 459 int source_row = source_top >> kFractionBits; 460 int source_uv_row = source_row / 2; 461 DCHECK(source_row < source_height); 462 463 // Locate the first row for each plane for interpolation. 464 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left; 465 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left; 466 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left; 467 const uint8* y1_ptr = NULL; 468 const uint8* u1_ptr = NULL; 469 const uint8* v1_ptr = NULL; 470 471 // Locate the second row for interpolation, being careful not to overrun. 472 if (source_row + 1 >= source_height) { 473 y1_ptr = y0_ptr; 474 } else { 475 y1_ptr = y0_ptr + y_pitch; 476 } 477 if (source_uv_row + 1 >= (source_height + 1) / 2) { 478 u1_ptr = u0_ptr; 479 v1_ptr = v0_ptr; 480 } else { 481 u1_ptr = u0_ptr + uv_pitch; 482 v1_ptr = v0_ptr + uv_pitch; 483 } 484 485 if (!kAvoidUsingOptimizedFilter) { 486 // Vertical scaler uses 16.8 fixed point. 487 int fraction = (source_top & kFractionMask) >> 8; 488 g_filter_yuv_rows_proc_( 489 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction); 490 g_filter_yuv_rows_proc_( 491 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction); 492 g_filter_yuv_rows_proc_( 493 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction); 494 495 // Perform horizontal interpolation and color space conversion. 496 // TODO(hclam): Use the MMX version after more testing. 497 LinearScaleYUVToRGB32RowWithRange_C(y_temp, 498 u_temp, 499 v_temp, 500 rgb_buf, 501 dest_rect_width, 502 source_left, 503 x_step); 504 } else { 505 // If the frame is too large then we linear scale a single row. 506 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, 507 u0_ptr, 508 v0_ptr, 509 rgb_buf, 510 dest_rect_width, 511 source_left, 512 x_step); 513 } 514 515 // Advance vertically in the source and destination image. 516 source_top += y_step; 517 rgb_buf += rgb_pitch; 518 } 519 520 g_empty_register_state_proc_(); 521 } 522 523 void ConvertRGB32ToYUV(const uint8* rgbframe, 524 uint8* yplane, 525 uint8* uplane, 526 uint8* vplane, 527 int width, 528 int height, 529 int rgbstride, 530 int ystride, 531 int uvstride) { 532 g_convert_rgb32_to_yuv_proc_(rgbframe, 533 yplane, 534 uplane, 535 vplane, 536 width, 537 height, 538 rgbstride, 539 ystride, 540 uvstride); 541 } 542 543 void ConvertRGB24ToYUV(const uint8* rgbframe, 544 uint8* yplane, 545 uint8* uplane, 546 uint8* vplane, 547 int width, 548 int height, 549 int rgbstride, 550 int ystride, 551 int uvstride) { 552 g_convert_rgb24_to_yuv_proc_(rgbframe, 553 yplane, 554 uplane, 555 vplane, 556 width, 557 height, 558 rgbstride, 559 ystride, 560 uvstride); 561 } 562 563 void ConvertYUY2ToYUV(const uint8* src, 564 uint8* yplane, 565 uint8* uplane, 566 uint8* vplane, 567 int width, 568 int height) { 569 for (int i = 0; i < height / 2; ++i) { 570 for (int j = 0; j < (width / 2); ++j) { 571 yplane[0] = src[0]; 572 *uplane = src[1]; 573 yplane[1] = src[2]; 574 *vplane = src[3]; 575 src += 4; 576 yplane += 2; 577 uplane++; 578 vplane++; 579 } 580 for (int j = 0; j < (width / 2); ++j) { 581 yplane[0] = src[0]; 582 yplane[1] = src[2]; 583 src += 4; 584 yplane += 2; 585 } 586 } 587 } 588 589 void ConvertNV21ToYUV(const uint8* src, 590 uint8* yplane, 591 uint8* uplane, 592 uint8* vplane, 593 int width, 594 int height) { 595 int y_plane_size = width * height; 596 memcpy(yplane, src, y_plane_size); 597 598 src += y_plane_size; 599 int u_plane_size = y_plane_size >> 2; 600 for (int i = 0; i < u_plane_size; ++i) { 601 *vplane++ = *src++; 602 *uplane++ = *src++; 603 } 604 } 605 606 void ConvertYUVToRGB32(const uint8* yplane, 607 const uint8* uplane, 608 const uint8* vplane, 609 uint8* rgbframe, 610 int width, 611 int height, 612 int ystride, 613 int uvstride, 614 int rgbstride, 615 YUVType yuv_type) { 616 g_convert_yuv_to_rgb32_proc_(yplane, 617 uplane, 618 vplane, 619 rgbframe, 620 width, 621 height, 622 ystride, 623 uvstride, 624 rgbstride, 625 yuv_type); 626 } 627 628 void ConvertYUVAToARGB(const uint8* yplane, 629 const uint8* uplane, 630 const uint8* vplane, 631 const uint8* aplane, 632 uint8* rgbframe, 633 int width, 634 int height, 635 int ystride, 636 int uvstride, 637 int astride, 638 int rgbstride, 639 YUVType yuv_type) { 640 g_convert_yuva_to_argb_proc_(yplane, 641 uplane, 642 vplane, 643 aplane, 644 rgbframe, 645 width, 646 height, 647 ystride, 648 uvstride, 649 astride, 650 rgbstride, 651 yuv_type); 652 } 653 654 } // namespace media 655