1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "globalopt" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CallSite.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GetElementPtrTypeIterator.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include "llvm/Transforms/Utils/ModuleUtils.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 STATISTIC(NumMarked , "Number of globals marked constant"); 46 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 47 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 48 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 49 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 50 STATISTIC(NumDeleted , "Number of globals deleted"); 51 STATISTIC(NumFnDeleted , "Number of functions deleted"); 52 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 53 STATISTIC(NumLocalized , "Number of globals localized"); 54 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 55 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 56 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 57 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 58 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 59 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 60 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 61 62 namespace { 63 struct GlobalStatus; 64 struct GlobalOpt : public ModulePass { 65 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 66 AU.addRequired<TargetLibraryInfo>(); 67 } 68 static char ID; // Pass identification, replacement for typeid 69 GlobalOpt() : ModulePass(ID) { 70 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 71 } 72 73 bool runOnModule(Module &M); 74 75 private: 76 GlobalVariable *FindGlobalCtors(Module &M); 77 bool OptimizeFunctions(Module &M); 78 bool OptimizeGlobalVars(Module &M); 79 bool OptimizeGlobalAliases(Module &M); 80 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 81 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 82 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 83 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 84 const GlobalStatus &GS); 85 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 86 87 DataLayout *TD; 88 TargetLibraryInfo *TLI; 89 }; 90 } 91 92 char GlobalOpt::ID = 0; 93 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 94 "Global Variable Optimizer", false, false) 95 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 96 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 97 "Global Variable Optimizer", false, false) 98 99 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 100 101 namespace { 102 103 /// GlobalStatus - As we analyze each global, keep track of some information 104 /// about it. If we find out that the address of the global is taken, none of 105 /// this info will be accurate. 106 struct GlobalStatus { 107 /// isCompared - True if the global's address is used in a comparison. 108 bool isCompared; 109 110 /// isLoaded - True if the global is ever loaded. If the global isn't ever 111 /// loaded it can be deleted. 112 bool isLoaded; 113 114 /// StoredType - Keep track of what stores to the global look like. 115 /// 116 enum StoredType { 117 /// NotStored - There is no store to this global. It can thus be marked 118 /// constant. 119 NotStored, 120 121 /// isInitializerStored - This global is stored to, but the only thing 122 /// stored is the constant it was initialized with. This is only tracked 123 /// for scalar globals. 124 isInitializerStored, 125 126 /// isStoredOnce - This global is stored to, but only its initializer and 127 /// one other value is ever stored to it. If this global isStoredOnce, we 128 /// track the value stored to it in StoredOnceValue below. This is only 129 /// tracked for scalar globals. 130 isStoredOnce, 131 132 /// isStored - This global is stored to by multiple values or something else 133 /// that we cannot track. 134 isStored 135 } StoredType; 136 137 /// StoredOnceValue - If only one value (besides the initializer constant) is 138 /// ever stored to this global, keep track of what value it is. 139 Value *StoredOnceValue; 140 141 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 142 /// null/false. When the first accessing function is noticed, it is recorded. 143 /// When a second different accessing function is noticed, 144 /// HasMultipleAccessingFunctions is set to true. 145 const Function *AccessingFunction; 146 bool HasMultipleAccessingFunctions; 147 148 /// HasNonInstructionUser - Set to true if this global has a user that is not 149 /// an instruction (e.g. a constant expr or GV initializer). 150 bool HasNonInstructionUser; 151 152 /// AtomicOrdering - Set to the strongest atomic ordering requirement. 153 AtomicOrdering Ordering; 154 155 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored), 156 StoredOnceValue(0), AccessingFunction(0), 157 HasMultipleAccessingFunctions(false), 158 HasNonInstructionUser(false), Ordering(NotAtomic) {} 159 }; 160 161 } 162 163 /// StrongerOrdering - Return the stronger of the two ordering. If the two 164 /// orderings are acquire and release, then return AcquireRelease. 165 /// 166 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) { 167 if (X == Acquire && Y == Release) return AcquireRelease; 168 if (Y == Acquire && X == Release) return AcquireRelease; 169 return (AtomicOrdering)std::max(X, Y); 170 } 171 172 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 173 /// by constants itself. Note that constants cannot be cyclic, so this test is 174 /// pretty easy to implement recursively. 175 /// 176 static bool SafeToDestroyConstant(const Constant *C) { 177 if (isa<GlobalValue>(C)) return false; 178 179 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; 180 ++UI) 181 if (const Constant *CU = dyn_cast<Constant>(*UI)) { 182 if (!SafeToDestroyConstant(CU)) return false; 183 } else 184 return false; 185 return true; 186 } 187 188 189 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 190 /// structure. If the global has its address taken, return true to indicate we 191 /// can't do anything with it. 192 /// 193 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS, 194 SmallPtrSet<const PHINode*, 16> &PHIUsers) { 195 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 196 ++UI) { 197 const User *U = *UI; 198 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 199 GS.HasNonInstructionUser = true; 200 201 // If the result of the constantexpr isn't pointer type, then we won't 202 // know to expect it in various places. Just reject early. 203 if (!isa<PointerType>(CE->getType())) return true; 204 205 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 206 } else if (const Instruction *I = dyn_cast<Instruction>(U)) { 207 if (!GS.HasMultipleAccessingFunctions) { 208 const Function *F = I->getParent()->getParent(); 209 if (GS.AccessingFunction == 0) 210 GS.AccessingFunction = F; 211 else if (GS.AccessingFunction != F) 212 GS.HasMultipleAccessingFunctions = true; 213 } 214 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 215 GS.isLoaded = true; 216 // Don't hack on volatile loads. 217 if (LI->isVolatile()) return true; 218 GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering()); 219 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 220 // Don't allow a store OF the address, only stores TO the address. 221 if (SI->getOperand(0) == V) return true; 222 223 // Don't hack on volatile stores. 224 if (SI->isVolatile()) return true; 225 226 GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering()); 227 228 // If this is a direct store to the global (i.e., the global is a scalar 229 // value, not an aggregate), keep more specific information about 230 // stores. 231 if (GS.StoredType != GlobalStatus::isStored) { 232 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( 233 SI->getOperand(1))) { 234 Value *StoredVal = SI->getOperand(0); 235 236 if (Constant *C = dyn_cast<Constant>(StoredVal)) { 237 if (C->isThreadDependent()) { 238 // The stored value changes between threads; don't track it. 239 return true; 240 } 241 } 242 243 if (StoredVal == GV->getInitializer()) { 244 if (GS.StoredType < GlobalStatus::isInitializerStored) 245 GS.StoredType = GlobalStatus::isInitializerStored; 246 } else if (isa<LoadInst>(StoredVal) && 247 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 248 if (GS.StoredType < GlobalStatus::isInitializerStored) 249 GS.StoredType = GlobalStatus::isInitializerStored; 250 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 251 GS.StoredType = GlobalStatus::isStoredOnce; 252 GS.StoredOnceValue = StoredVal; 253 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 254 GS.StoredOnceValue == StoredVal) { 255 // noop. 256 } else { 257 GS.StoredType = GlobalStatus::isStored; 258 } 259 } else { 260 GS.StoredType = GlobalStatus::isStored; 261 } 262 } 263 } else if (isa<BitCastInst>(I)) { 264 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 265 } else if (isa<GetElementPtrInst>(I)) { 266 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 267 } else if (isa<SelectInst>(I)) { 268 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 269 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) { 270 // PHI nodes we can check just like select or GEP instructions, but we 271 // have to be careful about infinite recursion. 272 if (PHIUsers.insert(PN)) // Not already visited. 273 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 274 } else if (isa<CmpInst>(I)) { 275 GS.isCompared = true; 276 } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 277 if (MTI->isVolatile()) return true; 278 if (MTI->getArgOperand(0) == V) 279 GS.StoredType = GlobalStatus::isStored; 280 if (MTI->getArgOperand(1) == V) 281 GS.isLoaded = true; 282 } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) { 283 assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!"); 284 if (MSI->isVolatile()) return true; 285 GS.StoredType = GlobalStatus::isStored; 286 } else { 287 return true; // Any other non-load instruction might take address! 288 } 289 } else if (const Constant *C = dyn_cast<Constant>(U)) { 290 GS.HasNonInstructionUser = true; 291 // We might have a dead and dangling constant hanging off of here. 292 if (!SafeToDestroyConstant(C)) 293 return true; 294 } else { 295 GS.HasNonInstructionUser = true; 296 // Otherwise must be some other user. 297 return true; 298 } 299 } 300 301 return false; 302 } 303 304 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 305 /// as a root? If so, we might not really want to eliminate the stores to it. 306 static bool isLeakCheckerRoot(GlobalVariable *GV) { 307 // A global variable is a root if it is a pointer, or could plausibly contain 308 // a pointer. There are two challenges; one is that we could have a struct 309 // the has an inner member which is a pointer. We recurse through the type to 310 // detect these (up to a point). The other is that we may actually be a union 311 // of a pointer and another type, and so our LLVM type is an integer which 312 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 313 // potentially contained here. 314 315 if (GV->hasPrivateLinkage()) 316 return false; 317 318 SmallVector<Type *, 4> Types; 319 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 320 321 unsigned Limit = 20; 322 do { 323 Type *Ty = Types.pop_back_val(); 324 switch (Ty->getTypeID()) { 325 default: break; 326 case Type::PointerTyID: return true; 327 case Type::ArrayTyID: 328 case Type::VectorTyID: { 329 SequentialType *STy = cast<SequentialType>(Ty); 330 Types.push_back(STy->getElementType()); 331 break; 332 } 333 case Type::StructTyID: { 334 StructType *STy = cast<StructType>(Ty); 335 if (STy->isOpaque()) return true; 336 for (StructType::element_iterator I = STy->element_begin(), 337 E = STy->element_end(); I != E; ++I) { 338 Type *InnerTy = *I; 339 if (isa<PointerType>(InnerTy)) return true; 340 if (isa<CompositeType>(InnerTy)) 341 Types.push_back(InnerTy); 342 } 343 break; 344 } 345 } 346 if (--Limit == 0) return true; 347 } while (!Types.empty()); 348 return false; 349 } 350 351 /// Given a value that is stored to a global but never read, determine whether 352 /// it's safe to remove the store and the chain of computation that feeds the 353 /// store. 354 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 355 do { 356 if (isa<Constant>(V)) 357 return true; 358 if (!V->hasOneUse()) 359 return false; 360 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 361 isa<GlobalValue>(V)) 362 return false; 363 if (isAllocationFn(V, TLI)) 364 return true; 365 366 Instruction *I = cast<Instruction>(V); 367 if (I->mayHaveSideEffects()) 368 return false; 369 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 370 if (!GEP->hasAllConstantIndices()) 371 return false; 372 } else if (I->getNumOperands() != 1) { 373 return false; 374 } 375 376 V = I->getOperand(0); 377 } while (1); 378 } 379 380 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 381 /// of the global and clean up any that obviously don't assign the global a 382 /// value that isn't dynamically allocated. 383 /// 384 static bool CleanupPointerRootUsers(GlobalVariable *GV, 385 const TargetLibraryInfo *TLI) { 386 // A brief explanation of leak checkers. The goal is to find bugs where 387 // pointers are forgotten, causing an accumulating growth in memory 388 // usage over time. The common strategy for leak checkers is to whitelist the 389 // memory pointed to by globals at exit. This is popular because it also 390 // solves another problem where the main thread of a C++ program may shut down 391 // before other threads that are still expecting to use those globals. To 392 // handle that case, we expect the program may create a singleton and never 393 // destroy it. 394 395 bool Changed = false; 396 397 // If Dead[n].first is the only use of a malloc result, we can delete its 398 // chain of computation and the store to the global in Dead[n].second. 399 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 400 401 // Constants can't be pointers to dynamically allocated memory. 402 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 403 UI != E;) { 404 User *U = *UI++; 405 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 406 Value *V = SI->getValueOperand(); 407 if (isa<Constant>(V)) { 408 Changed = true; 409 SI->eraseFromParent(); 410 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 411 if (I->hasOneUse()) 412 Dead.push_back(std::make_pair(I, SI)); 413 } 414 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 415 if (isa<Constant>(MSI->getValue())) { 416 Changed = true; 417 MSI->eraseFromParent(); 418 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 419 if (I->hasOneUse()) 420 Dead.push_back(std::make_pair(I, MSI)); 421 } 422 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 423 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 424 if (MemSrc && MemSrc->isConstant()) { 425 Changed = true; 426 MTI->eraseFromParent(); 427 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 428 if (I->hasOneUse()) 429 Dead.push_back(std::make_pair(I, MTI)); 430 } 431 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 432 if (CE->use_empty()) { 433 CE->destroyConstant(); 434 Changed = true; 435 } 436 } else if (Constant *C = dyn_cast<Constant>(U)) { 437 if (SafeToDestroyConstant(C)) { 438 C->destroyConstant(); 439 // This could have invalidated UI, start over from scratch. 440 Dead.clear(); 441 CleanupPointerRootUsers(GV, TLI); 442 return true; 443 } 444 } 445 } 446 447 for (int i = 0, e = Dead.size(); i != e; ++i) { 448 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 449 Dead[i].second->eraseFromParent(); 450 Instruction *I = Dead[i].first; 451 do { 452 if (isAllocationFn(I, TLI)) 453 break; 454 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 455 if (!J) 456 break; 457 I->eraseFromParent(); 458 I = J; 459 } while (1); 460 I->eraseFromParent(); 461 } 462 } 463 464 return Changed; 465 } 466 467 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 468 /// users of the global, cleaning up the obvious ones. This is largely just a 469 /// quick scan over the use list to clean up the easy and obvious cruft. This 470 /// returns true if it made a change. 471 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 472 DataLayout *TD, TargetLibraryInfo *TLI) { 473 bool Changed = false; 474 SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end()); 475 while (!WorkList.empty()) { 476 User *U = WorkList.pop_back_val(); 477 478 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 479 if (Init) { 480 // Replace the load with the initializer. 481 LI->replaceAllUsesWith(Init); 482 LI->eraseFromParent(); 483 Changed = true; 484 } 485 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 486 // Store must be unreachable or storing Init into the global. 487 SI->eraseFromParent(); 488 Changed = true; 489 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 490 if (CE->getOpcode() == Instruction::GetElementPtr) { 491 Constant *SubInit = 0; 492 if (Init) 493 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 494 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI); 495 } else if (CE->getOpcode() == Instruction::BitCast && 496 CE->getType()->isPointerTy()) { 497 // Pointer cast, delete any stores and memsets to the global. 498 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI); 499 } 500 501 if (CE->use_empty()) { 502 CE->destroyConstant(); 503 Changed = true; 504 } 505 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 506 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 507 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 508 // and will invalidate our notion of what Init is. 509 Constant *SubInit = 0; 510 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 511 ConstantExpr *CE = 512 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI)); 513 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 514 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 515 516 // If the initializer is an all-null value and we have an inbounds GEP, 517 // we already know what the result of any load from that GEP is. 518 // TODO: Handle splats. 519 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 520 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 521 } 522 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI); 523 524 if (GEP->use_empty()) { 525 GEP->eraseFromParent(); 526 Changed = true; 527 } 528 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 529 if (MI->getRawDest() == V) { 530 MI->eraseFromParent(); 531 Changed = true; 532 } 533 534 } else if (Constant *C = dyn_cast<Constant>(U)) { 535 // If we have a chain of dead constantexprs or other things dangling from 536 // us, and if they are all dead, nuke them without remorse. 537 if (SafeToDestroyConstant(C)) { 538 C->destroyConstant(); 539 CleanupConstantGlobalUsers(V, Init, TD, TLI); 540 return true; 541 } 542 } 543 } 544 return Changed; 545 } 546 547 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 548 /// user of a derived expression from a global that we want to SROA. 549 static bool isSafeSROAElementUse(Value *V) { 550 // We might have a dead and dangling constant hanging off of here. 551 if (Constant *C = dyn_cast<Constant>(V)) 552 return SafeToDestroyConstant(C); 553 554 Instruction *I = dyn_cast<Instruction>(V); 555 if (!I) return false; 556 557 // Loads are ok. 558 if (isa<LoadInst>(I)) return true; 559 560 // Stores *to* the pointer are ok. 561 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 562 return SI->getOperand(0) != V; 563 564 // Otherwise, it must be a GEP. 565 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 566 if (GEPI == 0) return false; 567 568 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 569 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 570 return false; 571 572 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 573 I != E; ++I) 574 if (!isSafeSROAElementUse(*I)) 575 return false; 576 return true; 577 } 578 579 580 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 581 /// Look at it and its uses and decide whether it is safe to SROA this global. 582 /// 583 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 584 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 585 if (!isa<GetElementPtrInst>(U) && 586 (!isa<ConstantExpr>(U) || 587 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 588 return false; 589 590 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 591 // don't like < 3 operand CE's, and we don't like non-constant integer 592 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 593 // value of C. 594 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 595 !cast<Constant>(U->getOperand(1))->isNullValue() || 596 !isa<ConstantInt>(U->getOperand(2))) 597 return false; 598 599 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 600 ++GEPI; // Skip over the pointer index. 601 602 // If this is a use of an array allocation, do a bit more checking for sanity. 603 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 604 uint64_t NumElements = AT->getNumElements(); 605 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 606 607 // Check to make sure that index falls within the array. If not, 608 // something funny is going on, so we won't do the optimization. 609 // 610 if (Idx->getZExtValue() >= NumElements) 611 return false; 612 613 // We cannot scalar repl this level of the array unless any array 614 // sub-indices are in-range constants. In particular, consider: 615 // A[0][i]. We cannot know that the user isn't doing invalid things like 616 // allowing i to index an out-of-range subscript that accesses A[1]. 617 // 618 // Scalar replacing *just* the outer index of the array is probably not 619 // going to be a win anyway, so just give up. 620 for (++GEPI; // Skip array index. 621 GEPI != E; 622 ++GEPI) { 623 uint64_t NumElements; 624 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 625 NumElements = SubArrayTy->getNumElements(); 626 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 627 NumElements = SubVectorTy->getNumElements(); 628 else { 629 assert((*GEPI)->isStructTy() && 630 "Indexed GEP type is not array, vector, or struct!"); 631 continue; 632 } 633 634 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 635 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 636 return false; 637 } 638 } 639 640 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 641 if (!isSafeSROAElementUse(*I)) 642 return false; 643 return true; 644 } 645 646 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 647 /// is safe for us to perform this transformation. 648 /// 649 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 650 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 651 UI != E; ++UI) { 652 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 653 return false; 654 } 655 return true; 656 } 657 658 659 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 660 /// variable. This opens the door for other optimizations by exposing the 661 /// behavior of the program in a more fine-grained way. We have determined that 662 /// this transformation is safe already. We return the first global variable we 663 /// insert so that the caller can reprocess it. 664 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) { 665 // Make sure this global only has simple uses that we can SRA. 666 if (!GlobalUsersSafeToSRA(GV)) 667 return 0; 668 669 assert(GV->hasLocalLinkage() && !GV->isConstant()); 670 Constant *Init = GV->getInitializer(); 671 Type *Ty = Init->getType(); 672 673 std::vector<GlobalVariable*> NewGlobals; 674 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 675 676 // Get the alignment of the global, either explicit or target-specific. 677 unsigned StartAlignment = GV->getAlignment(); 678 if (StartAlignment == 0) 679 StartAlignment = TD.getABITypeAlignment(GV->getType()); 680 681 if (StructType *STy = dyn_cast<StructType>(Ty)) { 682 NewGlobals.reserve(STy->getNumElements()); 683 const StructLayout &Layout = *TD.getStructLayout(STy); 684 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 685 Constant *In = Init->getAggregateElement(i); 686 assert(In && "Couldn't get element of initializer?"); 687 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 688 GlobalVariable::InternalLinkage, 689 In, GV->getName()+"."+Twine(i), 690 GV->getThreadLocalMode(), 691 GV->getType()->getAddressSpace()); 692 Globals.insert(GV, NGV); 693 NewGlobals.push_back(NGV); 694 695 // Calculate the known alignment of the field. If the original aggregate 696 // had 256 byte alignment for example, something might depend on that: 697 // propagate info to each field. 698 uint64_t FieldOffset = Layout.getElementOffset(i); 699 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 700 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 701 NGV->setAlignment(NewAlign); 702 } 703 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 704 unsigned NumElements = 0; 705 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 706 NumElements = ATy->getNumElements(); 707 else 708 NumElements = cast<VectorType>(STy)->getNumElements(); 709 710 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 711 return 0; // It's not worth it. 712 NewGlobals.reserve(NumElements); 713 714 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 715 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 716 for (unsigned i = 0, e = NumElements; i != e; ++i) { 717 Constant *In = Init->getAggregateElement(i); 718 assert(In && "Couldn't get element of initializer?"); 719 720 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 721 GlobalVariable::InternalLinkage, 722 In, GV->getName()+"."+Twine(i), 723 GV->getThreadLocalMode(), 724 GV->getType()->getAddressSpace()); 725 Globals.insert(GV, NGV); 726 NewGlobals.push_back(NGV); 727 728 // Calculate the known alignment of the field. If the original aggregate 729 // had 256 byte alignment for example, something might depend on that: 730 // propagate info to each field. 731 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 732 if (NewAlign > EltAlign) 733 NGV->setAlignment(NewAlign); 734 } 735 } 736 737 if (NewGlobals.empty()) 738 return 0; 739 740 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 741 742 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 743 744 // Loop over all of the uses of the global, replacing the constantexpr geps, 745 // with smaller constantexpr geps or direct references. 746 while (!GV->use_empty()) { 747 User *GEP = GV->use_back(); 748 assert(((isa<ConstantExpr>(GEP) && 749 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 750 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 751 752 // Ignore the 1th operand, which has to be zero or else the program is quite 753 // broken (undefined). Get the 2nd operand, which is the structure or array 754 // index. 755 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 756 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 757 758 Value *NewPtr = NewGlobals[Val]; 759 760 // Form a shorter GEP if needed. 761 if (GEP->getNumOperands() > 3) { 762 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 763 SmallVector<Constant*, 8> Idxs; 764 Idxs.push_back(NullInt); 765 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 766 Idxs.push_back(CE->getOperand(i)); 767 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs); 768 } else { 769 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 770 SmallVector<Value*, 8> Idxs; 771 Idxs.push_back(NullInt); 772 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 773 Idxs.push_back(GEPI->getOperand(i)); 774 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs, 775 GEPI->getName()+"."+Twine(Val),GEPI); 776 } 777 } 778 GEP->replaceAllUsesWith(NewPtr); 779 780 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 781 GEPI->eraseFromParent(); 782 else 783 cast<ConstantExpr>(GEP)->destroyConstant(); 784 } 785 786 // Delete the old global, now that it is dead. 787 Globals.erase(GV); 788 ++NumSRA; 789 790 // Loop over the new globals array deleting any globals that are obviously 791 // dead. This can arise due to scalarization of a structure or an array that 792 // has elements that are dead. 793 unsigned FirstGlobal = 0; 794 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 795 if (NewGlobals[i]->use_empty()) { 796 Globals.erase(NewGlobals[i]); 797 if (FirstGlobal == i) ++FirstGlobal; 798 } 799 800 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 801 } 802 803 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 804 /// value will trap if the value is dynamically null. PHIs keeps track of any 805 /// phi nodes we've seen to avoid reprocessing them. 806 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 807 SmallPtrSet<const PHINode*, 8> &PHIs) { 808 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 809 ++UI) { 810 const User *U = *UI; 811 812 if (isa<LoadInst>(U)) { 813 // Will trap. 814 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 815 if (SI->getOperand(0) == V) { 816 //cerr << "NONTRAPPING USE: " << *U; 817 return false; // Storing the value. 818 } 819 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 820 if (CI->getCalledValue() != V) { 821 //cerr << "NONTRAPPING USE: " << *U; 822 return false; // Not calling the ptr 823 } 824 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 825 if (II->getCalledValue() != V) { 826 //cerr << "NONTRAPPING USE: " << *U; 827 return false; // Not calling the ptr 828 } 829 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 830 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 831 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 832 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 833 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 834 // If we've already seen this phi node, ignore it, it has already been 835 // checked. 836 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 837 return false; 838 } else if (isa<ICmpInst>(U) && 839 isa<ConstantPointerNull>(UI->getOperand(1))) { 840 // Ignore icmp X, null 841 } else { 842 //cerr << "NONTRAPPING USE: " << *U; 843 return false; 844 } 845 } 846 return true; 847 } 848 849 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 850 /// from GV will trap if the loaded value is null. Note that this also permits 851 /// comparisons of the loaded value against null, as a special case. 852 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 853 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 854 UI != E; ++UI) { 855 const User *U = *UI; 856 857 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 858 SmallPtrSet<const PHINode*, 8> PHIs; 859 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 860 return false; 861 } else if (isa<StoreInst>(U)) { 862 // Ignore stores to the global. 863 } else { 864 // We don't know or understand this user, bail out. 865 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 866 return false; 867 } 868 } 869 return true; 870 } 871 872 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 873 bool Changed = false; 874 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 875 Instruction *I = cast<Instruction>(*UI++); 876 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 877 LI->setOperand(0, NewV); 878 Changed = true; 879 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 880 if (SI->getOperand(1) == V) { 881 SI->setOperand(1, NewV); 882 Changed = true; 883 } 884 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 885 CallSite CS(I); 886 if (CS.getCalledValue() == V) { 887 // Calling through the pointer! Turn into a direct call, but be careful 888 // that the pointer is not also being passed as an argument. 889 CS.setCalledFunction(NewV); 890 Changed = true; 891 bool PassedAsArg = false; 892 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 893 if (CS.getArgument(i) == V) { 894 PassedAsArg = true; 895 CS.setArgument(i, NewV); 896 } 897 898 if (PassedAsArg) { 899 // Being passed as an argument also. Be careful to not invalidate UI! 900 UI = V->use_begin(); 901 } 902 } 903 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 904 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 905 ConstantExpr::getCast(CI->getOpcode(), 906 NewV, CI->getType())); 907 if (CI->use_empty()) { 908 Changed = true; 909 CI->eraseFromParent(); 910 } 911 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 912 // Should handle GEP here. 913 SmallVector<Constant*, 8> Idxs; 914 Idxs.reserve(GEPI->getNumOperands()-1); 915 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 916 i != e; ++i) 917 if (Constant *C = dyn_cast<Constant>(*i)) 918 Idxs.push_back(C); 919 else 920 break; 921 if (Idxs.size() == GEPI->getNumOperands()-1) 922 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 923 ConstantExpr::getGetElementPtr(NewV, Idxs)); 924 if (GEPI->use_empty()) { 925 Changed = true; 926 GEPI->eraseFromParent(); 927 } 928 } 929 } 930 931 return Changed; 932 } 933 934 935 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 936 /// value stored into it. If there are uses of the loaded value that would trap 937 /// if the loaded value is dynamically null, then we know that they cannot be 938 /// reachable with a null optimize away the load. 939 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 940 DataLayout *TD, 941 TargetLibraryInfo *TLI) { 942 bool Changed = false; 943 944 // Keep track of whether we are able to remove all the uses of the global 945 // other than the store that defines it. 946 bool AllNonStoreUsesGone = true; 947 948 // Replace all uses of loads with uses of uses of the stored value. 949 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 950 User *GlobalUser = *GUI++; 951 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 952 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 953 // If we were able to delete all uses of the loads 954 if (LI->use_empty()) { 955 LI->eraseFromParent(); 956 Changed = true; 957 } else { 958 AllNonStoreUsesGone = false; 959 } 960 } else if (isa<StoreInst>(GlobalUser)) { 961 // Ignore the store that stores "LV" to the global. 962 assert(GlobalUser->getOperand(1) == GV && 963 "Must be storing *to* the global"); 964 } else { 965 AllNonStoreUsesGone = false; 966 967 // If we get here we could have other crazy uses that are transitively 968 // loaded. 969 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 970 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 971 isa<BitCastInst>(GlobalUser) || 972 isa<GetElementPtrInst>(GlobalUser)) && 973 "Only expect load and stores!"); 974 } 975 } 976 977 if (Changed) { 978 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 979 ++NumGlobUses; 980 } 981 982 // If we nuked all of the loads, then none of the stores are needed either, 983 // nor is the global. 984 if (AllNonStoreUsesGone) { 985 if (isLeakCheckerRoot(GV)) { 986 Changed |= CleanupPointerRootUsers(GV, TLI); 987 } else { 988 Changed = true; 989 CleanupConstantGlobalUsers(GV, 0, TD, TLI); 990 } 991 if (GV->use_empty()) { 992 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 993 Changed = true; 994 GV->eraseFromParent(); 995 ++NumDeleted; 996 } 997 } 998 return Changed; 999 } 1000 1001 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 1002 /// instructions that are foldable. 1003 static void ConstantPropUsersOf(Value *V, 1004 DataLayout *TD, TargetLibraryInfo *TLI) { 1005 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 1006 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 1007 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) { 1008 I->replaceAllUsesWith(NewC); 1009 1010 // Advance UI to the next non-I use to avoid invalidating it! 1011 // Instructions could multiply use V. 1012 while (UI != E && *UI == I) 1013 ++UI; 1014 I->eraseFromParent(); 1015 } 1016 } 1017 1018 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 1019 /// variable, and transforms the program as if it always contained the result of 1020 /// the specified malloc. Because it is always the result of the specified 1021 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 1022 /// malloc into a global, and any loads of GV as uses of the new global. 1023 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 1024 CallInst *CI, 1025 Type *AllocTy, 1026 ConstantInt *NElements, 1027 DataLayout *TD, 1028 TargetLibraryInfo *TLI) { 1029 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 1030 1031 Type *GlobalType; 1032 if (NElements->getZExtValue() == 1) 1033 GlobalType = AllocTy; 1034 else 1035 // If we have an array allocation, the global variable is of an array. 1036 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 1037 1038 // Create the new global variable. The contents of the malloc'd memory is 1039 // undefined, so initialize with an undef value. 1040 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 1041 GlobalType, false, 1042 GlobalValue::InternalLinkage, 1043 UndefValue::get(GlobalType), 1044 GV->getName()+".body", 1045 GV, 1046 GV->getThreadLocalMode()); 1047 1048 // If there are bitcast users of the malloc (which is typical, usually we have 1049 // a malloc + bitcast) then replace them with uses of the new global. Update 1050 // other users to use the global as well. 1051 BitCastInst *TheBC = 0; 1052 while (!CI->use_empty()) { 1053 Instruction *User = cast<Instruction>(CI->use_back()); 1054 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 1055 if (BCI->getType() == NewGV->getType()) { 1056 BCI->replaceAllUsesWith(NewGV); 1057 BCI->eraseFromParent(); 1058 } else { 1059 BCI->setOperand(0, NewGV); 1060 } 1061 } else { 1062 if (TheBC == 0) 1063 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 1064 User->replaceUsesOfWith(CI, TheBC); 1065 } 1066 } 1067 1068 Constant *RepValue = NewGV; 1069 if (NewGV->getType() != GV->getType()->getElementType()) 1070 RepValue = ConstantExpr::getBitCast(RepValue, 1071 GV->getType()->getElementType()); 1072 1073 // If there is a comparison against null, we will insert a global bool to 1074 // keep track of whether the global was initialized yet or not. 1075 GlobalVariable *InitBool = 1076 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 1077 GlobalValue::InternalLinkage, 1078 ConstantInt::getFalse(GV->getContext()), 1079 GV->getName()+".init", GV->getThreadLocalMode()); 1080 bool InitBoolUsed = false; 1081 1082 // Loop over all uses of GV, processing them in turn. 1083 while (!GV->use_empty()) { 1084 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 1085 // The global is initialized when the store to it occurs. 1086 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 1087 SI->getOrdering(), SI->getSynchScope(), SI); 1088 SI->eraseFromParent(); 1089 continue; 1090 } 1091 1092 LoadInst *LI = cast<LoadInst>(GV->use_back()); 1093 while (!LI->use_empty()) { 1094 Use &LoadUse = LI->use_begin().getUse(); 1095 if (!isa<ICmpInst>(LoadUse.getUser())) { 1096 LoadUse = RepValue; 1097 continue; 1098 } 1099 1100 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 1101 // Replace the cmp X, 0 with a use of the bool value. 1102 // Sink the load to where the compare was, if atomic rules allow us to. 1103 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 1104 LI->getOrdering(), LI->getSynchScope(), 1105 LI->isUnordered() ? (Instruction*)ICI : LI); 1106 InitBoolUsed = true; 1107 switch (ICI->getPredicate()) { 1108 default: llvm_unreachable("Unknown ICmp Predicate!"); 1109 case ICmpInst::ICMP_ULT: 1110 case ICmpInst::ICMP_SLT: // X < null -> always false 1111 LV = ConstantInt::getFalse(GV->getContext()); 1112 break; 1113 case ICmpInst::ICMP_ULE: 1114 case ICmpInst::ICMP_SLE: 1115 case ICmpInst::ICMP_EQ: 1116 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 1117 break; 1118 case ICmpInst::ICMP_NE: 1119 case ICmpInst::ICMP_UGE: 1120 case ICmpInst::ICMP_SGE: 1121 case ICmpInst::ICMP_UGT: 1122 case ICmpInst::ICMP_SGT: 1123 break; // no change. 1124 } 1125 ICI->replaceAllUsesWith(LV); 1126 ICI->eraseFromParent(); 1127 } 1128 LI->eraseFromParent(); 1129 } 1130 1131 // If the initialization boolean was used, insert it, otherwise delete it. 1132 if (!InitBoolUsed) { 1133 while (!InitBool->use_empty()) // Delete initializations 1134 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 1135 delete InitBool; 1136 } else 1137 GV->getParent()->getGlobalList().insert(GV, InitBool); 1138 1139 // Now the GV is dead, nuke it and the malloc.. 1140 GV->eraseFromParent(); 1141 CI->eraseFromParent(); 1142 1143 // To further other optimizations, loop over all users of NewGV and try to 1144 // constant prop them. This will promote GEP instructions with constant 1145 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1146 ConstantPropUsersOf(NewGV, TD, TLI); 1147 if (RepValue != NewGV) 1148 ConstantPropUsersOf(RepValue, TD, TLI); 1149 1150 return NewGV; 1151 } 1152 1153 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 1154 /// to make sure that there are no complex uses of V. We permit simple things 1155 /// like dereferencing the pointer, but not storing through the address, unless 1156 /// it is to the specified global. 1157 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 1158 const GlobalVariable *GV, 1159 SmallPtrSet<const PHINode*, 8> &PHIs) { 1160 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 1161 UI != E; ++UI) { 1162 const Instruction *Inst = cast<Instruction>(*UI); 1163 1164 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 1165 continue; // Fine, ignore. 1166 } 1167 1168 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1169 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 1170 return false; // Storing the pointer itself... bad. 1171 continue; // Otherwise, storing through it, or storing into GV... fine. 1172 } 1173 1174 // Must index into the array and into the struct. 1175 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 1176 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 1177 return false; 1178 continue; 1179 } 1180 1181 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1182 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1183 // cycles. 1184 if (PHIs.insert(PN)) 1185 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1186 return false; 1187 continue; 1188 } 1189 1190 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1191 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1192 return false; 1193 continue; 1194 } 1195 1196 return false; 1197 } 1198 return true; 1199 } 1200 1201 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1202 /// somewhere. Transform all uses of the allocation into loads from the 1203 /// global and uses of the resultant pointer. Further, delete the store into 1204 /// GV. This assumes that these value pass the 1205 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1206 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1207 GlobalVariable *GV) { 1208 while (!Alloc->use_empty()) { 1209 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1210 Instruction *InsertPt = U; 1211 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1212 // If this is the store of the allocation into the global, remove it. 1213 if (SI->getOperand(1) == GV) { 1214 SI->eraseFromParent(); 1215 continue; 1216 } 1217 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1218 // Insert the load in the corresponding predecessor, not right before the 1219 // PHI. 1220 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1221 } else if (isa<BitCastInst>(U)) { 1222 // Must be bitcast between the malloc and store to initialize the global. 1223 ReplaceUsesOfMallocWithGlobal(U, GV); 1224 U->eraseFromParent(); 1225 continue; 1226 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1227 // If this is a "GEP bitcast" and the user is a store to the global, then 1228 // just process it as a bitcast. 1229 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1230 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1231 if (SI->getOperand(1) == GV) { 1232 // Must be bitcast GEP between the malloc and store to initialize 1233 // the global. 1234 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1235 GEPI->eraseFromParent(); 1236 continue; 1237 } 1238 } 1239 1240 // Insert a load from the global, and use it instead of the malloc. 1241 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1242 U->replaceUsesOfWith(Alloc, NL); 1243 } 1244 } 1245 1246 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1247 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1248 /// that index through the array and struct field, icmps of null, and PHIs. 1249 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1250 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1251 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1252 // We permit two users of the load: setcc comparing against the null 1253 // pointer, and a getelementptr of a specific form. 1254 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1255 ++UI) { 1256 const Instruction *User = cast<Instruction>(*UI); 1257 1258 // Comparison against null is ok. 1259 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1260 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1261 return false; 1262 continue; 1263 } 1264 1265 // getelementptr is also ok, but only a simple form. 1266 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1267 // Must index into the array and into the struct. 1268 if (GEPI->getNumOperands() < 3) 1269 return false; 1270 1271 // Otherwise the GEP is ok. 1272 continue; 1273 } 1274 1275 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1276 if (!LoadUsingPHIsPerLoad.insert(PN)) 1277 // This means some phi nodes are dependent on each other. 1278 // Avoid infinite looping! 1279 return false; 1280 if (!LoadUsingPHIs.insert(PN)) 1281 // If we have already analyzed this PHI, then it is safe. 1282 continue; 1283 1284 // Make sure all uses of the PHI are simple enough to transform. 1285 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1286 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1287 return false; 1288 1289 continue; 1290 } 1291 1292 // Otherwise we don't know what this is, not ok. 1293 return false; 1294 } 1295 1296 return true; 1297 } 1298 1299 1300 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1301 /// GV are simple enough to perform HeapSRA, return true. 1302 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1303 Instruction *StoredVal) { 1304 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1305 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1306 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1307 UI != E; ++UI) 1308 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1309 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1310 LoadUsingPHIsPerLoad)) 1311 return false; 1312 LoadUsingPHIsPerLoad.clear(); 1313 } 1314 1315 // If we reach here, we know that all uses of the loads and transitive uses 1316 // (through PHI nodes) are simple enough to transform. However, we don't know 1317 // that all inputs the to the PHI nodes are in the same equivalence sets. 1318 // Check to verify that all operands of the PHIs are either PHIS that can be 1319 // transformed, loads from GV, or MI itself. 1320 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1321 , E = LoadUsingPHIs.end(); I != E; ++I) { 1322 const PHINode *PN = *I; 1323 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1324 Value *InVal = PN->getIncomingValue(op); 1325 1326 // PHI of the stored value itself is ok. 1327 if (InVal == StoredVal) continue; 1328 1329 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1330 // One of the PHIs in our set is (optimistically) ok. 1331 if (LoadUsingPHIs.count(InPN)) 1332 continue; 1333 return false; 1334 } 1335 1336 // Load from GV is ok. 1337 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1338 if (LI->getOperand(0) == GV) 1339 continue; 1340 1341 // UNDEF? NULL? 1342 1343 // Anything else is rejected. 1344 return false; 1345 } 1346 } 1347 1348 return true; 1349 } 1350 1351 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1352 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1353 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1354 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1355 1356 if (FieldNo >= FieldVals.size()) 1357 FieldVals.resize(FieldNo+1); 1358 1359 // If we already have this value, just reuse the previously scalarized 1360 // version. 1361 if (Value *FieldVal = FieldVals[FieldNo]) 1362 return FieldVal; 1363 1364 // Depending on what instruction this is, we have several cases. 1365 Value *Result; 1366 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1367 // This is a scalarized version of the load from the global. Just create 1368 // a new Load of the scalarized global. 1369 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1370 InsertedScalarizedValues, 1371 PHIsToRewrite), 1372 LI->getName()+".f"+Twine(FieldNo), LI); 1373 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1374 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1375 // field. 1376 StructType *ST = 1377 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1378 1379 PHINode *NewPN = 1380 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1381 PN->getNumIncomingValues(), 1382 PN->getName()+".f"+Twine(FieldNo), PN); 1383 Result = NewPN; 1384 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1385 } else { 1386 llvm_unreachable("Unknown usable value"); 1387 } 1388 1389 return FieldVals[FieldNo] = Result; 1390 } 1391 1392 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1393 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1394 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1395 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1396 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1397 // If this is a comparison against null, handle it. 1398 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1399 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1400 // If we have a setcc of the loaded pointer, we can use a setcc of any 1401 // field. 1402 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1403 InsertedScalarizedValues, PHIsToRewrite); 1404 1405 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1406 Constant::getNullValue(NPtr->getType()), 1407 SCI->getName()); 1408 SCI->replaceAllUsesWith(New); 1409 SCI->eraseFromParent(); 1410 return; 1411 } 1412 1413 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1414 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1415 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1416 && "Unexpected GEPI!"); 1417 1418 // Load the pointer for this field. 1419 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1420 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1421 InsertedScalarizedValues, PHIsToRewrite); 1422 1423 // Create the new GEP idx vector. 1424 SmallVector<Value*, 8> GEPIdx; 1425 GEPIdx.push_back(GEPI->getOperand(1)); 1426 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1427 1428 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx, 1429 GEPI->getName(), GEPI); 1430 GEPI->replaceAllUsesWith(NGEPI); 1431 GEPI->eraseFromParent(); 1432 return; 1433 } 1434 1435 // Recursively transform the users of PHI nodes. This will lazily create the 1436 // PHIs that are needed for individual elements. Keep track of what PHIs we 1437 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1438 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1439 // already been seen first by another load, so its uses have already been 1440 // processed. 1441 PHINode *PN = cast<PHINode>(LoadUser); 1442 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1443 std::vector<Value*>())).second) 1444 return; 1445 1446 // If this is the first time we've seen this PHI, recursively process all 1447 // users. 1448 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1449 Instruction *User = cast<Instruction>(*UI++); 1450 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1451 } 1452 } 1453 1454 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1455 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1456 /// use FieldGlobals instead. All uses of loaded values satisfy 1457 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1458 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1459 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1460 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1461 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1462 UI != E; ) { 1463 Instruction *User = cast<Instruction>(*UI++); 1464 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1465 } 1466 1467 if (Load->use_empty()) { 1468 Load->eraseFromParent(); 1469 InsertedScalarizedValues.erase(Load); 1470 } 1471 } 1472 1473 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1474 /// it up into multiple allocations of arrays of the fields. 1475 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1476 Value *NElems, DataLayout *TD, 1477 const TargetLibraryInfo *TLI) { 1478 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1479 Type *MAT = getMallocAllocatedType(CI, TLI); 1480 StructType *STy = cast<StructType>(MAT); 1481 1482 // There is guaranteed to be at least one use of the malloc (storing 1483 // it into GV). If there are other uses, change them to be uses of 1484 // the global to simplify later code. This also deletes the store 1485 // into GV. 1486 ReplaceUsesOfMallocWithGlobal(CI, GV); 1487 1488 // Okay, at this point, there are no users of the malloc. Insert N 1489 // new mallocs at the same place as CI, and N globals. 1490 std::vector<Value*> FieldGlobals; 1491 std::vector<Value*> FieldMallocs; 1492 1493 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1494 Type *FieldTy = STy->getElementType(FieldNo); 1495 PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1496 1497 GlobalVariable *NGV = 1498 new GlobalVariable(*GV->getParent(), 1499 PFieldTy, false, GlobalValue::InternalLinkage, 1500 Constant::getNullValue(PFieldTy), 1501 GV->getName() + ".f" + Twine(FieldNo), GV, 1502 GV->getThreadLocalMode()); 1503 FieldGlobals.push_back(NGV); 1504 1505 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1506 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1507 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1508 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1509 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1510 ConstantInt::get(IntPtrTy, TypeSize), 1511 NElems, 0, 1512 CI->getName() + ".f" + Twine(FieldNo)); 1513 FieldMallocs.push_back(NMI); 1514 new StoreInst(NMI, NGV, CI); 1515 } 1516 1517 // The tricky aspect of this transformation is handling the case when malloc 1518 // fails. In the original code, malloc failing would set the result pointer 1519 // of malloc to null. In this case, some mallocs could succeed and others 1520 // could fail. As such, we emit code that looks like this: 1521 // F0 = malloc(field0) 1522 // F1 = malloc(field1) 1523 // F2 = malloc(field2) 1524 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1525 // if (F0) { free(F0); F0 = 0; } 1526 // if (F1) { free(F1); F1 = 0; } 1527 // if (F2) { free(F2); F2 = 0; } 1528 // } 1529 // The malloc can also fail if its argument is too large. 1530 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1531 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1532 ConstantZero, "isneg"); 1533 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1534 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1535 Constant::getNullValue(FieldMallocs[i]->getType()), 1536 "isnull"); 1537 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1538 } 1539 1540 // Split the basic block at the old malloc. 1541 BasicBlock *OrigBB = CI->getParent(); 1542 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1543 1544 // Create the block to check the first condition. Put all these blocks at the 1545 // end of the function as they are unlikely to be executed. 1546 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1547 "malloc_ret_null", 1548 OrigBB->getParent()); 1549 1550 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1551 // branch on RunningOr. 1552 OrigBB->getTerminator()->eraseFromParent(); 1553 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1554 1555 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1556 // pointer, because some may be null while others are not. 1557 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1558 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1559 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1560 Constant::getNullValue(GVVal->getType())); 1561 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1562 OrigBB->getParent()); 1563 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1564 OrigBB->getParent()); 1565 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1566 Cmp, NullPtrBlock); 1567 1568 // Fill in FreeBlock. 1569 CallInst::CreateFree(GVVal, BI); 1570 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1571 FreeBlock); 1572 BranchInst::Create(NextBlock, FreeBlock); 1573 1574 NullPtrBlock = NextBlock; 1575 } 1576 1577 BranchInst::Create(ContBB, NullPtrBlock); 1578 1579 // CI is no longer needed, remove it. 1580 CI->eraseFromParent(); 1581 1582 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1583 /// update all uses of the load, keep track of what scalarized loads are 1584 /// inserted for a given load. 1585 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1586 InsertedScalarizedValues[GV] = FieldGlobals; 1587 1588 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1589 1590 // Okay, the malloc site is completely handled. All of the uses of GV are now 1591 // loads, and all uses of those loads are simple. Rewrite them to use loads 1592 // of the per-field globals instead. 1593 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1594 Instruction *User = cast<Instruction>(*UI++); 1595 1596 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1597 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1598 continue; 1599 } 1600 1601 // Must be a store of null. 1602 StoreInst *SI = cast<StoreInst>(User); 1603 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1604 "Unexpected heap-sra user!"); 1605 1606 // Insert a store of null into each global. 1607 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1608 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1609 Constant *Null = Constant::getNullValue(PT->getElementType()); 1610 new StoreInst(Null, FieldGlobals[i], SI); 1611 } 1612 // Erase the original store. 1613 SI->eraseFromParent(); 1614 } 1615 1616 // While we have PHIs that are interesting to rewrite, do it. 1617 while (!PHIsToRewrite.empty()) { 1618 PHINode *PN = PHIsToRewrite.back().first; 1619 unsigned FieldNo = PHIsToRewrite.back().second; 1620 PHIsToRewrite.pop_back(); 1621 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1622 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1623 1624 // Add all the incoming values. This can materialize more phis. 1625 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1626 Value *InVal = PN->getIncomingValue(i); 1627 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1628 PHIsToRewrite); 1629 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1630 } 1631 } 1632 1633 // Drop all inter-phi links and any loads that made it this far. 1634 for (DenseMap<Value*, std::vector<Value*> >::iterator 1635 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1636 I != E; ++I) { 1637 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1638 PN->dropAllReferences(); 1639 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1640 LI->dropAllReferences(); 1641 } 1642 1643 // Delete all the phis and loads now that inter-references are dead. 1644 for (DenseMap<Value*, std::vector<Value*> >::iterator 1645 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1646 I != E; ++I) { 1647 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1648 PN->eraseFromParent(); 1649 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1650 LI->eraseFromParent(); 1651 } 1652 1653 // The old global is now dead, remove it. 1654 GV->eraseFromParent(); 1655 1656 ++NumHeapSRA; 1657 return cast<GlobalVariable>(FieldGlobals[0]); 1658 } 1659 1660 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1661 /// pointer global variable with a single value stored it that is a malloc or 1662 /// cast of malloc. 1663 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1664 CallInst *CI, 1665 Type *AllocTy, 1666 AtomicOrdering Ordering, 1667 Module::global_iterator &GVI, 1668 DataLayout *TD, 1669 TargetLibraryInfo *TLI) { 1670 if (!TD) 1671 return false; 1672 1673 // If this is a malloc of an abstract type, don't touch it. 1674 if (!AllocTy->isSized()) 1675 return false; 1676 1677 // We can't optimize this global unless all uses of it are *known* to be 1678 // of the malloc value, not of the null initializer value (consider a use 1679 // that compares the global's value against zero to see if the malloc has 1680 // been reached). To do this, we check to see if all uses of the global 1681 // would trap if the global were null: this proves that they must all 1682 // happen after the malloc. 1683 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1684 return false; 1685 1686 // We can't optimize this if the malloc itself is used in a complex way, 1687 // for example, being stored into multiple globals. This allows the 1688 // malloc to be stored into the specified global, loaded icmp'd, and 1689 // GEP'd. These are all things we could transform to using the global 1690 // for. 1691 SmallPtrSet<const PHINode*, 8> PHIs; 1692 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1693 return false; 1694 1695 // If we have a global that is only initialized with a fixed size malloc, 1696 // transform the program to use global memory instead of malloc'd memory. 1697 // This eliminates dynamic allocation, avoids an indirection accessing the 1698 // data, and exposes the resultant global to further GlobalOpt. 1699 // We cannot optimize the malloc if we cannot determine malloc array size. 1700 Value *NElems = getMallocArraySize(CI, TD, TLI, true); 1701 if (!NElems) 1702 return false; 1703 1704 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1705 // Restrict this transformation to only working on small allocations 1706 // (2048 bytes currently), as we don't want to introduce a 16M global or 1707 // something. 1708 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1709 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI); 1710 return true; 1711 } 1712 1713 // If the allocation is an array of structures, consider transforming this 1714 // into multiple malloc'd arrays, one for each field. This is basically 1715 // SRoA for malloc'd memory. 1716 1717 if (Ordering != NotAtomic) 1718 return false; 1719 1720 // If this is an allocation of a fixed size array of structs, analyze as a 1721 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1722 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1723 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1724 AllocTy = AT->getElementType(); 1725 1726 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1727 if (!AllocSTy) 1728 return false; 1729 1730 // This the structure has an unreasonable number of fields, leave it 1731 // alone. 1732 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1733 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1734 1735 // If this is a fixed size array, transform the Malloc to be an alloc of 1736 // structs. malloc [100 x struct],1 -> malloc struct, 100 1737 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1738 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1739 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1740 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1741 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1742 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1743 AllocSize, NumElements, 1744 0, CI->getName()); 1745 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1746 CI->replaceAllUsesWith(Cast); 1747 CI->eraseFromParent(); 1748 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1749 CI = cast<CallInst>(BCI->getOperand(0)); 1750 else 1751 CI = cast<CallInst>(Malloc); 1752 } 1753 1754 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true), 1755 TD, TLI); 1756 return true; 1757 } 1758 1759 return false; 1760 } 1761 1762 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1763 // that only one value (besides its initializer) is ever stored to the global. 1764 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1765 AtomicOrdering Ordering, 1766 Module::global_iterator &GVI, 1767 DataLayout *TD, TargetLibraryInfo *TLI) { 1768 // Ignore no-op GEPs and bitcasts. 1769 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1770 1771 // If we are dealing with a pointer global that is initialized to null and 1772 // only has one (non-null) value stored into it, then we can optimize any 1773 // users of the loaded value (often calls and loads) that would trap if the 1774 // value was null. 1775 if (GV->getInitializer()->getType()->isPointerTy() && 1776 GV->getInitializer()->isNullValue()) { 1777 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1778 if (GV->getInitializer()->getType() != SOVC->getType()) 1779 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1780 1781 // Optimize away any trapping uses of the loaded value. 1782 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI)) 1783 return true; 1784 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1785 Type *MallocType = getMallocAllocatedType(CI, TLI); 1786 if (MallocType && 1787 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1788 TD, TLI)) 1789 return true; 1790 } 1791 } 1792 1793 return false; 1794 } 1795 1796 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1797 /// two values ever stored into GV are its initializer and OtherVal. See if we 1798 /// can shrink the global into a boolean and select between the two values 1799 /// whenever it is used. This exposes the values to other scalar optimizations. 1800 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1801 Type *GVElType = GV->getType()->getElementType(); 1802 1803 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1804 // an FP value, pointer or vector, don't do this optimization because a select 1805 // between them is very expensive and unlikely to lead to later 1806 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1807 // where v1 and v2 both require constant pool loads, a big loss. 1808 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1809 GVElType->isFloatingPointTy() || 1810 GVElType->isPointerTy() || GVElType->isVectorTy()) 1811 return false; 1812 1813 // Walk the use list of the global seeing if all the uses are load or store. 1814 // If there is anything else, bail out. 1815 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1816 User *U = *I; 1817 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1818 return false; 1819 } 1820 1821 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1822 1823 // Create the new global, initializing it to false. 1824 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1825 false, 1826 GlobalValue::InternalLinkage, 1827 ConstantInt::getFalse(GV->getContext()), 1828 GV->getName()+".b", 1829 GV->getThreadLocalMode(), 1830 GV->getType()->getAddressSpace()); 1831 GV->getParent()->getGlobalList().insert(GV, NewGV); 1832 1833 Constant *InitVal = GV->getInitializer(); 1834 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1835 "No reason to shrink to bool!"); 1836 1837 // If initialized to zero and storing one into the global, we can use a cast 1838 // instead of a select to synthesize the desired value. 1839 bool IsOneZero = false; 1840 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1841 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1842 1843 while (!GV->use_empty()) { 1844 Instruction *UI = cast<Instruction>(GV->use_back()); 1845 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1846 // Change the store into a boolean store. 1847 bool StoringOther = SI->getOperand(0) == OtherVal; 1848 // Only do this if we weren't storing a loaded value. 1849 Value *StoreVal; 1850 if (StoringOther || SI->getOperand(0) == InitVal) { 1851 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1852 StoringOther); 1853 } else { 1854 // Otherwise, we are storing a previously loaded copy. To do this, 1855 // change the copy from copying the original value to just copying the 1856 // bool. 1857 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1858 1859 // If we've already replaced the input, StoredVal will be a cast or 1860 // select instruction. If not, it will be a load of the original 1861 // global. 1862 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1863 assert(LI->getOperand(0) == GV && "Not a copy!"); 1864 // Insert a new load, to preserve the saved value. 1865 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1866 LI->getOrdering(), LI->getSynchScope(), LI); 1867 } else { 1868 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1869 "This is not a form that we understand!"); 1870 StoreVal = StoredVal->getOperand(0); 1871 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1872 } 1873 } 1874 new StoreInst(StoreVal, NewGV, false, 0, 1875 SI->getOrdering(), SI->getSynchScope(), SI); 1876 } else { 1877 // Change the load into a load of bool then a select. 1878 LoadInst *LI = cast<LoadInst>(UI); 1879 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1880 LI->getOrdering(), LI->getSynchScope(), LI); 1881 Value *NSI; 1882 if (IsOneZero) 1883 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1884 else 1885 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1886 NSI->takeName(LI); 1887 LI->replaceAllUsesWith(NSI); 1888 } 1889 UI->eraseFromParent(); 1890 } 1891 1892 // Retain the name of the old global variable. People who are debugging their 1893 // programs may expect these variables to be named the same. 1894 NewGV->takeName(GV); 1895 GV->eraseFromParent(); 1896 return true; 1897 } 1898 1899 1900 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1901 /// possible. If we make a change, return true. 1902 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1903 Module::global_iterator &GVI) { 1904 if (!GV->isDiscardableIfUnused()) 1905 return false; 1906 1907 // Do more involved optimizations if the global is internal. 1908 GV->removeDeadConstantUsers(); 1909 1910 if (GV->use_empty()) { 1911 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1912 GV->eraseFromParent(); 1913 ++NumDeleted; 1914 return true; 1915 } 1916 1917 if (!GV->hasLocalLinkage()) 1918 return false; 1919 1920 SmallPtrSet<const PHINode*, 16> PHIUsers; 1921 GlobalStatus GS; 1922 1923 if (AnalyzeGlobal(GV, GS, PHIUsers)) 1924 return false; 1925 1926 if (!GS.isCompared && !GV->hasUnnamedAddr()) { 1927 GV->setUnnamedAddr(true); 1928 NumUnnamed++; 1929 } 1930 1931 if (GV->isConstant() || !GV->hasInitializer()) 1932 return false; 1933 1934 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS); 1935 } 1936 1937 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1938 /// it if possible. If we make a change, return true. 1939 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1940 Module::global_iterator &GVI, 1941 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 1942 const GlobalStatus &GS) { 1943 // If this is a first class global and has only one accessing function 1944 // and this function is main (which we know is not recursive), we replace 1945 // the global with a local alloca in this function. 1946 // 1947 // NOTE: It doesn't make sense to promote non single-value types since we 1948 // are just replacing static memory to stack memory. 1949 // 1950 // If the global is in different address space, don't bring it to stack. 1951 if (!GS.HasMultipleAccessingFunctions && 1952 GS.AccessingFunction && !GS.HasNonInstructionUser && 1953 GV->getType()->getElementType()->isSingleValueType() && 1954 GS.AccessingFunction->getName() == "main" && 1955 GS.AccessingFunction->hasExternalLinkage() && 1956 GV->getType()->getAddressSpace() == 0) { 1957 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1958 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1959 ->getEntryBlock().begin()); 1960 Type *ElemTy = GV->getType()->getElementType(); 1961 // FIXME: Pass Global's alignment when globals have alignment 1962 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1963 if (!isa<UndefValue>(GV->getInitializer())) 1964 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1965 1966 GV->replaceAllUsesWith(Alloca); 1967 GV->eraseFromParent(); 1968 ++NumLocalized; 1969 return true; 1970 } 1971 1972 // If the global is never loaded (but may be stored to), it is dead. 1973 // Delete it now. 1974 if (!GS.isLoaded) { 1975 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1976 1977 bool Changed; 1978 if (isLeakCheckerRoot(GV)) { 1979 // Delete any constant stores to the global. 1980 Changed = CleanupPointerRootUsers(GV, TLI); 1981 } else { 1982 // Delete any stores we can find to the global. We may not be able to 1983 // make it completely dead though. 1984 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1985 } 1986 1987 // If the global is dead now, delete it. 1988 if (GV->use_empty()) { 1989 GV->eraseFromParent(); 1990 ++NumDeleted; 1991 Changed = true; 1992 } 1993 return Changed; 1994 1995 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1996 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1997 GV->setConstant(true); 1998 1999 // Clean up any obviously simplifiable users now. 2000 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 2001 2002 // If the global is dead now, just nuke it. 2003 if (GV->use_empty()) { 2004 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 2005 << "all users and delete global!\n"); 2006 GV->eraseFromParent(); 2007 ++NumDeleted; 2008 } 2009 2010 ++NumMarked; 2011 return true; 2012 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 2013 if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>()) 2014 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 2015 GVI = FirstNewGV; // Don't skip the newly produced globals! 2016 return true; 2017 } 2018 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 2019 // If the initial value for the global was an undef value, and if only 2020 // one other value was stored into it, we can just change the 2021 // initializer to be the stored value, then delete all stores to the 2022 // global. This allows us to mark it constant. 2023 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2024 if (isa<UndefValue>(GV->getInitializer())) { 2025 // Change the initial value here. 2026 GV->setInitializer(SOVConstant); 2027 2028 // Clean up any obviously simplifiable users now. 2029 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 2030 2031 if (GV->use_empty()) { 2032 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2033 << "simplify all users and delete global!\n"); 2034 GV->eraseFromParent(); 2035 ++NumDeleted; 2036 } else { 2037 GVI = GV; 2038 } 2039 ++NumSubstitute; 2040 return true; 2041 } 2042 2043 // Try to optimize globals based on the knowledge that only one value 2044 // (besides its initializer) is ever stored to the global. 2045 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 2046 TD, TLI)) 2047 return true; 2048 2049 // Otherwise, if the global was not a boolean, we can shrink it to be a 2050 // boolean. 2051 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2052 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2053 ++NumShrunkToBool; 2054 return true; 2055 } 2056 } 2057 2058 return false; 2059 } 2060 2061 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 2062 /// function, changing them to FastCC. 2063 static void ChangeCalleesToFastCall(Function *F) { 2064 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 2065 if (isa<BlockAddress>(*UI)) 2066 continue; 2067 CallSite User(cast<Instruction>(*UI)); 2068 User.setCallingConv(CallingConv::Fast); 2069 } 2070 } 2071 2072 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 2073 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 2074 unsigned Index = Attrs.getSlotIndex(i); 2075 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 2076 continue; 2077 2078 // There can be only one. 2079 return Attrs.removeAttribute(C, Index, Attribute::Nest); 2080 } 2081 2082 return Attrs; 2083 } 2084 2085 static void RemoveNestAttribute(Function *F) { 2086 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2087 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 2088 if (isa<BlockAddress>(*UI)) 2089 continue; 2090 CallSite User(cast<Instruction>(*UI)); 2091 User.setAttributes(StripNest(F->getContext(), User.getAttributes())); 2092 } 2093 } 2094 2095 bool GlobalOpt::OptimizeFunctions(Module &M) { 2096 bool Changed = false; 2097 // Optimize functions. 2098 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2099 Function *F = FI++; 2100 // Functions without names cannot be referenced outside this module. 2101 if (!F->hasName() && !F->isDeclaration()) 2102 F->setLinkage(GlobalValue::InternalLinkage); 2103 F->removeDeadConstantUsers(); 2104 if (F->isDefTriviallyDead()) { 2105 F->eraseFromParent(); 2106 Changed = true; 2107 ++NumFnDeleted; 2108 } else if (F->hasLocalLinkage()) { 2109 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 2110 !F->hasAddressTaken()) { 2111 // If this function has C calling conventions, is not a varargs 2112 // function, and is only called directly, promote it to use the Fast 2113 // calling convention. 2114 F->setCallingConv(CallingConv::Fast); 2115 ChangeCalleesToFastCall(F); 2116 ++NumFastCallFns; 2117 Changed = true; 2118 } 2119 2120 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2121 !F->hasAddressTaken()) { 2122 // The function is not used by a trampoline intrinsic, so it is safe 2123 // to remove the 'nest' attribute. 2124 RemoveNestAttribute(F); 2125 ++NumNestRemoved; 2126 Changed = true; 2127 } 2128 } 2129 } 2130 return Changed; 2131 } 2132 2133 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 2134 bool Changed = false; 2135 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2136 GVI != E; ) { 2137 GlobalVariable *GV = GVI++; 2138 // Global variables without names cannot be referenced outside this module. 2139 if (!GV->hasName() && !GV->isDeclaration()) 2140 GV->setLinkage(GlobalValue::InternalLinkage); 2141 // Simplify the initializer. 2142 if (GV->hasInitializer()) 2143 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 2144 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI); 2145 if (New && New != CE) 2146 GV->setInitializer(New); 2147 } 2148 2149 Changed |= ProcessGlobal(GV, GVI); 2150 } 2151 return Changed; 2152 } 2153 2154 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all 2155 /// initializers have an init priority of 65535. 2156 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 2157 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 2158 if (GV == 0) return 0; 2159 2160 // Verify that the initializer is simple enough for us to handle. We are 2161 // only allowed to optimize the initializer if it is unique. 2162 if (!GV->hasUniqueInitializer()) return 0; 2163 2164 if (isa<ConstantAggregateZero>(GV->getInitializer())) 2165 return GV; 2166 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 2167 2168 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 2169 if (isa<ConstantAggregateZero>(*i)) 2170 continue; 2171 ConstantStruct *CS = cast<ConstantStruct>(*i); 2172 if (isa<ConstantPointerNull>(CS->getOperand(1))) 2173 continue; 2174 2175 // Must have a function or null ptr. 2176 if (!isa<Function>(CS->getOperand(1))) 2177 return 0; 2178 2179 // Init priority must be standard. 2180 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0)); 2181 if (CI->getZExtValue() != 65535) 2182 return 0; 2183 } 2184 2185 return GV; 2186 } 2187 2188 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 2189 /// return a list of the functions and null terminator as a vector. 2190 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 2191 if (GV->getInitializer()->isNullValue()) 2192 return std::vector<Function*>(); 2193 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 2194 std::vector<Function*> Result; 2195 Result.reserve(CA->getNumOperands()); 2196 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 2197 ConstantStruct *CS = cast<ConstantStruct>(*i); 2198 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 2199 } 2200 return Result; 2201 } 2202 2203 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 2204 /// specified array, returning the new global to use. 2205 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 2206 const std::vector<Function*> &Ctors) { 2207 // If we made a change, reassemble the initializer list. 2208 Constant *CSVals[2]; 2209 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535); 2210 CSVals[1] = 0; 2211 2212 StructType *StructTy = 2213 cast <StructType>( 2214 cast<ArrayType>(GCL->getType()->getElementType())->getElementType()); 2215 2216 // Create the new init list. 2217 std::vector<Constant*> CAList; 2218 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2219 if (Ctors[i]) { 2220 CSVals[1] = Ctors[i]; 2221 } else { 2222 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2223 false); 2224 PointerType *PFTy = PointerType::getUnqual(FTy); 2225 CSVals[1] = Constant::getNullValue(PFTy); 2226 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2227 0x7fffffff); 2228 } 2229 CAList.push_back(ConstantStruct::get(StructTy, CSVals)); 2230 } 2231 2232 // Create the array initializer. 2233 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2234 CAList.size()), CAList); 2235 2236 // If we didn't change the number of elements, don't create a new GV. 2237 if (CA->getType() == GCL->getInitializer()->getType()) { 2238 GCL->setInitializer(CA); 2239 return GCL; 2240 } 2241 2242 // Create the new global and insert it next to the existing list. 2243 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2244 GCL->getLinkage(), CA, "", 2245 GCL->getThreadLocalMode()); 2246 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2247 NGV->takeName(GCL); 2248 2249 // Nuke the old list, replacing any uses with the new one. 2250 if (!GCL->use_empty()) { 2251 Constant *V = NGV; 2252 if (V->getType() != GCL->getType()) 2253 V = ConstantExpr::getBitCast(V, GCL->getType()); 2254 GCL->replaceAllUsesWith(V); 2255 } 2256 GCL->eraseFromParent(); 2257 2258 if (Ctors.size()) 2259 return NGV; 2260 else 2261 return 0; 2262 } 2263 2264 2265 static inline bool 2266 isSimpleEnoughValueToCommit(Constant *C, 2267 SmallPtrSet<Constant*, 8> &SimpleConstants, 2268 const DataLayout *TD); 2269 2270 2271 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2272 /// handled by the code generator. We don't want to generate something like: 2273 /// void *X = &X/42; 2274 /// because the code generator doesn't have a relocation that can handle that. 2275 /// 2276 /// This function should be called if C was not found (but just got inserted) 2277 /// in SimpleConstants to avoid having to rescan the same constants all the 2278 /// time. 2279 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2280 SmallPtrSet<Constant*, 8> &SimpleConstants, 2281 const DataLayout *TD) { 2282 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2283 // all supported. 2284 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2285 isa<GlobalValue>(C)) 2286 return true; 2287 2288 // Aggregate values are safe if all their elements are. 2289 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2290 isa<ConstantVector>(C)) { 2291 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2292 Constant *Op = cast<Constant>(C->getOperand(i)); 2293 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD)) 2294 return false; 2295 } 2296 return true; 2297 } 2298 2299 // We don't know exactly what relocations are allowed in constant expressions, 2300 // so we allow &global+constantoffset, which is safe and uniformly supported 2301 // across targets. 2302 ConstantExpr *CE = cast<ConstantExpr>(C); 2303 switch (CE->getOpcode()) { 2304 case Instruction::BitCast: 2305 // Bitcast is fine if the casted value is fine. 2306 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2307 2308 case Instruction::IntToPtr: 2309 case Instruction::PtrToInt: 2310 // int <=> ptr is fine if the int type is the same size as the 2311 // pointer type. 2312 if (!TD || TD->getTypeSizeInBits(CE->getType()) != 2313 TD->getTypeSizeInBits(CE->getOperand(0)->getType())) 2314 return false; 2315 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2316 2317 // GEP is fine if it is simple + constant offset. 2318 case Instruction::GetElementPtr: 2319 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2320 if (!isa<ConstantInt>(CE->getOperand(i))) 2321 return false; 2322 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2323 2324 case Instruction::Add: 2325 // We allow simple+cst. 2326 if (!isa<ConstantInt>(CE->getOperand(1))) 2327 return false; 2328 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2329 } 2330 return false; 2331 } 2332 2333 static inline bool 2334 isSimpleEnoughValueToCommit(Constant *C, 2335 SmallPtrSet<Constant*, 8> &SimpleConstants, 2336 const DataLayout *TD) { 2337 // If we already checked this constant, we win. 2338 if (!SimpleConstants.insert(C)) return true; 2339 // Check the constant. 2340 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD); 2341 } 2342 2343 2344 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2345 /// enough for us to understand. In particular, if it is a cast to anything 2346 /// other than from one pointer type to another pointer type, we punt. 2347 /// We basically just support direct accesses to globals and GEP's of 2348 /// globals. This should be kept up to date with CommitValueTo. 2349 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2350 // Conservatively, avoid aggregate types. This is because we don't 2351 // want to worry about them partially overlapping other stores. 2352 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2353 return false; 2354 2355 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2356 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2357 // external globals. 2358 return GV->hasUniqueInitializer(); 2359 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2361 // Handle a constantexpr gep. 2362 if (CE->getOpcode() == Instruction::GetElementPtr && 2363 isa<GlobalVariable>(CE->getOperand(0)) && 2364 cast<GEPOperator>(CE)->isInBounds()) { 2365 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2366 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2367 // external globals. 2368 if (!GV->hasUniqueInitializer()) 2369 return false; 2370 2371 // The first index must be zero. 2372 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2373 if (!CI || !CI->isZero()) return false; 2374 2375 // The remaining indices must be compile-time known integers within the 2376 // notional bounds of the corresponding static array types. 2377 if (!CE->isGEPWithNoNotionalOverIndexing()) 2378 return false; 2379 2380 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2381 2382 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2383 // and we know how to evaluate it by moving the bitcast from the pointer 2384 // operand to the value operand. 2385 } else if (CE->getOpcode() == Instruction::BitCast && 2386 isa<GlobalVariable>(CE->getOperand(0))) { 2387 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2388 // external globals. 2389 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2390 } 2391 } 2392 2393 return false; 2394 } 2395 2396 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2397 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2398 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2399 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2400 ConstantExpr *Addr, unsigned OpNo) { 2401 // Base case of the recursion. 2402 if (OpNo == Addr->getNumOperands()) { 2403 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2404 return Val; 2405 } 2406 2407 SmallVector<Constant*, 32> Elts; 2408 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2409 // Break up the constant into its elements. 2410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2411 Elts.push_back(Init->getAggregateElement(i)); 2412 2413 // Replace the element that we are supposed to. 2414 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2415 unsigned Idx = CU->getZExtValue(); 2416 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2417 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2418 2419 // Return the modified struct. 2420 return ConstantStruct::get(STy, Elts); 2421 } 2422 2423 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2424 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2425 2426 uint64_t NumElts; 2427 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2428 NumElts = ATy->getNumElements(); 2429 else 2430 NumElts = InitTy->getVectorNumElements(); 2431 2432 // Break up the array into elements. 2433 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2434 Elts.push_back(Init->getAggregateElement(i)); 2435 2436 assert(CI->getZExtValue() < NumElts); 2437 Elts[CI->getZExtValue()] = 2438 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2439 2440 if (Init->getType()->isArrayTy()) 2441 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2442 return ConstantVector::get(Elts); 2443 } 2444 2445 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2446 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2447 static void CommitValueTo(Constant *Val, Constant *Addr) { 2448 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2449 assert(GV->hasInitializer()); 2450 GV->setInitializer(Val); 2451 return; 2452 } 2453 2454 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2455 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2456 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2457 } 2458 2459 namespace { 2460 2461 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2462 /// representing each SSA instruction. Changes to global variables are stored 2463 /// in a mapping that can be iterated over after the evaluation is complete. 2464 /// Once an evaluation call fails, the evaluation object should not be reused. 2465 class Evaluator { 2466 public: 2467 Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI) 2468 : TD(TD), TLI(TLI) { 2469 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2470 } 2471 2472 ~Evaluator() { 2473 DeleteContainerPointers(ValueStack); 2474 while (!AllocaTmps.empty()) { 2475 GlobalVariable *Tmp = AllocaTmps.back(); 2476 AllocaTmps.pop_back(); 2477 2478 // If there are still users of the alloca, the program is doing something 2479 // silly, e.g. storing the address of the alloca somewhere and using it 2480 // later. Since this is undefined, we'll just make it be null. 2481 if (!Tmp->use_empty()) 2482 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2483 delete Tmp; 2484 } 2485 } 2486 2487 /// EvaluateFunction - Evaluate a call to function F, returning true if 2488 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2489 /// arguments for the function. 2490 bool EvaluateFunction(Function *F, Constant *&RetVal, 2491 const SmallVectorImpl<Constant*> &ActualArgs); 2492 2493 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2494 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2495 /// control flows into, or null upon return. 2496 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2497 2498 Constant *getVal(Value *V) { 2499 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2500 Constant *R = ValueStack.back()->lookup(V); 2501 assert(R && "Reference to an uncomputed value!"); 2502 return R; 2503 } 2504 2505 void setVal(Value *V, Constant *C) { 2506 ValueStack.back()->operator[](V) = C; 2507 } 2508 2509 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2510 return MutatedMemory; 2511 } 2512 2513 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const { 2514 return Invariants; 2515 } 2516 2517 private: 2518 Constant *ComputeLoadResult(Constant *P); 2519 2520 /// ValueStack - As we compute SSA register values, we store their contents 2521 /// here. The back of the vector contains the current function and the stack 2522 /// contains the values in the calling frames. 2523 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack; 2524 2525 /// CallStack - This is used to detect recursion. In pathological situations 2526 /// we could hit exponential behavior, but at least there is nothing 2527 /// unbounded. 2528 SmallVector<Function*, 4> CallStack; 2529 2530 /// MutatedMemory - For each store we execute, we update this map. Loads 2531 /// check this to get the most up-to-date value. If evaluation is successful, 2532 /// this state is committed to the process. 2533 DenseMap<Constant*, Constant*> MutatedMemory; 2534 2535 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2536 /// to represent its body. This vector is needed so we can delete the 2537 /// temporary globals when we are done. 2538 SmallVector<GlobalVariable*, 32> AllocaTmps; 2539 2540 /// Invariants - These global variables have been marked invariant by the 2541 /// static constructor. 2542 SmallPtrSet<GlobalVariable*, 8> Invariants; 2543 2544 /// SimpleConstants - These are constants we have checked and know to be 2545 /// simple enough to live in a static initializer of a global. 2546 SmallPtrSet<Constant*, 8> SimpleConstants; 2547 2548 const DataLayout *TD; 2549 const TargetLibraryInfo *TLI; 2550 }; 2551 2552 } // anonymous namespace 2553 2554 /// ComputeLoadResult - Return the value that would be computed by a load from 2555 /// P after the stores reflected by 'memory' have been performed. If we can't 2556 /// decide, return null. 2557 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2558 // If this memory location has been recently stored, use the stored value: it 2559 // is the most up-to-date. 2560 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2561 if (I != MutatedMemory.end()) return I->second; 2562 2563 // Access it. 2564 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2565 if (GV->hasDefinitiveInitializer()) 2566 return GV->getInitializer(); 2567 return 0; 2568 } 2569 2570 // Handle a constantexpr getelementptr. 2571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2572 if (CE->getOpcode() == Instruction::GetElementPtr && 2573 isa<GlobalVariable>(CE->getOperand(0))) { 2574 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2575 if (GV->hasDefinitiveInitializer()) 2576 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2577 } 2578 2579 return 0; // don't know how to evaluate. 2580 } 2581 2582 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2583 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2584 /// control flows into, or null upon return. 2585 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2586 BasicBlock *&NextBB) { 2587 // This is the main evaluation loop. 2588 while (1) { 2589 Constant *InstResult = 0; 2590 2591 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2592 2593 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2594 if (!SI->isSimple()) { 2595 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2596 return false; // no volatile/atomic accesses. 2597 } 2598 Constant *Ptr = getVal(SI->getOperand(1)); 2599 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2600 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2601 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2602 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2603 } 2604 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2605 // If this is too complex for us to commit, reject it. 2606 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2607 return false; 2608 } 2609 2610 Constant *Val = getVal(SI->getOperand(0)); 2611 2612 // If this might be too difficult for the backend to handle (e.g. the addr 2613 // of one global variable divided by another) then we can't commit it. 2614 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) { 2615 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2616 << "\n"); 2617 return false; 2618 } 2619 2620 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2621 if (CE->getOpcode() == Instruction::BitCast) { 2622 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2623 // If we're evaluating a store through a bitcast, then we need 2624 // to pull the bitcast off the pointer type and push it onto the 2625 // stored value. 2626 Ptr = CE->getOperand(0); 2627 2628 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2629 2630 // In order to push the bitcast onto the stored value, a bitcast 2631 // from NewTy to Val's type must be legal. If it's not, we can try 2632 // introspecting NewTy to find a legal conversion. 2633 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2634 // If NewTy is a struct, we can convert the pointer to the struct 2635 // into a pointer to its first member. 2636 // FIXME: This could be extended to support arrays as well. 2637 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2638 NewTy = STy->getTypeAtIndex(0U); 2639 2640 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2641 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2642 Constant * const IdxList[] = {IdxZero, IdxZero}; 2643 2644 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList); 2645 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2646 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2647 2648 // If we can't improve the situation by introspecting NewTy, 2649 // we have to give up. 2650 } else { 2651 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2652 "evaluate.\n"); 2653 return false; 2654 } 2655 } 2656 2657 // If we found compatible types, go ahead and push the bitcast 2658 // onto the stored value. 2659 Val = ConstantExpr::getBitCast(Val, NewTy); 2660 2661 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2662 } 2663 } 2664 2665 MutatedMemory[Ptr] = Val; 2666 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2667 InstResult = ConstantExpr::get(BO->getOpcode(), 2668 getVal(BO->getOperand(0)), 2669 getVal(BO->getOperand(1))); 2670 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2671 << "\n"); 2672 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2673 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2674 getVal(CI->getOperand(0)), 2675 getVal(CI->getOperand(1))); 2676 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2677 << "\n"); 2678 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2679 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2680 getVal(CI->getOperand(0)), 2681 CI->getType()); 2682 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2683 << "\n"); 2684 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2685 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2686 getVal(SI->getOperand(1)), 2687 getVal(SI->getOperand(2))); 2688 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2689 << "\n"); 2690 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2691 Constant *P = getVal(GEP->getOperand(0)); 2692 SmallVector<Constant*, 8> GEPOps; 2693 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2694 i != e; ++i) 2695 GEPOps.push_back(getVal(*i)); 2696 InstResult = 2697 ConstantExpr::getGetElementPtr(P, GEPOps, 2698 cast<GEPOperator>(GEP)->isInBounds()); 2699 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2700 << "\n"); 2701 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2702 2703 if (!LI->isSimple()) { 2704 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2705 return false; // no volatile/atomic accesses. 2706 } 2707 2708 Constant *Ptr = getVal(LI->getOperand(0)); 2709 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2710 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2711 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2712 "folding: " << *Ptr << "\n"); 2713 } 2714 InstResult = ComputeLoadResult(Ptr); 2715 if (InstResult == 0) { 2716 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2717 "\n"); 2718 return false; // Could not evaluate load. 2719 } 2720 2721 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2722 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2723 if (AI->isArrayAllocation()) { 2724 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2725 return false; // Cannot handle array allocs. 2726 } 2727 Type *Ty = AI->getType()->getElementType(); 2728 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2729 GlobalValue::InternalLinkage, 2730 UndefValue::get(Ty), 2731 AI->getName())); 2732 InstResult = AllocaTmps.back(); 2733 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2734 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2735 CallSite CS(CurInst); 2736 2737 // Debug info can safely be ignored here. 2738 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2739 DEBUG(dbgs() << "Ignoring debug info.\n"); 2740 ++CurInst; 2741 continue; 2742 } 2743 2744 // Cannot handle inline asm. 2745 if (isa<InlineAsm>(CS.getCalledValue())) { 2746 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2747 return false; 2748 } 2749 2750 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2751 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2752 if (MSI->isVolatile()) { 2753 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2754 "intrinsic.\n"); 2755 return false; 2756 } 2757 Constant *Ptr = getVal(MSI->getDest()); 2758 Constant *Val = getVal(MSI->getValue()); 2759 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2760 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2761 // This memset is a no-op. 2762 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2763 ++CurInst; 2764 continue; 2765 } 2766 } 2767 2768 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2769 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2770 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2771 ++CurInst; 2772 continue; 2773 } 2774 2775 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2776 // We don't insert an entry into Values, as it doesn't have a 2777 // meaningful return value. 2778 if (!II->use_empty()) { 2779 DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n"); 2780 return false; 2781 } 2782 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2783 Value *PtrArg = getVal(II->getArgOperand(1)); 2784 Value *Ptr = PtrArg->stripPointerCasts(); 2785 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2786 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2787 if (TD && !Size->isAllOnesValue() && 2788 Size->getValue().getLimitedValue() >= 2789 TD->getTypeStoreSize(ElemTy)) { 2790 Invariants.insert(GV); 2791 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2792 << "\n"); 2793 } else { 2794 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2795 "invariant.\n"); 2796 } 2797 } 2798 // Continue even if we do nothing. 2799 ++CurInst; 2800 continue; 2801 } 2802 2803 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2804 return false; 2805 } 2806 2807 // Resolve function pointers. 2808 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2809 if (!Callee || Callee->mayBeOverridden()) { 2810 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2811 return false; // Cannot resolve. 2812 } 2813 2814 SmallVector<Constant*, 8> Formals; 2815 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2816 Formals.push_back(getVal(*i)); 2817 2818 if (Callee->isDeclaration()) { 2819 // If this is a function we can constant fold, do it. 2820 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2821 InstResult = C; 2822 DEBUG(dbgs() << "Constant folded function call. Result: " << 2823 *InstResult << "\n"); 2824 } else { 2825 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2826 return false; 2827 } 2828 } else { 2829 if (Callee->getFunctionType()->isVarArg()) { 2830 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2831 return false; 2832 } 2833 2834 Constant *RetVal = 0; 2835 // Execute the call, if successful, use the return value. 2836 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2837 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2838 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2839 return false; 2840 } 2841 delete ValueStack.pop_back_val(); 2842 InstResult = RetVal; 2843 2844 if (InstResult != NULL) { 2845 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2846 InstResult << "\n\n"); 2847 } else { 2848 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2849 } 2850 } 2851 } else if (isa<TerminatorInst>(CurInst)) { 2852 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2853 2854 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2855 if (BI->isUnconditional()) { 2856 NextBB = BI->getSuccessor(0); 2857 } else { 2858 ConstantInt *Cond = 2859 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2860 if (!Cond) return false; // Cannot determine. 2861 2862 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2863 } 2864 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2865 ConstantInt *Val = 2866 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2867 if (!Val) return false; // Cannot determine. 2868 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2869 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2870 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2871 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2872 NextBB = BA->getBasicBlock(); 2873 else 2874 return false; // Cannot determine. 2875 } else if (isa<ReturnInst>(CurInst)) { 2876 NextBB = 0; 2877 } else { 2878 // invoke, unwind, resume, unreachable. 2879 DEBUG(dbgs() << "Can not handle terminator."); 2880 return false; // Cannot handle this terminator. 2881 } 2882 2883 // We succeeded at evaluating this block! 2884 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2885 return true; 2886 } else { 2887 // Did not know how to evaluate this! 2888 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2889 "\n"); 2890 return false; 2891 } 2892 2893 if (!CurInst->use_empty()) { 2894 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2895 InstResult = ConstantFoldConstantExpression(CE, TD, TLI); 2896 2897 setVal(CurInst, InstResult); 2898 } 2899 2900 // If we just processed an invoke, we finished evaluating the block. 2901 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2902 NextBB = II->getNormalDest(); 2903 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2904 return true; 2905 } 2906 2907 // Advance program counter. 2908 ++CurInst; 2909 } 2910 } 2911 2912 /// EvaluateFunction - Evaluate a call to function F, returning true if 2913 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2914 /// arguments for the function. 2915 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2916 const SmallVectorImpl<Constant*> &ActualArgs) { 2917 // Check to see if this function is already executing (recursion). If so, 2918 // bail out. TODO: we might want to accept limited recursion. 2919 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2920 return false; 2921 2922 CallStack.push_back(F); 2923 2924 // Initialize arguments to the incoming values specified. 2925 unsigned ArgNo = 0; 2926 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2927 ++AI, ++ArgNo) 2928 setVal(AI, ActualArgs[ArgNo]); 2929 2930 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2931 // we can only evaluate any one basic block at most once. This set keeps 2932 // track of what we have executed so we can detect recursive cases etc. 2933 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2934 2935 // CurBB - The current basic block we're evaluating. 2936 BasicBlock *CurBB = F->begin(); 2937 2938 BasicBlock::iterator CurInst = CurBB->begin(); 2939 2940 while (1) { 2941 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings. 2942 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2943 2944 if (!EvaluateBlock(CurInst, NextBB)) 2945 return false; 2946 2947 if (NextBB == 0) { 2948 // Successfully running until there's no next block means that we found 2949 // the return. Fill it the return value and pop the call stack. 2950 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2951 if (RI->getNumOperands()) 2952 RetVal = getVal(RI->getOperand(0)); 2953 CallStack.pop_back(); 2954 return true; 2955 } 2956 2957 // Okay, we succeeded in evaluating this control flow. See if we have 2958 // executed the new block before. If so, we have a looping function, 2959 // which we cannot evaluate in reasonable time. 2960 if (!ExecutedBlocks.insert(NextBB)) 2961 return false; // looped! 2962 2963 // Okay, we have never been in this block before. Check to see if there 2964 // are any PHI nodes. If so, evaluate them with information about where 2965 // we came from. 2966 PHINode *PN = 0; 2967 for (CurInst = NextBB->begin(); 2968 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2969 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2970 2971 // Advance to the next block. 2972 CurBB = NextBB; 2973 } 2974 } 2975 2976 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2977 /// we can. Return true if we can, false otherwise. 2978 static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD, 2979 const TargetLibraryInfo *TLI) { 2980 // Call the function. 2981 Evaluator Eval(TD, TLI); 2982 Constant *RetValDummy; 2983 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2984 SmallVector<Constant*, 0>()); 2985 2986 if (EvalSuccess) { 2987 // We succeeded at evaluation: commit the result. 2988 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2989 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2990 << " stores.\n"); 2991 for (DenseMap<Constant*, Constant*>::const_iterator I = 2992 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2993 I != E; ++I) 2994 CommitValueTo(I->second, I->first); 2995 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I = 2996 Eval.getInvariants().begin(), E = Eval.getInvariants().end(); 2997 I != E; ++I) 2998 (*I)->setConstant(true); 2999 } 3000 3001 return EvalSuccess; 3002 } 3003 3004 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 3005 /// Return true if anything changed. 3006 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 3007 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 3008 bool MadeChange = false; 3009 if (Ctors.empty()) return false; 3010 3011 // Loop over global ctors, optimizing them when we can. 3012 for (unsigned i = 0; i != Ctors.size(); ++i) { 3013 Function *F = Ctors[i]; 3014 // Found a null terminator in the middle of the list, prune off the rest of 3015 // the list. 3016 if (F == 0) { 3017 if (i != Ctors.size()-1) { 3018 Ctors.resize(i+1); 3019 MadeChange = true; 3020 } 3021 break; 3022 } 3023 DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n"); 3024 3025 // We cannot simplify external ctor functions. 3026 if (F->empty()) continue; 3027 3028 // If we can evaluate the ctor at compile time, do. 3029 if (EvaluateStaticConstructor(F, TD, TLI)) { 3030 Ctors.erase(Ctors.begin()+i); 3031 MadeChange = true; 3032 --i; 3033 ++NumCtorsEvaluated; 3034 continue; 3035 } 3036 } 3037 3038 if (!MadeChange) return false; 3039 3040 GCL = InstallGlobalCtors(GCL, Ctors); 3041 return true; 3042 } 3043 3044 static int compareNames(const void *A, const void *B) { 3045 const GlobalValue *VA = *reinterpret_cast<GlobalValue* const*>(A); 3046 const GlobalValue *VB = *reinterpret_cast<GlobalValue* const*>(B); 3047 if (VA->getName() < VB->getName()) 3048 return -1; 3049 if (VB->getName() < VA->getName()) 3050 return 1; 3051 return 0; 3052 } 3053 3054 static void setUsedInitializer(GlobalVariable &V, 3055 SmallPtrSet<GlobalValue *, 8> Init) { 3056 if (Init.empty()) { 3057 V.eraseFromParent(); 3058 return; 3059 } 3060 3061 SmallVector<llvm::Constant *, 8> UsedArray; 3062 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext()); 3063 3064 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end(); 3065 I != E; ++I) { 3066 Constant *Cast = llvm::ConstantExpr::getBitCast(*I, Int8PtrTy); 3067 UsedArray.push_back(Cast); 3068 } 3069 // Sort to get deterministic order. 3070 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 3071 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 3072 3073 Module *M = V.getParent(); 3074 V.removeFromParent(); 3075 GlobalVariable *NV = 3076 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 3077 llvm::ConstantArray::get(ATy, UsedArray), ""); 3078 NV->takeName(&V); 3079 NV->setSection("llvm.metadata"); 3080 delete &V; 3081 } 3082 3083 namespace { 3084 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 3085 class LLVMUsed { 3086 SmallPtrSet<GlobalValue *, 8> Used; 3087 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 3088 GlobalVariable *UsedV; 3089 GlobalVariable *CompilerUsedV; 3090 3091 public: 3092 LLVMUsed(Module &M) { 3093 UsedV = collectUsedGlobalVariables(M, Used, false); 3094 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 3095 } 3096 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 3097 iterator usedBegin() { return Used.begin(); } 3098 iterator usedEnd() { return Used.end(); } 3099 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 3100 iterator compilerUsedEnd() { return CompilerUsed.end(); } 3101 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 3102 bool compilerUsedCount(GlobalValue *GV) const { 3103 return CompilerUsed.count(GV); 3104 } 3105 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 3106 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 3107 bool usedInsert(GlobalValue *GV) { return Used.insert(GV); } 3108 bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); } 3109 3110 void syncVariablesAndSets() { 3111 if (UsedV) 3112 setUsedInitializer(*UsedV, Used); 3113 if (CompilerUsedV) 3114 setUsedInitializer(*CompilerUsedV, CompilerUsed); 3115 } 3116 }; 3117 } 3118 3119 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 3120 if (GA.use_empty()) // No use at all. 3121 return false; 3122 3123 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 3124 "We should have removed the duplicated " 3125 "element from llvm.compiler.used"); 3126 if (!GA.hasOneUse()) 3127 // Strictly more than one use. So at least one is not in llvm.used and 3128 // llvm.compiler.used. 3129 return true; 3130 3131 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 3132 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 3133 } 3134 3135 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 3136 const LLVMUsed &U) { 3137 unsigned N = 2; 3138 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 3139 "We should have removed the duplicated " 3140 "element from llvm.compiler.used"); 3141 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 3142 ++N; 3143 return V.hasNUsesOrMore(N); 3144 } 3145 3146 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 3147 if (!GA.hasLocalLinkage()) 3148 return true; 3149 3150 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 3151 } 3152 3153 static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) { 3154 RenameTarget = false; 3155 bool Ret = false; 3156 if (hasUseOtherThanLLVMUsed(GA, U)) 3157 Ret = true; 3158 3159 // If the alias is externally visible, we may still be able to simplify it. 3160 if (!mayHaveOtherReferences(GA, U)) 3161 return Ret; 3162 3163 // If the aliasee has internal linkage, give it the name and linkage 3164 // of the alias, and delete the alias. This turns: 3165 // define internal ... @f(...) 3166 // @a = alias ... @f 3167 // into: 3168 // define ... @a(...) 3169 Constant *Aliasee = GA.getAliasee(); 3170 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 3171 if (!Target->hasLocalLinkage()) 3172 return Ret; 3173 3174 // Do not perform the transform if multiple aliases potentially target the 3175 // aliasee. This check also ensures that it is safe to replace the section 3176 // and other attributes of the aliasee with those of the alias. 3177 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 3178 return Ret; 3179 3180 RenameTarget = true; 3181 return true; 3182 } 3183 3184 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 3185 bool Changed = false; 3186 LLVMUsed Used(M); 3187 3188 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(), 3189 E = Used.usedEnd(); 3190 I != E; ++I) 3191 Used.compilerUsedErase(*I); 3192 3193 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 3194 I != E;) { 3195 Module::alias_iterator J = I++; 3196 // Aliases without names cannot be referenced outside this module. 3197 if (!J->hasName() && !J->isDeclaration()) 3198 J->setLinkage(GlobalValue::InternalLinkage); 3199 // If the aliasee may change at link time, nothing can be done - bail out. 3200 if (J->mayBeOverridden()) 3201 continue; 3202 3203 Constant *Aliasee = J->getAliasee(); 3204 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 3205 Target->removeDeadConstantUsers(); 3206 3207 // Make all users of the alias use the aliasee instead. 3208 bool RenameTarget; 3209 if (!hasUsesToReplace(*J, Used, RenameTarget)) 3210 continue; 3211 3212 J->replaceAllUsesWith(Aliasee); 3213 ++NumAliasesResolved; 3214 Changed = true; 3215 3216 if (RenameTarget) { 3217 // Give the aliasee the name, linkage and other attributes of the alias. 3218 Target->takeName(J); 3219 Target->setLinkage(J->getLinkage()); 3220 Target->GlobalValue::copyAttributesFrom(J); 3221 3222 if (Used.usedErase(J)) 3223 Used.usedInsert(Target); 3224 3225 if (Used.compilerUsedErase(J)) 3226 Used.compilerUsedInsert(Target); 3227 } else if (mayHaveOtherReferences(*J, Used)) 3228 continue; 3229 3230 // Delete the alias. 3231 M.getAliasList().erase(J); 3232 ++NumAliasesRemoved; 3233 Changed = true; 3234 } 3235 3236 Used.syncVariablesAndSets(); 3237 3238 return Changed; 3239 } 3240 3241 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 3242 if (!TLI->has(LibFunc::cxa_atexit)) 3243 return 0; 3244 3245 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 3246 3247 if (!Fn) 3248 return 0; 3249 3250 FunctionType *FTy = Fn->getFunctionType(); 3251 3252 // Checking that the function has the right return type, the right number of 3253 // parameters and that they all have pointer types should be enough. 3254 if (!FTy->getReturnType()->isIntegerTy() || 3255 FTy->getNumParams() != 3 || 3256 !FTy->getParamType(0)->isPointerTy() || 3257 !FTy->getParamType(1)->isPointerTy() || 3258 !FTy->getParamType(2)->isPointerTy()) 3259 return 0; 3260 3261 return Fn; 3262 } 3263 3264 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 3265 /// destructor and can therefore be eliminated. 3266 /// Note that we assume that other optimization passes have already simplified 3267 /// the code so we only look for a function with a single basic block, where 3268 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 3269 /// other side-effect free instructions. 3270 static bool cxxDtorIsEmpty(const Function &Fn, 3271 SmallPtrSet<const Function *, 8> &CalledFunctions) { 3272 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 3273 // nounwind, but that doesn't seem worth doing. 3274 if (Fn.isDeclaration()) 3275 return false; 3276 3277 if (++Fn.begin() != Fn.end()) 3278 return false; 3279 3280 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 3281 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 3282 I != E; ++I) { 3283 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 3284 // Ignore debug intrinsics. 3285 if (isa<DbgInfoIntrinsic>(CI)) 3286 continue; 3287 3288 const Function *CalledFn = CI->getCalledFunction(); 3289 3290 if (!CalledFn) 3291 return false; 3292 3293 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 3294 3295 // Don't treat recursive functions as empty. 3296 if (!NewCalledFunctions.insert(CalledFn)) 3297 return false; 3298 3299 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 3300 return false; 3301 } else if (isa<ReturnInst>(*I)) 3302 return true; // We're done. 3303 else if (I->mayHaveSideEffects()) 3304 return false; // Destructor with side effects, bail. 3305 } 3306 3307 return false; 3308 } 3309 3310 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 3311 /// Itanium C++ ABI p3.3.5: 3312 /// 3313 /// After constructing a global (or local static) object, that will require 3314 /// destruction on exit, a termination function is registered as follows: 3315 /// 3316 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3317 /// 3318 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3319 /// call f(p) when DSO d is unloaded, before all such termination calls 3320 /// registered before this one. It returns zero if registration is 3321 /// successful, nonzero on failure. 3322 3323 // This pass will look for calls to __cxa_atexit where the function is trivial 3324 // and remove them. 3325 bool Changed = false; 3326 3327 for (Function::use_iterator I = CXAAtExitFn->use_begin(), 3328 E = CXAAtExitFn->use_end(); I != E;) { 3329 // We're only interested in calls. Theoretically, we could handle invoke 3330 // instructions as well, but neither llvm-gcc nor clang generate invokes 3331 // to __cxa_atexit. 3332 CallInst *CI = dyn_cast<CallInst>(*I++); 3333 if (!CI) 3334 continue; 3335 3336 Function *DtorFn = 3337 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3338 if (!DtorFn) 3339 continue; 3340 3341 SmallPtrSet<const Function *, 8> CalledFunctions; 3342 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3343 continue; 3344 3345 // Just remove the call. 3346 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3347 CI->eraseFromParent(); 3348 3349 ++NumCXXDtorsRemoved; 3350 3351 Changed |= true; 3352 } 3353 3354 return Changed; 3355 } 3356 3357 bool GlobalOpt::runOnModule(Module &M) { 3358 bool Changed = false; 3359 3360 TD = getAnalysisIfAvailable<DataLayout>(); 3361 TLI = &getAnalysis<TargetLibraryInfo>(); 3362 3363 // Try to find the llvm.globalctors list. 3364 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 3365 3366 bool LocalChange = true; 3367 while (LocalChange) { 3368 LocalChange = false; 3369 3370 // Delete functions that are trivially dead, ccc -> fastcc 3371 LocalChange |= OptimizeFunctions(M); 3372 3373 // Optimize global_ctors list. 3374 if (GlobalCtors) 3375 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 3376 3377 // Optimize non-address-taken globals. 3378 LocalChange |= OptimizeGlobalVars(M); 3379 3380 // Resolve aliases, when possible. 3381 LocalChange |= OptimizeGlobalAliases(M); 3382 3383 // Try to remove trivial global destructors if they are not removed 3384 // already. 3385 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3386 if (CXAAtExitFn) 3387 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3388 3389 Changed |= LocalChange; 3390 } 3391 3392 // TODO: Move all global ctors functions to the end of the module for code 3393 // layout. 3394 3395 return Changed; 3396 } 3397