Home | History | Annotate | Download | only in win
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "media/audio/win/audio_low_latency_input_win.h"
      6 
      7 #include "base/logging.h"
      8 #include "base/memory/scoped_ptr.h"
      9 #include "base/strings/utf_string_conversions.h"
     10 #include "media/audio/win/audio_manager_win.h"
     11 #include "media/audio/win/avrt_wrapper_win.h"
     12 
     13 using base::win::ScopedComPtr;
     14 using base::win::ScopedCOMInitializer;
     15 
     16 namespace media {
     17 
     18 WASAPIAudioInputStream::WASAPIAudioInputStream(
     19     AudioManagerWin* manager, const AudioParameters& params,
     20     const std::string& device_id)
     21     : manager_(manager),
     22       capture_thread_(NULL),
     23       opened_(false),
     24       started_(false),
     25       endpoint_buffer_size_frames_(0),
     26       device_id_(device_id),
     27       sink_(NULL) {
     28   DCHECK(manager_);
     29 
     30   // Load the Avrt DLL if not already loaded. Required to support MMCSS.
     31   bool avrt_init = avrt::Initialize();
     32   DCHECK(avrt_init) << "Failed to load the Avrt.dll";
     33 
     34   // Set up the desired capture format specified by the client.
     35   format_.nSamplesPerSec = params.sample_rate();
     36   format_.wFormatTag = WAVE_FORMAT_PCM;
     37   format_.wBitsPerSample = params.bits_per_sample();
     38   format_.nChannels = params.channels();
     39   format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
     40   format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
     41   format_.cbSize = 0;
     42 
     43   // Size in bytes of each audio frame.
     44   frame_size_ = format_.nBlockAlign;
     45   // Store size of audio packets which we expect to get from the audio
     46   // endpoint device in each capture event.
     47   packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
     48   packet_size_bytes_ = params.GetBytesPerBuffer();
     49   DVLOG(1) << "Number of bytes per audio frame  : " << frame_size_;
     50   DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
     51 
     52   // All events are auto-reset events and non-signaled initially.
     53 
     54   // Create the event which the audio engine will signal each time
     55   // a buffer becomes ready to be processed by the client.
     56   audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     57   DCHECK(audio_samples_ready_event_.IsValid());
     58 
     59   // Create the event which will be set in Stop() when capturing shall stop.
     60   stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     61   DCHECK(stop_capture_event_.IsValid());
     62 
     63   ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
     64 
     65   LARGE_INTEGER performance_frequency;
     66   if (QueryPerformanceFrequency(&performance_frequency)) {
     67     perf_count_to_100ns_units_ =
     68         (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
     69   } else {
     70     LOG(ERROR) <<  "High-resolution performance counters are not supported.";
     71     perf_count_to_100ns_units_ = 0.0;
     72   }
     73 }
     74 
     75 WASAPIAudioInputStream::~WASAPIAudioInputStream() {}
     76 
     77 bool WASAPIAudioInputStream::Open() {
     78   DCHECK(CalledOnValidThread());
     79   // Verify that we are not already opened.
     80   if (opened_)
     81     return false;
     82 
     83   // Obtain a reference to the IMMDevice interface of the capturing
     84   // device with the specified unique identifier or role which was
     85   // set at construction.
     86   HRESULT hr = SetCaptureDevice();
     87   if (FAILED(hr))
     88     return false;
     89 
     90   // Obtain an IAudioClient interface which enables us to create and initialize
     91   // an audio stream between an audio application and the audio engine.
     92   hr = ActivateCaptureDevice();
     93   if (FAILED(hr))
     94     return false;
     95 
     96   // Retrieve the stream format which the audio engine uses for its internal
     97   // processing/mixing of shared-mode streams. This function call is for
     98   // diagnostic purposes only and only in debug mode.
     99 #ifndef NDEBUG
    100   hr = GetAudioEngineStreamFormat();
    101 #endif
    102 
    103   // Verify that the selected audio endpoint supports the specified format
    104   // set during construction.
    105   if (!DesiredFormatIsSupported())
    106     return false;
    107 
    108   // Initialize the audio stream between the client and the device using
    109   // shared mode and a lowest possible glitch-free latency.
    110   hr = InitializeAudioEngine();
    111 
    112   opened_ = SUCCEEDED(hr);
    113   return opened_;
    114 }
    115 
    116 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
    117   DCHECK(CalledOnValidThread());
    118   DCHECK(callback);
    119   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    120   if (!opened_)
    121     return;
    122 
    123   if (started_)
    124     return;
    125 
    126   sink_ = callback;
    127 
    128   // Starts periodic AGC microphone measurements if the AGC has been enabled
    129   // using SetAutomaticGainControl().
    130   StartAgc();
    131 
    132   // Create and start the thread that will drive the capturing by waiting for
    133   // capture events.
    134   capture_thread_ =
    135       new base::DelegateSimpleThread(this, "wasapi_capture_thread");
    136   capture_thread_->Start();
    137 
    138   // Start streaming data between the endpoint buffer and the audio engine.
    139   HRESULT hr = audio_client_->Start();
    140   DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
    141 
    142   if (SUCCEEDED(hr) && audio_render_client_for_loopback_)
    143     hr = audio_render_client_for_loopback_->Start();
    144 
    145   started_ = SUCCEEDED(hr);
    146 }
    147 
    148 void WASAPIAudioInputStream::Stop() {
    149   DCHECK(CalledOnValidThread());
    150   DVLOG(1) << "WASAPIAudioInputStream::Stop()";
    151   if (!started_)
    152     return;
    153 
    154   // Stops periodic AGC microphone measurements.
    155   StopAgc();
    156 
    157   // Shut down the capture thread.
    158   if (stop_capture_event_.IsValid()) {
    159     SetEvent(stop_capture_event_.Get());
    160   }
    161 
    162   // Stop the input audio streaming.
    163   HRESULT hr = audio_client_->Stop();
    164   if (FAILED(hr)) {
    165     LOG(ERROR) << "Failed to stop input streaming.";
    166   }
    167 
    168   // Wait until the thread completes and perform cleanup.
    169   if (capture_thread_) {
    170     SetEvent(stop_capture_event_.Get());
    171     capture_thread_->Join();
    172     capture_thread_ = NULL;
    173   }
    174 
    175   started_ = false;
    176 }
    177 
    178 void WASAPIAudioInputStream::Close() {
    179   DVLOG(1) << "WASAPIAudioInputStream::Close()";
    180   // It is valid to call Close() before calling open or Start().
    181   // It is also valid to call Close() after Start() has been called.
    182   Stop();
    183   if (sink_) {
    184     sink_->OnClose(this);
    185     sink_ = NULL;
    186   }
    187 
    188   // Inform the audio manager that we have been closed. This will cause our
    189   // destruction.
    190   manager_->ReleaseInputStream(this);
    191 }
    192 
    193 double WASAPIAudioInputStream::GetMaxVolume() {
    194   // Verify that Open() has been called succesfully, to ensure that an audio
    195   // session exists and that an ISimpleAudioVolume interface has been created.
    196   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    197   if (!opened_)
    198     return 0.0;
    199 
    200   // The effective volume value is always in the range 0.0 to 1.0, hence
    201   // we can return a fixed value (=1.0) here.
    202   return 1.0;
    203 }
    204 
    205 void WASAPIAudioInputStream::SetVolume(double volume) {
    206   DVLOG(1) << "SetVolume(volume=" << volume << ")";
    207   DCHECK(CalledOnValidThread());
    208   DCHECK_GE(volume, 0.0);
    209   DCHECK_LE(volume, 1.0);
    210 
    211   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    212   if (!opened_)
    213     return;
    214 
    215   // Set a new master volume level. Valid volume levels are in the range
    216   // 0.0 to 1.0. Ignore volume-change events.
    217   HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
    218       NULL);
    219   DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
    220 
    221   // Update the AGC volume level based on the last setting above. Note that,
    222   // the volume-level resolution is not infinite and it is therefore not
    223   // possible to assume that the volume provided as input parameter can be
    224   // used directly. Instead, a new query to the audio hardware is required.
    225   // This method does nothing if AGC is disabled.
    226   UpdateAgcVolume();
    227 }
    228 
    229 double WASAPIAudioInputStream::GetVolume() {
    230   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    231   if (!opened_)
    232     return 0.0;
    233 
    234   // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
    235   float level = 0.0f;
    236   HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
    237   DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
    238 
    239   return static_cast<double>(level);
    240 }
    241 
    242 // static
    243 int WASAPIAudioInputStream::HardwareSampleRate(
    244     const std::string& device_id) {
    245   base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
    246   HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
    247   if (FAILED(hr))
    248     return 0;
    249 
    250   return static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
    251 }
    252 
    253 // static
    254 uint32 WASAPIAudioInputStream::HardwareChannelCount(
    255     const std::string& device_id) {
    256   base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
    257   HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
    258   if (FAILED(hr))
    259     return 0;
    260 
    261   return static_cast<uint32>(audio_engine_mix_format->nChannels);
    262 }
    263 
    264 // static
    265 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
    266                                              WAVEFORMATEX** device_format) {
    267   // It is assumed that this static method is called from a COM thread, i.e.,
    268   // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
    269   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    270   HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL,
    271                                          CLSCTX_INPROC_SERVER);
    272   if (FAILED(hr))
    273     return hr;
    274 
    275   ScopedComPtr<IMMDevice> endpoint_device;
    276   if (device_id == AudioManagerBase::kDefaultDeviceId) {
    277     // Retrieve the default capture audio endpoint.
    278     hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
    279                                              endpoint_device.Receive());
    280   } else if (device_id == AudioManagerBase::kLoopbackInputDeviceId) {
    281     // Capture the default playback stream.
    282     hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
    283                                              endpoint_device.Receive());
    284   } else {
    285     // Retrieve a capture endpoint device that is specified by an endpoint
    286     // device-identification string.
    287     hr = enumerator->GetDevice(UTF8ToUTF16(device_id).c_str(),
    288                                endpoint_device.Receive());
    289   }
    290   if (FAILED(hr))
    291     return hr;
    292 
    293   ScopedComPtr<IAudioClient> audio_client;
    294   hr = endpoint_device->Activate(__uuidof(IAudioClient),
    295                                  CLSCTX_INPROC_SERVER,
    296                                  NULL,
    297                                  audio_client.ReceiveVoid());
    298   return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
    299 }
    300 
    301 void WASAPIAudioInputStream::Run() {
    302   ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
    303 
    304   // Increase the thread priority.
    305   capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
    306 
    307   // Enable MMCSS to ensure that this thread receives prioritized access to
    308   // CPU resources.
    309   DWORD task_index = 0;
    310   HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
    311                                                       &task_index);
    312   bool mmcss_is_ok =
    313       (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
    314   if (!mmcss_is_ok) {
    315     // Failed to enable MMCSS on this thread. It is not fatal but can lead
    316     // to reduced QoS at high load.
    317     DWORD err = GetLastError();
    318     LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
    319   }
    320 
    321   // Allocate a buffer with a size that enables us to take care of cases like:
    322   // 1) The recorded buffer size is smaller, or does not match exactly with,
    323   //    the selected packet size used in each callback.
    324   // 2) The selected buffer size is larger than the recorded buffer size in
    325   //    each event.
    326   size_t buffer_frame_index = 0;
    327   size_t capture_buffer_size = std::max(
    328       2 * endpoint_buffer_size_frames_ * frame_size_,
    329       2 * packet_size_frames_ * frame_size_);
    330   scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]);
    331 
    332   LARGE_INTEGER now_count;
    333   bool recording = true;
    334   bool error = false;
    335   double volume = GetVolume();
    336   HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_};
    337 
    338   while (recording && !error) {
    339     HRESULT hr = S_FALSE;
    340 
    341     // Wait for a close-down event or a new capture event.
    342     DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
    343     switch (wait_result) {
    344       case WAIT_FAILED:
    345         error = true;
    346         break;
    347       case WAIT_OBJECT_0 + 0:
    348         // |stop_capture_event_| has been set.
    349         recording = false;
    350         break;
    351       case WAIT_OBJECT_0 + 1:
    352         {
    353           // |audio_samples_ready_event_| has been set.
    354           BYTE* data_ptr = NULL;
    355           UINT32 num_frames_to_read = 0;
    356           DWORD flags = 0;
    357           UINT64 device_position = 0;
    358           UINT64 first_audio_frame_timestamp = 0;
    359 
    360           // Retrieve the amount of data in the capture endpoint buffer,
    361           // replace it with silence if required, create callbacks for each
    362           // packet and store non-delivered data for the next event.
    363           hr = audio_capture_client_->GetBuffer(&data_ptr,
    364                                                 &num_frames_to_read,
    365                                                 &flags,
    366                                                 &device_position,
    367                                                 &first_audio_frame_timestamp);
    368           if (FAILED(hr)) {
    369             DLOG(ERROR) << "Failed to get data from the capture buffer";
    370             continue;
    371           }
    372 
    373           if (num_frames_to_read != 0) {
    374             size_t pos = buffer_frame_index * frame_size_;
    375             size_t num_bytes = num_frames_to_read * frame_size_;
    376             DCHECK_GE(capture_buffer_size, pos + num_bytes);
    377 
    378             if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
    379               // Clear out the local buffer since silence is reported.
    380               memset(&capture_buffer[pos], 0, num_bytes);
    381             } else {
    382               // Copy captured data from audio engine buffer to local buffer.
    383               memcpy(&capture_buffer[pos], data_ptr, num_bytes);
    384             }
    385 
    386             buffer_frame_index += num_frames_to_read;
    387           }
    388 
    389           hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
    390           DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
    391 
    392           // Derive a delay estimate for the captured audio packet.
    393           // The value contains two parts (A+B), where A is the delay of the
    394           // first audio frame in the packet and B is the extra delay
    395           // contained in any stored data. Unit is in audio frames.
    396           QueryPerformanceCounter(&now_count);
    397           double audio_delay_frames =
    398               ((perf_count_to_100ns_units_ * now_count.QuadPart -
    399                 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
    400                 buffer_frame_index - num_frames_to_read;
    401 
    402           // Get a cached AGC volume level which is updated once every second
    403           // on the audio manager thread. Note that, |volume| is also updated
    404           // each time SetVolume() is called through IPC by the render-side AGC.
    405           GetAgcVolume(&volume);
    406 
    407           // Deliver captured data to the registered consumer using a packet
    408           // size which was specified at construction.
    409           uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
    410           while (buffer_frame_index >= packet_size_frames_) {
    411             uint8* audio_data =
    412                 reinterpret_cast<uint8*>(capture_buffer.get());
    413 
    414             // Deliver data packet, delay estimation and volume level to
    415             // the user.
    416             sink_->OnData(this,
    417                           audio_data,
    418                           packet_size_bytes_,
    419                           delay_frames * frame_size_,
    420                           volume);
    421 
    422             // Store parts of the recorded data which can't be delivered
    423             // using the current packet size. The stored section will be used
    424             // either in the next while-loop iteration or in the next
    425             // capture event.
    426             memmove(&capture_buffer[0],
    427                     &capture_buffer[packet_size_bytes_],
    428                     (buffer_frame_index - packet_size_frames_) * frame_size_);
    429 
    430             buffer_frame_index -= packet_size_frames_;
    431             delay_frames -= packet_size_frames_;
    432           }
    433         }
    434         break;
    435       default:
    436         error = true;
    437         break;
    438     }
    439   }
    440 
    441   if (recording && error) {
    442     // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
    443     // stopping the audio client, joining the thread etc.?
    444     NOTREACHED() << "WASAPI capturing failed with error code "
    445                  << GetLastError();
    446   }
    447 
    448   // Disable MMCSS.
    449   if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
    450     PLOG(WARNING) << "Failed to disable MMCSS";
    451   }
    452 }
    453 
    454 void WASAPIAudioInputStream::HandleError(HRESULT err) {
    455   NOTREACHED() << "Error code: " << err;
    456   if (sink_)
    457     sink_->OnError(this);
    458 }
    459 
    460 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
    461   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    462   HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
    463                                          NULL, CLSCTX_INPROC_SERVER);
    464   if (FAILED(hr))
    465     return hr;
    466 
    467   // Retrieve the IMMDevice by using the specified role or the specified
    468   // unique endpoint device-identification string.
    469   // TODO(henrika): possibly add support for the eCommunications as well.
    470   if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
    471     // Retrieve the default capture audio endpoint for the specified role.
    472     // Note that, in Windows Vista, the MMDevice API supports device roles
    473     // but the system-supplied user interface programs do not.
    474     hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
    475                                              endpoint_device_.Receive());
    476   } else if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    477     // Capture the default playback stream.
    478     hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
    479                                              endpoint_device_.Receive());
    480   } else {
    481     // Retrieve a capture endpoint device that is specified by an endpoint
    482     // device-identification string.
    483     hr = enumerator->GetDevice(UTF8ToUTF16(device_id_).c_str(),
    484                                endpoint_device_.Receive());
    485   }
    486 
    487   if (FAILED(hr))
    488     return hr;
    489 
    490   // Verify that the audio endpoint device is active, i.e., the audio
    491   // adapter that connects to the endpoint device is present and enabled.
    492   DWORD state = DEVICE_STATE_DISABLED;
    493   hr = endpoint_device_->GetState(&state);
    494   if (FAILED(hr))
    495     return hr;
    496 
    497   if (!(state & DEVICE_STATE_ACTIVE)) {
    498     DLOG(ERROR) << "Selected capture device is not active.";
    499     hr = E_ACCESSDENIED;
    500   }
    501 
    502   return hr;
    503 }
    504 
    505 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
    506   // Creates and activates an IAudioClient COM object given the selected
    507   // capture endpoint device.
    508   HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
    509                                           CLSCTX_INPROC_SERVER,
    510                                           NULL,
    511                                           audio_client_.ReceiveVoid());
    512   return hr;
    513 }
    514 
    515 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
    516   HRESULT hr = S_OK;
    517 #ifndef NDEBUG
    518   // The GetMixFormat() method retrieves the stream format that the
    519   // audio engine uses for its internal processing of shared-mode streams.
    520   // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
    521   // of a stand-alone WAVEFORMATEX structure, to specify the format.
    522   // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
    523   // channels to speakers and the number of bits of precision in each sample.
    524   base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
    525   hr = audio_client_->GetMixFormat(
    526       reinterpret_cast<WAVEFORMATEX**>(&format_ex));
    527 
    528   // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
    529   // for details on the WAVE file format.
    530   WAVEFORMATEX format = format_ex->Format;
    531   DVLOG(2) << "WAVEFORMATEX:";
    532   DVLOG(2) << "  wFormatTags    : 0x" << std::hex << format.wFormatTag;
    533   DVLOG(2) << "  nChannels      : " << format.nChannels;
    534   DVLOG(2) << "  nSamplesPerSec : " << format.nSamplesPerSec;
    535   DVLOG(2) << "  nAvgBytesPerSec: " << format.nAvgBytesPerSec;
    536   DVLOG(2) << "  nBlockAlign    : " << format.nBlockAlign;
    537   DVLOG(2) << "  wBitsPerSample : " << format.wBitsPerSample;
    538   DVLOG(2) << "  cbSize         : " << format.cbSize;
    539 
    540   DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
    541   DVLOG(2) << " wValidBitsPerSample: " <<
    542       format_ex->Samples.wValidBitsPerSample;
    543   DVLOG(2) << " dwChannelMask      : 0x" << std::hex <<
    544       format_ex->dwChannelMask;
    545   if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
    546     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_PCM";
    547   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
    548     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
    549   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
    550     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
    551 #endif
    552   return hr;
    553 }
    554 
    555 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
    556   // An application that uses WASAPI to manage shared-mode streams can rely
    557   // on the audio engine to perform only limited format conversions. The audio
    558   // engine can convert between a standard PCM sample size used by the
    559   // application and the floating-point samples that the engine uses for its
    560   // internal processing. However, the format for an application stream
    561   // typically must have the same number of channels and the same sample
    562   // rate as the stream format used by the device.
    563   // Many audio devices support both PCM and non-PCM stream formats. However,
    564   // the audio engine can mix only PCM streams.
    565   base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
    566   HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
    567                                                 &format_,
    568                                                 &closest_match);
    569   DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
    570                                 << "but a closest match exists.";
    571   return (hr == S_OK);
    572 }
    573 
    574 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
    575   DWORD flags;
    576   // Use event-driven mode only fo regular input devices. For loopback the
    577   // EVENTCALLBACK flag is specified when intializing
    578   // |audio_render_client_for_loopback_|.
    579   if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    580     flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
    581   } else {
    582     flags =
    583       AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
    584   }
    585 
    586   // Initialize the audio stream between the client and the device.
    587   // We connect indirectly through the audio engine by using shared mode.
    588   // Note that, |hnsBufferDuration| is set of 0, which ensures that the
    589   // buffer is never smaller than the minimum buffer size needed to ensure
    590   // that glitches do not occur between the periodic processing passes.
    591   // This setting should lead to lowest possible latency.
    592   HRESULT hr = audio_client_->Initialize(AUDCLNT_SHAREMODE_SHARED,
    593                                          flags,
    594                                          0,  // hnsBufferDuration
    595                                          0,
    596                                          &format_,
    597                                          NULL);
    598   if (FAILED(hr))
    599     return hr;
    600 
    601   // Retrieve the length of the endpoint buffer shared between the client
    602   // and the audio engine. The buffer length determines the maximum amount
    603   // of capture data that the audio engine can read from the endpoint buffer
    604   // during a single processing pass.
    605   // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
    606   hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
    607   if (FAILED(hr))
    608     return hr;
    609 
    610   DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
    611            << " [frames]";
    612 
    613 #ifndef NDEBUG
    614   // The period between processing passes by the audio engine is fixed for a
    615   // particular audio endpoint device and represents the smallest processing
    616   // quantum for the audio engine. This period plus the stream latency between
    617   // the buffer and endpoint device represents the minimum possible latency
    618   // that an audio application can achieve.
    619   // TODO(henrika): possibly remove this section when all parts are ready.
    620   REFERENCE_TIME device_period_shared_mode = 0;
    621   REFERENCE_TIME device_period_exclusive_mode = 0;
    622   HRESULT hr_dbg = audio_client_->GetDevicePeriod(
    623       &device_period_shared_mode, &device_period_exclusive_mode);
    624   if (SUCCEEDED(hr_dbg)) {
    625     DVLOG(1) << "device period: "
    626              << static_cast<double>(device_period_shared_mode / 10000.0)
    627              << " [ms]";
    628   }
    629 
    630   REFERENCE_TIME latency = 0;
    631   hr_dbg = audio_client_->GetStreamLatency(&latency);
    632   if (SUCCEEDED(hr_dbg)) {
    633     DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
    634              << " [ms]";
    635   }
    636 #endif
    637 
    638   // Set the event handle that the audio engine will signal each time a buffer
    639   // becomes ready to be processed by the client.
    640   //
    641   // In loopback case the capture device doesn't receive any events, so we
    642   // need to create a separate playback client to get notifications. According
    643   // to MSDN:
    644   //
    645   //   A pull-mode capture client does not receive any events when a stream is
    646   //   initialized with event-driven buffering and is loopback-enabled. To
    647   //   work around this, initialize a render stream in event-driven mode. Each
    648   //   time the client receives an event for the render stream, it must signal
    649   //   the capture client to run the capture thread that reads the next set of
    650   //   samples from the capture endpoint buffer.
    651   //
    652   // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
    653   if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    654     hr = endpoint_device_->Activate(
    655         __uuidof(IAudioClient), CLSCTX_INPROC_SERVER, NULL,
    656         audio_render_client_for_loopback_.ReceiveVoid());
    657     if (FAILED(hr))
    658       return hr;
    659 
    660     hr = audio_render_client_for_loopback_->Initialize(
    661         AUDCLNT_SHAREMODE_SHARED,
    662         AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST,
    663         0, 0, &format_, NULL);
    664     if (FAILED(hr))
    665       return hr;
    666 
    667     hr = audio_render_client_for_loopback_->SetEventHandle(
    668         audio_samples_ready_event_.Get());
    669   } else {
    670     hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
    671   }
    672 
    673   if (FAILED(hr))
    674     return hr;
    675 
    676   // Get access to the IAudioCaptureClient interface. This interface
    677   // enables us to read input data from the capture endpoint buffer.
    678   hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
    679                                  audio_capture_client_.ReceiveVoid());
    680   if (FAILED(hr))
    681     return hr;
    682 
    683   // Obtain a reference to the ISimpleAudioVolume interface which enables
    684   // us to control the master volume level of an audio session.
    685   hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
    686                                  simple_audio_volume_.ReceiveVoid());
    687   return hr;
    688 }
    689 
    690 }  // namespace media
    691