1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "media/audio/win/audio_low_latency_input_win.h" 6 7 #include "base/logging.h" 8 #include "base/memory/scoped_ptr.h" 9 #include "base/strings/utf_string_conversions.h" 10 #include "media/audio/win/audio_manager_win.h" 11 #include "media/audio/win/avrt_wrapper_win.h" 12 13 using base::win::ScopedComPtr; 14 using base::win::ScopedCOMInitializer; 15 16 namespace media { 17 18 WASAPIAudioInputStream::WASAPIAudioInputStream( 19 AudioManagerWin* manager, const AudioParameters& params, 20 const std::string& device_id) 21 : manager_(manager), 22 capture_thread_(NULL), 23 opened_(false), 24 started_(false), 25 endpoint_buffer_size_frames_(0), 26 device_id_(device_id), 27 sink_(NULL) { 28 DCHECK(manager_); 29 30 // Load the Avrt DLL if not already loaded. Required to support MMCSS. 31 bool avrt_init = avrt::Initialize(); 32 DCHECK(avrt_init) << "Failed to load the Avrt.dll"; 33 34 // Set up the desired capture format specified by the client. 35 format_.nSamplesPerSec = params.sample_rate(); 36 format_.wFormatTag = WAVE_FORMAT_PCM; 37 format_.wBitsPerSample = params.bits_per_sample(); 38 format_.nChannels = params.channels(); 39 format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels; 40 format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign; 41 format_.cbSize = 0; 42 43 // Size in bytes of each audio frame. 44 frame_size_ = format_.nBlockAlign; 45 // Store size of audio packets which we expect to get from the audio 46 // endpoint device in each capture event. 47 packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign; 48 packet_size_bytes_ = params.GetBytesPerBuffer(); 49 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_; 50 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_; 51 52 // All events are auto-reset events and non-signaled initially. 53 54 // Create the event which the audio engine will signal each time 55 // a buffer becomes ready to be processed by the client. 56 audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL)); 57 DCHECK(audio_samples_ready_event_.IsValid()); 58 59 // Create the event which will be set in Stop() when capturing shall stop. 60 stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL)); 61 DCHECK(stop_capture_event_.IsValid()); 62 63 ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0; 64 65 LARGE_INTEGER performance_frequency; 66 if (QueryPerformanceFrequency(&performance_frequency)) { 67 perf_count_to_100ns_units_ = 68 (10000000.0 / static_cast<double>(performance_frequency.QuadPart)); 69 } else { 70 LOG(ERROR) << "High-resolution performance counters are not supported."; 71 perf_count_to_100ns_units_ = 0.0; 72 } 73 } 74 75 WASAPIAudioInputStream::~WASAPIAudioInputStream() {} 76 77 bool WASAPIAudioInputStream::Open() { 78 DCHECK(CalledOnValidThread()); 79 // Verify that we are not already opened. 80 if (opened_) 81 return false; 82 83 // Obtain a reference to the IMMDevice interface of the capturing 84 // device with the specified unique identifier or role which was 85 // set at construction. 86 HRESULT hr = SetCaptureDevice(); 87 if (FAILED(hr)) 88 return false; 89 90 // Obtain an IAudioClient interface which enables us to create and initialize 91 // an audio stream between an audio application and the audio engine. 92 hr = ActivateCaptureDevice(); 93 if (FAILED(hr)) 94 return false; 95 96 // Retrieve the stream format which the audio engine uses for its internal 97 // processing/mixing of shared-mode streams. This function call is for 98 // diagnostic purposes only and only in debug mode. 99 #ifndef NDEBUG 100 hr = GetAudioEngineStreamFormat(); 101 #endif 102 103 // Verify that the selected audio endpoint supports the specified format 104 // set during construction. 105 if (!DesiredFormatIsSupported()) 106 return false; 107 108 // Initialize the audio stream between the client and the device using 109 // shared mode and a lowest possible glitch-free latency. 110 hr = InitializeAudioEngine(); 111 112 opened_ = SUCCEEDED(hr); 113 return opened_; 114 } 115 116 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) { 117 DCHECK(CalledOnValidThread()); 118 DCHECK(callback); 119 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully"; 120 if (!opened_) 121 return; 122 123 if (started_) 124 return; 125 126 sink_ = callback; 127 128 // Starts periodic AGC microphone measurements if the AGC has been enabled 129 // using SetAutomaticGainControl(). 130 StartAgc(); 131 132 // Create and start the thread that will drive the capturing by waiting for 133 // capture events. 134 capture_thread_ = 135 new base::DelegateSimpleThread(this, "wasapi_capture_thread"); 136 capture_thread_->Start(); 137 138 // Start streaming data between the endpoint buffer and the audio engine. 139 HRESULT hr = audio_client_->Start(); 140 DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming."; 141 142 if (SUCCEEDED(hr) && audio_render_client_for_loopback_) 143 hr = audio_render_client_for_loopback_->Start(); 144 145 started_ = SUCCEEDED(hr); 146 } 147 148 void WASAPIAudioInputStream::Stop() { 149 DCHECK(CalledOnValidThread()); 150 DVLOG(1) << "WASAPIAudioInputStream::Stop()"; 151 if (!started_) 152 return; 153 154 // Stops periodic AGC microphone measurements. 155 StopAgc(); 156 157 // Shut down the capture thread. 158 if (stop_capture_event_.IsValid()) { 159 SetEvent(stop_capture_event_.Get()); 160 } 161 162 // Stop the input audio streaming. 163 HRESULT hr = audio_client_->Stop(); 164 if (FAILED(hr)) { 165 LOG(ERROR) << "Failed to stop input streaming."; 166 } 167 168 // Wait until the thread completes and perform cleanup. 169 if (capture_thread_) { 170 SetEvent(stop_capture_event_.Get()); 171 capture_thread_->Join(); 172 capture_thread_ = NULL; 173 } 174 175 started_ = false; 176 } 177 178 void WASAPIAudioInputStream::Close() { 179 DVLOG(1) << "WASAPIAudioInputStream::Close()"; 180 // It is valid to call Close() before calling open or Start(). 181 // It is also valid to call Close() after Start() has been called. 182 Stop(); 183 if (sink_) { 184 sink_->OnClose(this); 185 sink_ = NULL; 186 } 187 188 // Inform the audio manager that we have been closed. This will cause our 189 // destruction. 190 manager_->ReleaseInputStream(this); 191 } 192 193 double WASAPIAudioInputStream::GetMaxVolume() { 194 // Verify that Open() has been called succesfully, to ensure that an audio 195 // session exists and that an ISimpleAudioVolume interface has been created. 196 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully"; 197 if (!opened_) 198 return 0.0; 199 200 // The effective volume value is always in the range 0.0 to 1.0, hence 201 // we can return a fixed value (=1.0) here. 202 return 1.0; 203 } 204 205 void WASAPIAudioInputStream::SetVolume(double volume) { 206 DVLOG(1) << "SetVolume(volume=" << volume << ")"; 207 DCHECK(CalledOnValidThread()); 208 DCHECK_GE(volume, 0.0); 209 DCHECK_LE(volume, 1.0); 210 211 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully"; 212 if (!opened_) 213 return; 214 215 // Set a new master volume level. Valid volume levels are in the range 216 // 0.0 to 1.0. Ignore volume-change events. 217 HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume), 218 NULL); 219 DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume."; 220 221 // Update the AGC volume level based on the last setting above. Note that, 222 // the volume-level resolution is not infinite and it is therefore not 223 // possible to assume that the volume provided as input parameter can be 224 // used directly. Instead, a new query to the audio hardware is required. 225 // This method does nothing if AGC is disabled. 226 UpdateAgcVolume(); 227 } 228 229 double WASAPIAudioInputStream::GetVolume() { 230 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully"; 231 if (!opened_) 232 return 0.0; 233 234 // Retrieve the current volume level. The value is in the range 0.0 to 1.0. 235 float level = 0.0f; 236 HRESULT hr = simple_audio_volume_->GetMasterVolume(&level); 237 DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume."; 238 239 return static_cast<double>(level); 240 } 241 242 // static 243 int WASAPIAudioInputStream::HardwareSampleRate( 244 const std::string& device_id) { 245 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format; 246 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format); 247 if (FAILED(hr)) 248 return 0; 249 250 return static_cast<int>(audio_engine_mix_format->nSamplesPerSec); 251 } 252 253 // static 254 uint32 WASAPIAudioInputStream::HardwareChannelCount( 255 const std::string& device_id) { 256 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format; 257 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format); 258 if (FAILED(hr)) 259 return 0; 260 261 return static_cast<uint32>(audio_engine_mix_format->nChannels); 262 } 263 264 // static 265 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id, 266 WAVEFORMATEX** device_format) { 267 // It is assumed that this static method is called from a COM thread, i.e., 268 // CoInitializeEx() is not called here to avoid STA/MTA conflicts. 269 ScopedComPtr<IMMDeviceEnumerator> enumerator; 270 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL, 271 CLSCTX_INPROC_SERVER); 272 if (FAILED(hr)) 273 return hr; 274 275 ScopedComPtr<IMMDevice> endpoint_device; 276 if (device_id == AudioManagerBase::kDefaultDeviceId) { 277 // Retrieve the default capture audio endpoint. 278 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole, 279 endpoint_device.Receive()); 280 } else if (device_id == AudioManagerBase::kLoopbackInputDeviceId) { 281 // Capture the default playback stream. 282 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole, 283 endpoint_device.Receive()); 284 } else { 285 // Retrieve a capture endpoint device that is specified by an endpoint 286 // device-identification string. 287 hr = enumerator->GetDevice(UTF8ToUTF16(device_id).c_str(), 288 endpoint_device.Receive()); 289 } 290 if (FAILED(hr)) 291 return hr; 292 293 ScopedComPtr<IAudioClient> audio_client; 294 hr = endpoint_device->Activate(__uuidof(IAudioClient), 295 CLSCTX_INPROC_SERVER, 296 NULL, 297 audio_client.ReceiveVoid()); 298 return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr; 299 } 300 301 void WASAPIAudioInputStream::Run() { 302 ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA); 303 304 // Increase the thread priority. 305 capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio); 306 307 // Enable MMCSS to ensure that this thread receives prioritized access to 308 // CPU resources. 309 DWORD task_index = 0; 310 HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio", 311 &task_index); 312 bool mmcss_is_ok = 313 (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL)); 314 if (!mmcss_is_ok) { 315 // Failed to enable MMCSS on this thread. It is not fatal but can lead 316 // to reduced QoS at high load. 317 DWORD err = GetLastError(); 318 LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ")."; 319 } 320 321 // Allocate a buffer with a size that enables us to take care of cases like: 322 // 1) The recorded buffer size is smaller, or does not match exactly with, 323 // the selected packet size used in each callback. 324 // 2) The selected buffer size is larger than the recorded buffer size in 325 // each event. 326 size_t buffer_frame_index = 0; 327 size_t capture_buffer_size = std::max( 328 2 * endpoint_buffer_size_frames_ * frame_size_, 329 2 * packet_size_frames_ * frame_size_); 330 scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]); 331 332 LARGE_INTEGER now_count; 333 bool recording = true; 334 bool error = false; 335 double volume = GetVolume(); 336 HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_}; 337 338 while (recording && !error) { 339 HRESULT hr = S_FALSE; 340 341 // Wait for a close-down event or a new capture event. 342 DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE); 343 switch (wait_result) { 344 case WAIT_FAILED: 345 error = true; 346 break; 347 case WAIT_OBJECT_0 + 0: 348 // |stop_capture_event_| has been set. 349 recording = false; 350 break; 351 case WAIT_OBJECT_0 + 1: 352 { 353 // |audio_samples_ready_event_| has been set. 354 BYTE* data_ptr = NULL; 355 UINT32 num_frames_to_read = 0; 356 DWORD flags = 0; 357 UINT64 device_position = 0; 358 UINT64 first_audio_frame_timestamp = 0; 359 360 // Retrieve the amount of data in the capture endpoint buffer, 361 // replace it with silence if required, create callbacks for each 362 // packet and store non-delivered data for the next event. 363 hr = audio_capture_client_->GetBuffer(&data_ptr, 364 &num_frames_to_read, 365 &flags, 366 &device_position, 367 &first_audio_frame_timestamp); 368 if (FAILED(hr)) { 369 DLOG(ERROR) << "Failed to get data from the capture buffer"; 370 continue; 371 } 372 373 if (num_frames_to_read != 0) { 374 size_t pos = buffer_frame_index * frame_size_; 375 size_t num_bytes = num_frames_to_read * frame_size_; 376 DCHECK_GE(capture_buffer_size, pos + num_bytes); 377 378 if (flags & AUDCLNT_BUFFERFLAGS_SILENT) { 379 // Clear out the local buffer since silence is reported. 380 memset(&capture_buffer[pos], 0, num_bytes); 381 } else { 382 // Copy captured data from audio engine buffer to local buffer. 383 memcpy(&capture_buffer[pos], data_ptr, num_bytes); 384 } 385 386 buffer_frame_index += num_frames_to_read; 387 } 388 389 hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read); 390 DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer"; 391 392 // Derive a delay estimate for the captured audio packet. 393 // The value contains two parts (A+B), where A is the delay of the 394 // first audio frame in the packet and B is the extra delay 395 // contained in any stored data. Unit is in audio frames. 396 QueryPerformanceCounter(&now_count); 397 double audio_delay_frames = 398 ((perf_count_to_100ns_units_ * now_count.QuadPart - 399 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ + 400 buffer_frame_index - num_frames_to_read; 401 402 // Get a cached AGC volume level which is updated once every second 403 // on the audio manager thread. Note that, |volume| is also updated 404 // each time SetVolume() is called through IPC by the render-side AGC. 405 GetAgcVolume(&volume); 406 407 // Deliver captured data to the registered consumer using a packet 408 // size which was specified at construction. 409 uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5); 410 while (buffer_frame_index >= packet_size_frames_) { 411 uint8* audio_data = 412 reinterpret_cast<uint8*>(capture_buffer.get()); 413 414 // Deliver data packet, delay estimation and volume level to 415 // the user. 416 sink_->OnData(this, 417 audio_data, 418 packet_size_bytes_, 419 delay_frames * frame_size_, 420 volume); 421 422 // Store parts of the recorded data which can't be delivered 423 // using the current packet size. The stored section will be used 424 // either in the next while-loop iteration or in the next 425 // capture event. 426 memmove(&capture_buffer[0], 427 &capture_buffer[packet_size_bytes_], 428 (buffer_frame_index - packet_size_frames_) * frame_size_); 429 430 buffer_frame_index -= packet_size_frames_; 431 delay_frames -= packet_size_frames_; 432 } 433 } 434 break; 435 default: 436 error = true; 437 break; 438 } 439 } 440 441 if (recording && error) { 442 // TODO(henrika): perhaps it worth improving the cleanup here by e.g. 443 // stopping the audio client, joining the thread etc.? 444 NOTREACHED() << "WASAPI capturing failed with error code " 445 << GetLastError(); 446 } 447 448 // Disable MMCSS. 449 if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) { 450 PLOG(WARNING) << "Failed to disable MMCSS"; 451 } 452 } 453 454 void WASAPIAudioInputStream::HandleError(HRESULT err) { 455 NOTREACHED() << "Error code: " << err; 456 if (sink_) 457 sink_->OnError(this); 458 } 459 460 HRESULT WASAPIAudioInputStream::SetCaptureDevice() { 461 ScopedComPtr<IMMDeviceEnumerator> enumerator; 462 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), 463 NULL, CLSCTX_INPROC_SERVER); 464 if (FAILED(hr)) 465 return hr; 466 467 // Retrieve the IMMDevice by using the specified role or the specified 468 // unique endpoint device-identification string. 469 // TODO(henrika): possibly add support for the eCommunications as well. 470 if (device_id_ == AudioManagerBase::kDefaultDeviceId) { 471 // Retrieve the default capture audio endpoint for the specified role. 472 // Note that, in Windows Vista, the MMDevice API supports device roles 473 // but the system-supplied user interface programs do not. 474 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole, 475 endpoint_device_.Receive()); 476 } else if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) { 477 // Capture the default playback stream. 478 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole, 479 endpoint_device_.Receive()); 480 } else { 481 // Retrieve a capture endpoint device that is specified by an endpoint 482 // device-identification string. 483 hr = enumerator->GetDevice(UTF8ToUTF16(device_id_).c_str(), 484 endpoint_device_.Receive()); 485 } 486 487 if (FAILED(hr)) 488 return hr; 489 490 // Verify that the audio endpoint device is active, i.e., the audio 491 // adapter that connects to the endpoint device is present and enabled. 492 DWORD state = DEVICE_STATE_DISABLED; 493 hr = endpoint_device_->GetState(&state); 494 if (FAILED(hr)) 495 return hr; 496 497 if (!(state & DEVICE_STATE_ACTIVE)) { 498 DLOG(ERROR) << "Selected capture device is not active."; 499 hr = E_ACCESSDENIED; 500 } 501 502 return hr; 503 } 504 505 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() { 506 // Creates and activates an IAudioClient COM object given the selected 507 // capture endpoint device. 508 HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient), 509 CLSCTX_INPROC_SERVER, 510 NULL, 511 audio_client_.ReceiveVoid()); 512 return hr; 513 } 514 515 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() { 516 HRESULT hr = S_OK; 517 #ifndef NDEBUG 518 // The GetMixFormat() method retrieves the stream format that the 519 // audio engine uses for its internal processing of shared-mode streams. 520 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead 521 // of a stand-alone WAVEFORMATEX structure, to specify the format. 522 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of 523 // channels to speakers and the number of bits of precision in each sample. 524 base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex; 525 hr = audio_client_->GetMixFormat( 526 reinterpret_cast<WAVEFORMATEX**>(&format_ex)); 527 528 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH 529 // for details on the WAVE file format. 530 WAVEFORMATEX format = format_ex->Format; 531 DVLOG(2) << "WAVEFORMATEX:"; 532 DVLOG(2) << " wFormatTags : 0x" << std::hex << format.wFormatTag; 533 DVLOG(2) << " nChannels : " << format.nChannels; 534 DVLOG(2) << " nSamplesPerSec : " << format.nSamplesPerSec; 535 DVLOG(2) << " nAvgBytesPerSec: " << format.nAvgBytesPerSec; 536 DVLOG(2) << " nBlockAlign : " << format.nBlockAlign; 537 DVLOG(2) << " wBitsPerSample : " << format.wBitsPerSample; 538 DVLOG(2) << " cbSize : " << format.cbSize; 539 540 DVLOG(2) << "WAVEFORMATEXTENSIBLE:"; 541 DVLOG(2) << " wValidBitsPerSample: " << 542 format_ex->Samples.wValidBitsPerSample; 543 DVLOG(2) << " dwChannelMask : 0x" << std::hex << 544 format_ex->dwChannelMask; 545 if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM) 546 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM"; 547 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT) 548 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT"; 549 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX) 550 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX"; 551 #endif 552 return hr; 553 } 554 555 bool WASAPIAudioInputStream::DesiredFormatIsSupported() { 556 // An application that uses WASAPI to manage shared-mode streams can rely 557 // on the audio engine to perform only limited format conversions. The audio 558 // engine can convert between a standard PCM sample size used by the 559 // application and the floating-point samples that the engine uses for its 560 // internal processing. However, the format for an application stream 561 // typically must have the same number of channels and the same sample 562 // rate as the stream format used by the device. 563 // Many audio devices support both PCM and non-PCM stream formats. However, 564 // the audio engine can mix only PCM streams. 565 base::win::ScopedCoMem<WAVEFORMATEX> closest_match; 566 HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED, 567 &format_, 568 &closest_match); 569 DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported " 570 << "but a closest match exists."; 571 return (hr == S_OK); 572 } 573 574 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() { 575 DWORD flags; 576 // Use event-driven mode only fo regular input devices. For loopback the 577 // EVENTCALLBACK flag is specified when intializing 578 // |audio_render_client_for_loopback_|. 579 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) { 580 flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST; 581 } else { 582 flags = 583 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST; 584 } 585 586 // Initialize the audio stream between the client and the device. 587 // We connect indirectly through the audio engine by using shared mode. 588 // Note that, |hnsBufferDuration| is set of 0, which ensures that the 589 // buffer is never smaller than the minimum buffer size needed to ensure 590 // that glitches do not occur between the periodic processing passes. 591 // This setting should lead to lowest possible latency. 592 HRESULT hr = audio_client_->Initialize(AUDCLNT_SHAREMODE_SHARED, 593 flags, 594 0, // hnsBufferDuration 595 0, 596 &format_, 597 NULL); 598 if (FAILED(hr)) 599 return hr; 600 601 // Retrieve the length of the endpoint buffer shared between the client 602 // and the audio engine. The buffer length determines the maximum amount 603 // of capture data that the audio engine can read from the endpoint buffer 604 // during a single processing pass. 605 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate. 606 hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_); 607 if (FAILED(hr)) 608 return hr; 609 610 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_ 611 << " [frames]"; 612 613 #ifndef NDEBUG 614 // The period between processing passes by the audio engine is fixed for a 615 // particular audio endpoint device and represents the smallest processing 616 // quantum for the audio engine. This period plus the stream latency between 617 // the buffer and endpoint device represents the minimum possible latency 618 // that an audio application can achieve. 619 // TODO(henrika): possibly remove this section when all parts are ready. 620 REFERENCE_TIME device_period_shared_mode = 0; 621 REFERENCE_TIME device_period_exclusive_mode = 0; 622 HRESULT hr_dbg = audio_client_->GetDevicePeriod( 623 &device_period_shared_mode, &device_period_exclusive_mode); 624 if (SUCCEEDED(hr_dbg)) { 625 DVLOG(1) << "device period: " 626 << static_cast<double>(device_period_shared_mode / 10000.0) 627 << " [ms]"; 628 } 629 630 REFERENCE_TIME latency = 0; 631 hr_dbg = audio_client_->GetStreamLatency(&latency); 632 if (SUCCEEDED(hr_dbg)) { 633 DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0) 634 << " [ms]"; 635 } 636 #endif 637 638 // Set the event handle that the audio engine will signal each time a buffer 639 // becomes ready to be processed by the client. 640 // 641 // In loopback case the capture device doesn't receive any events, so we 642 // need to create a separate playback client to get notifications. According 643 // to MSDN: 644 // 645 // A pull-mode capture client does not receive any events when a stream is 646 // initialized with event-driven buffering and is loopback-enabled. To 647 // work around this, initialize a render stream in event-driven mode. Each 648 // time the client receives an event for the render stream, it must signal 649 // the capture client to run the capture thread that reads the next set of 650 // samples from the capture endpoint buffer. 651 // 652 // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx 653 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) { 654 hr = endpoint_device_->Activate( 655 __uuidof(IAudioClient), CLSCTX_INPROC_SERVER, NULL, 656 audio_render_client_for_loopback_.ReceiveVoid()); 657 if (FAILED(hr)) 658 return hr; 659 660 hr = audio_render_client_for_loopback_->Initialize( 661 AUDCLNT_SHAREMODE_SHARED, 662 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST, 663 0, 0, &format_, NULL); 664 if (FAILED(hr)) 665 return hr; 666 667 hr = audio_render_client_for_loopback_->SetEventHandle( 668 audio_samples_ready_event_.Get()); 669 } else { 670 hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get()); 671 } 672 673 if (FAILED(hr)) 674 return hr; 675 676 // Get access to the IAudioCaptureClient interface. This interface 677 // enables us to read input data from the capture endpoint buffer. 678 hr = audio_client_->GetService(__uuidof(IAudioCaptureClient), 679 audio_capture_client_.ReceiveVoid()); 680 if (FAILED(hr)) 681 return hr; 682 683 // Obtain a reference to the ISimpleAudioVolume interface which enables 684 // us to control the master volume level of an audio session. 685 hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume), 686 simple_audio_volume_.ReceiveVoid()); 687 return hr; 688 } 689 690 } // namespace media 691