Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass.  Given some numbering of
     11 // each the machine instructions (in this implemention depth-first order) an
     12 // interval [i, j) is said to be a live interval for register v if there is no
     13 // instruction with number j' > j such that v is live at j' and there is no
     14 // instruction with number i' < i such that v is live at i'. In this
     15 // implementation intervals can have holes, i.e. an interval might look like
     16 // [1,20), [50,65), [1000,1001).
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
     21 #define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
     22 
     23 #include "llvm/ADT/IndexedMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/CodeGen/LiveInterval.h"
     26 #include "llvm/CodeGen/MachineBasicBlock.h"
     27 #include "llvm/CodeGen/MachineFunctionPass.h"
     28 #include "llvm/CodeGen/SlotIndexes.h"
     29 #include "llvm/Support/Allocator.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include <cmath>
     32 #include <iterator>
     33 
     34 namespace llvm {
     35 
     36   class AliasAnalysis;
     37   class BitVector;
     38   class BlockFrequency;
     39   class LiveRangeCalc;
     40   class LiveVariables;
     41   class MachineDominatorTree;
     42   class MachineLoopInfo;
     43   class TargetRegisterInfo;
     44   class MachineRegisterInfo;
     45   class TargetInstrInfo;
     46   class TargetRegisterClass;
     47   class VirtRegMap;
     48 
     49   class LiveIntervals : public MachineFunctionPass {
     50     MachineFunction* MF;
     51     MachineRegisterInfo* MRI;
     52     const TargetMachine* TM;
     53     const TargetRegisterInfo* TRI;
     54     const TargetInstrInfo* TII;
     55     AliasAnalysis *AA;
     56     SlotIndexes* Indexes;
     57     MachineDominatorTree *DomTree;
     58     LiveRangeCalc *LRCalc;
     59 
     60     /// Special pool allocator for VNInfo's (LiveInterval val#).
     61     ///
     62     VNInfo::Allocator VNInfoAllocator;
     63 
     64     /// Live interval pointers for all the virtual registers.
     65     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
     66 
     67     /// RegMaskSlots - Sorted list of instructions with register mask operands.
     68     /// Always use the 'r' slot, RegMasks are normal clobbers, not early
     69     /// clobbers.
     70     SmallVector<SlotIndex, 8> RegMaskSlots;
     71 
     72     /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
     73     /// pointer to the corresponding register mask.  This pointer can be
     74     /// recomputed as:
     75     ///
     76     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
     77     ///   unsigned OpNum = findRegMaskOperand(MI);
     78     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
     79     ///
     80     /// This is kept in a separate vector partly because some standard
     81     /// libraries don't support lower_bound() with mixed objects, partly to
     82     /// improve locality when searching in RegMaskSlots.
     83     /// Also see the comment in LiveInterval::find().
     84     SmallVector<const uint32_t*, 8> RegMaskBits;
     85 
     86     /// For each basic block number, keep (begin, size) pairs indexing into the
     87     /// RegMaskSlots and RegMaskBits arrays.
     88     /// Note that basic block numbers may not be layout contiguous, that's why
     89     /// we can't just keep track of the first register mask in each basic
     90     /// block.
     91     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
     92 
     93     /// RegUnitIntervals - Keep a live interval for each register unit as a way
     94     /// of tracking fixed physreg interference.
     95     SmallVector<LiveInterval*, 0> RegUnitIntervals;
     96 
     97   public:
     98     static char ID; // Pass identification, replacement for typeid
     99     LiveIntervals();
    100     virtual ~LiveIntervals();
    101 
    102     // Calculate the spill weight to assign to a single instruction.
    103     static float getSpillWeight(bool isDef, bool isUse, BlockFrequency freq);
    104 
    105     LiveInterval &getInterval(unsigned Reg) {
    106       LiveInterval *LI = VirtRegIntervals[Reg];
    107       assert(LI && "Interval does not exist for virtual register");
    108       return *LI;
    109     }
    110 
    111     const LiveInterval &getInterval(unsigned Reg) const {
    112       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
    113     }
    114 
    115     bool hasInterval(unsigned Reg) const {
    116       return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
    117     }
    118 
    119     // Interval creation.
    120     LiveInterval &getOrCreateInterval(unsigned Reg) {
    121       if (!hasInterval(Reg)) {
    122         VirtRegIntervals.grow(Reg);
    123         VirtRegIntervals[Reg] = createInterval(Reg);
    124       }
    125       return getInterval(Reg);
    126     }
    127 
    128     // Interval removal.
    129     void removeInterval(unsigned Reg) {
    130       delete VirtRegIntervals[Reg];
    131       VirtRegIntervals[Reg] = 0;
    132     }
    133 
    134     /// addLiveRangeToEndOfBlock - Given a register and an instruction,
    135     /// adds a live range from that instruction to the end of its MBB.
    136     LiveRange addLiveRangeToEndOfBlock(unsigned reg,
    137                                        MachineInstr* startInst);
    138 
    139     /// shrinkToUses - After removing some uses of a register, shrink its live
    140     /// range to just the remaining uses. This method does not compute reaching
    141     /// defs for new uses, and it doesn't remove dead defs.
    142     /// Dead PHIDef values are marked as unused.
    143     /// New dead machine instructions are added to the dead vector.
    144     /// Return true if the interval may have been separated into multiple
    145     /// connected components.
    146     bool shrinkToUses(LiveInterval *li,
    147                       SmallVectorImpl<MachineInstr*> *dead = 0);
    148 
    149     /// extendToIndices - Extend the live range of LI to reach all points in
    150     /// Indices. The points in the Indices array must be jointly dominated by
    151     /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
    152     ///
    153     /// If a SlotIndex in Indices is the end index of a basic block, LI will be
    154     /// extended to be live out of the basic block.
    155     ///
    156     /// See also LiveRangeCalc::extend().
    157     void extendToIndices(LiveInterval *LI, ArrayRef<SlotIndex> Indices);
    158 
    159     /// pruneValue - If an LI value is live at Kill, prune its live range by
    160     /// removing any liveness reachable from Kill. Add live range end points to
    161     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
    162     /// value's live range.
    163     ///
    164     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
    165     /// SSA form after adding defs to a virtual register.
    166     void pruneValue(LiveInterval *LI, SlotIndex Kill,
    167                     SmallVectorImpl<SlotIndex> *EndPoints);
    168 
    169     SlotIndexes *getSlotIndexes() const {
    170       return Indexes;
    171     }
    172 
    173     AliasAnalysis *getAliasAnalysis() const {
    174       return AA;
    175     }
    176 
    177     /// isNotInMIMap - returns true if the specified machine instr has been
    178     /// removed or was never entered in the map.
    179     bool isNotInMIMap(const MachineInstr* Instr) const {
    180       return !Indexes->hasIndex(Instr);
    181     }
    182 
    183     /// Returns the base index of the given instruction.
    184     SlotIndex getInstructionIndex(const MachineInstr *instr) const {
    185       return Indexes->getInstructionIndex(instr);
    186     }
    187 
    188     /// Returns the instruction associated with the given index.
    189     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
    190       return Indexes->getInstructionFromIndex(index);
    191     }
    192 
    193     /// Return the first index in the given basic block.
    194     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
    195       return Indexes->getMBBStartIdx(mbb);
    196     }
    197 
    198     /// Return the last index in the given basic block.
    199     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
    200       return Indexes->getMBBEndIdx(mbb);
    201     }
    202 
    203     bool isLiveInToMBB(const LiveInterval &li,
    204                        const MachineBasicBlock *mbb) const {
    205       return li.liveAt(getMBBStartIdx(mbb));
    206     }
    207 
    208     bool isLiveOutOfMBB(const LiveInterval &li,
    209                         const MachineBasicBlock *mbb) const {
    210       return li.liveAt(getMBBEndIdx(mbb).getPrevSlot());
    211     }
    212 
    213     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
    214       return Indexes->getMBBFromIndex(index);
    215     }
    216 
    217     void insertMBBInMaps(MachineBasicBlock *MBB) {
    218       Indexes->insertMBBInMaps(MBB);
    219       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
    220              "Blocks must be added in order.");
    221       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
    222     }
    223 
    224     SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
    225       return Indexes->insertMachineInstrInMaps(MI);
    226     }
    227 
    228     void RemoveMachineInstrFromMaps(MachineInstr *MI) {
    229       Indexes->removeMachineInstrFromMaps(MI);
    230     }
    231 
    232     void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
    233       Indexes->replaceMachineInstrInMaps(MI, NewMI);
    234     }
    235 
    236     bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
    237                         SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
    238       return Indexes->findLiveInMBBs(Start, End, MBBs);
    239     }
    240 
    241     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
    242 
    243     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    244     virtual void releaseMemory();
    245 
    246     /// runOnMachineFunction - pass entry point
    247     virtual bool runOnMachineFunction(MachineFunction&);
    248 
    249     /// print - Implement the dump method.
    250     virtual void print(raw_ostream &O, const Module* = 0) const;
    251 
    252     /// intervalIsInOneMBB - If LI is confined to a single basic block, return
    253     /// a pointer to that block.  If LI is live in to or out of any block,
    254     /// return NULL.
    255     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
    256 
    257     /// Returns true if VNI is killed by any PHI-def values in LI.
    258     /// This may conservatively return true to avoid expensive computations.
    259     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
    260 
    261     /// addKillFlags - Add kill flags to any instruction that kills a virtual
    262     /// register.
    263     void addKillFlags(const VirtRegMap*);
    264 
    265     /// handleMove - call this method to notify LiveIntervals that
    266     /// instruction 'mi' has been moved within a basic block. This will update
    267     /// the live intervals for all operands of mi. Moves between basic blocks
    268     /// are not supported.
    269     ///
    270     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    271     void handleMove(MachineInstr* MI, bool UpdateFlags = false);
    272 
    273     /// moveIntoBundle - Update intervals for operands of MI so that they
    274     /// begin/end on the SlotIndex for BundleStart.
    275     ///
    276     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    277     ///
    278     /// Requires MI and BundleStart to have SlotIndexes, and assumes
    279     /// existing liveness is accurate. BundleStart should be the first
    280     /// instruction in the Bundle.
    281     void handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart,
    282                               bool UpdateFlags = false);
    283 
    284     /// repairIntervalsInRange - Update live intervals for instructions in a
    285     /// range of iterators. It is intended for use after target hooks that may
    286     /// insert or remove instructions, and is only efficient for a small number
    287     /// of instructions.
    288     ///
    289     /// OrigRegs is a vector of registers that were originally used by the
    290     /// instructions in the range between the two iterators.
    291     ///
    292     /// Currently, the only only changes that are supported are simple removal
    293     /// and addition of uses.
    294     void repairIntervalsInRange(MachineBasicBlock *MBB,
    295                                 MachineBasicBlock::iterator Begin,
    296                                 MachineBasicBlock::iterator End,
    297                                 ArrayRef<unsigned> OrigRegs);
    298 
    299     // Register mask functions.
    300     //
    301     // Machine instructions may use a register mask operand to indicate that a
    302     // large number of registers are clobbered by the instruction.  This is
    303     // typically used for calls.
    304     //
    305     // For compile time performance reasons, these clobbers are not recorded in
    306     // the live intervals for individual physical registers.  Instead,
    307     // LiveIntervalAnalysis maintains a sorted list of instructions with
    308     // register mask operands.
    309 
    310     /// getRegMaskSlots - Returns a sorted array of slot indices of all
    311     /// instructions with register mask operands.
    312     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
    313 
    314     /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
    315     /// instructions with register mask operands in the basic block numbered
    316     /// MBBNum.
    317     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
    318       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
    319       return getRegMaskSlots().slice(P.first, P.second);
    320     }
    321 
    322     /// getRegMaskBits() - Returns an array of register mask pointers
    323     /// corresponding to getRegMaskSlots().
    324     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
    325 
    326     /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
    327     /// to getRegMaskSlotsInBlock(MBBNum).
    328     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
    329       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
    330       return getRegMaskBits().slice(P.first, P.second);
    331     }
    332 
    333     /// checkRegMaskInterference - Test if LI is live across any register mask
    334     /// instructions, and compute a bit mask of physical registers that are not
    335     /// clobbered by any of them.
    336     ///
    337     /// Returns false if LI doesn't cross any register mask instructions. In
    338     /// that case, the bit vector is not filled in.
    339     bool checkRegMaskInterference(LiveInterval &LI,
    340                                   BitVector &UsableRegs);
    341 
    342     // Register unit functions.
    343     //
    344     // Fixed interference occurs when MachineInstrs use physregs directly
    345     // instead of virtual registers. This typically happens when passing
    346     // arguments to a function call, or when instructions require operands in
    347     // fixed registers.
    348     //
    349     // Each physreg has one or more register units, see MCRegisterInfo. We
    350     // track liveness per register unit to handle aliasing registers more
    351     // efficiently.
    352 
    353     /// getRegUnit - Return the live range for Unit.
    354     /// It will be computed if it doesn't exist.
    355     LiveInterval &getRegUnit(unsigned Unit) {
    356       LiveInterval *LI = RegUnitIntervals[Unit];
    357       if (!LI) {
    358         // Compute missing ranges on demand.
    359         RegUnitIntervals[Unit] = LI = new LiveInterval(Unit, HUGE_VALF);
    360         computeRegUnitInterval(LI);
    361       }
    362       return *LI;
    363     }
    364 
    365     /// getCachedRegUnit - Return the live range for Unit if it has already
    366     /// been computed, or NULL if it hasn't been computed yet.
    367     LiveInterval *getCachedRegUnit(unsigned Unit) {
    368       return RegUnitIntervals[Unit];
    369     }
    370 
    371     const LiveInterval *getCachedRegUnit(unsigned Unit) const {
    372       return RegUnitIntervals[Unit];
    373     }
    374 
    375   private:
    376     /// Compute live intervals for all virtual registers.
    377     void computeVirtRegs();
    378 
    379     /// Compute RegMaskSlots and RegMaskBits.
    380     void computeRegMasks();
    381 
    382     static LiveInterval* createInterval(unsigned Reg);
    383 
    384     void printInstrs(raw_ostream &O) const;
    385     void dumpInstrs() const;
    386 
    387     void computeLiveInRegUnits();
    388     void computeRegUnitInterval(LiveInterval*);
    389     void computeVirtRegInterval(LiveInterval*);
    390 
    391     class HMEditor;
    392   };
    393 } // End llvm namespace
    394 
    395 #endif
    396