1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits code for use by the "fast" instruction 11 // selection algorithm. See the comments at the top of 12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background. 13 // 14 // This file scans through the target's tablegen instruction-info files 15 // and extracts instructions with obvious-looking patterns, and it emits 16 // code to look up these instructions by type and operator. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "CodeGenDAGPatterns.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 using namespace llvm; 28 29 30 /// InstructionMemo - This class holds additional information about an 31 /// instruction needed to emit code for it. 32 /// 33 namespace { 34 struct InstructionMemo { 35 std::string Name; 36 const CodeGenRegisterClass *RC; 37 std::string SubRegNo; 38 std::vector<std::string>* PhysRegs; 39 }; 40 } // End anonymous namespace 41 42 /// ImmPredicateSet - This uniques predicates (represented as a string) and 43 /// gives them unique (small) integer ID's that start at 0. 44 namespace { 45 class ImmPredicateSet { 46 DenseMap<TreePattern *, unsigned> ImmIDs; 47 std::vector<TreePredicateFn> PredsByName; 48 public: 49 50 unsigned getIDFor(TreePredicateFn Pred) { 51 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()]; 52 if (Entry == 0) { 53 PredsByName.push_back(Pred); 54 Entry = PredsByName.size(); 55 } 56 return Entry-1; 57 } 58 59 const TreePredicateFn &getPredicate(unsigned i) { 60 assert(i < PredsByName.size()); 61 return PredsByName[i]; 62 } 63 64 typedef std::vector<TreePredicateFn>::const_iterator iterator; 65 iterator begin() const { return PredsByName.begin(); } 66 iterator end() const { return PredsByName.end(); } 67 68 }; 69 } // End anonymous namespace 70 71 /// OperandsSignature - This class holds a description of a list of operand 72 /// types. It has utility methods for emitting text based on the operands. 73 /// 74 namespace { 75 struct OperandsSignature { 76 class OpKind { 77 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 }; 78 char Repr; 79 public: 80 81 OpKind() : Repr(OK_Invalid) {} 82 83 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; } 84 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; } 85 86 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; } 87 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; } 88 static OpKind getImm(unsigned V) { 89 assert((unsigned)OK_Imm+V < 128 && 90 "Too many integer predicates for the 'Repr' char"); 91 OpKind K; K.Repr = OK_Imm+V; return K; 92 } 93 94 bool isReg() const { return Repr == OK_Reg; } 95 bool isFP() const { return Repr == OK_FP; } 96 bool isImm() const { return Repr >= OK_Imm; } 97 98 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; } 99 100 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 101 bool StripImmCodes) const { 102 if (isReg()) 103 OS << 'r'; 104 else if (isFP()) 105 OS << 'f'; 106 else { 107 OS << 'i'; 108 if (!StripImmCodes) 109 if (unsigned Code = getImmCode()) 110 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName(); 111 } 112 } 113 }; 114 115 116 SmallVector<OpKind, 3> Operands; 117 118 bool operator<(const OperandsSignature &O) const { 119 return Operands < O.Operands; 120 } 121 bool operator==(const OperandsSignature &O) const { 122 return Operands == O.Operands; 123 } 124 125 bool empty() const { return Operands.empty(); } 126 127 bool hasAnyImmediateCodes() const { 128 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 129 if (Operands[i].isImm() && Operands[i].getImmCode() != 0) 130 return true; 131 return false; 132 } 133 134 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced 135 /// to zero. 136 OperandsSignature getWithoutImmCodes() const { 137 OperandsSignature Result; 138 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 139 if (!Operands[i].isImm()) 140 Result.Operands.push_back(Operands[i]); 141 else 142 Result.Operands.push_back(OpKind::getImm(0)); 143 return Result; 144 } 145 146 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) { 147 bool EmittedAnything = false; 148 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 149 if (!Operands[i].isImm()) continue; 150 151 unsigned Code = Operands[i].getImmCode(); 152 if (Code == 0) continue; 153 154 if (EmittedAnything) 155 OS << " &&\n "; 156 157 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1); 158 159 // Emit the type check. 160 OS << "VT == " 161 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0)) 162 << " && "; 163 164 165 OS << PredFn.getFnName() << "(imm" << i <<')'; 166 EmittedAnything = true; 167 } 168 } 169 170 /// initialize - Examine the given pattern and initialize the contents 171 /// of the Operands array accordingly. Return true if all the operands 172 /// are supported, false otherwise. 173 /// 174 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target, 175 MVT::SimpleValueType VT, 176 ImmPredicateSet &ImmediatePredicates, 177 const CodeGenRegisterClass *OrigDstRC) { 178 if (InstPatNode->isLeaf()) 179 return false; 180 181 if (InstPatNode->getOperator()->getName() == "imm") { 182 Operands.push_back(OpKind::getImm(0)); 183 return true; 184 } 185 186 if (InstPatNode->getOperator()->getName() == "fpimm") { 187 Operands.push_back(OpKind::getFP()); 188 return true; 189 } 190 191 const CodeGenRegisterClass *DstRC = 0; 192 193 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 194 TreePatternNode *Op = InstPatNode->getChild(i); 195 196 // Handle imm operands specially. 197 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") { 198 unsigned PredNo = 0; 199 if (!Op->getPredicateFns().empty()) { 200 TreePredicateFn PredFn = Op->getPredicateFns()[0]; 201 // If there is more than one predicate weighing in on this operand 202 // then we don't handle it. This doesn't typically happen for 203 // immediates anyway. 204 if (Op->getPredicateFns().size() > 1 || 205 !PredFn.isImmediatePattern()) 206 return false; 207 // Ignore any instruction with 'FastIselShouldIgnore', these are 208 // not needed and just bloat the fast instruction selector. For 209 // example, X86 doesn't need to generate code to match ADD16ri8 since 210 // ADD16ri will do just fine. 211 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord(); 212 if (Rec->getValueAsBit("FastIselShouldIgnore")) 213 return false; 214 215 PredNo = ImmediatePredicates.getIDFor(PredFn)+1; 216 } 217 218 // Handle unmatched immediate sizes here. 219 //if (Op->getType(0) != VT) 220 // return false; 221 222 Operands.push_back(OpKind::getImm(PredNo)); 223 continue; 224 } 225 226 227 // For now, filter out any operand with a predicate. 228 // For now, filter out any operand with multiple values. 229 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1) 230 return false; 231 232 if (!Op->isLeaf()) { 233 if (Op->getOperator()->getName() == "fpimm") { 234 Operands.push_back(OpKind::getFP()); 235 continue; 236 } 237 // For now, ignore other non-leaf nodes. 238 return false; 239 } 240 241 assert(Op->hasTypeSet(0) && "Type infererence not done?"); 242 243 // For now, all the operands must have the same type (if they aren't 244 // immediates). Note that this causes us to reject variable sized shifts 245 // on X86. 246 if (Op->getType(0) != VT) 247 return false; 248 249 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue()); 250 if (!OpDI) 251 return false; 252 Record *OpLeafRec = OpDI->getDef(); 253 254 // For now, the only other thing we accept is register operands. 255 const CodeGenRegisterClass *RC = 0; 256 if (OpLeafRec->isSubClassOf("RegisterOperand")) 257 OpLeafRec = OpLeafRec->getValueAsDef("RegClass"); 258 if (OpLeafRec->isSubClassOf("RegisterClass")) 259 RC = &Target.getRegisterClass(OpLeafRec); 260 else if (OpLeafRec->isSubClassOf("Register")) 261 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec); 262 else if (OpLeafRec->isSubClassOf("ValueType")) { 263 RC = OrigDstRC; 264 } else 265 return false; 266 267 // For now, this needs to be a register class of some sort. 268 if (!RC) 269 return false; 270 271 // For now, all the operands must have the same register class or be 272 // a strict subclass of the destination. 273 if (DstRC) { 274 if (DstRC != RC && !DstRC->hasSubClass(RC)) 275 return false; 276 } else 277 DstRC = RC; 278 Operands.push_back(OpKind::getReg()); 279 } 280 return true; 281 } 282 283 void PrintParameters(raw_ostream &OS) const { 284 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 285 if (Operands[i].isReg()) { 286 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill"; 287 } else if (Operands[i].isImm()) { 288 OS << "uint64_t imm" << i; 289 } else if (Operands[i].isFP()) { 290 OS << "const ConstantFP *f" << i; 291 } else { 292 llvm_unreachable("Unknown operand kind!"); 293 } 294 if (i + 1 != e) 295 OS << ", "; 296 } 297 } 298 299 void PrintArguments(raw_ostream &OS, 300 const std::vector<std::string> &PR) const { 301 assert(PR.size() == Operands.size()); 302 bool PrintedArg = false; 303 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 304 if (PR[i] != "") 305 // Implicit physical register operand. 306 continue; 307 308 if (PrintedArg) 309 OS << ", "; 310 if (Operands[i].isReg()) { 311 OS << "Op" << i << ", Op" << i << "IsKill"; 312 PrintedArg = true; 313 } else if (Operands[i].isImm()) { 314 OS << "imm" << i; 315 PrintedArg = true; 316 } else if (Operands[i].isFP()) { 317 OS << "f" << i; 318 PrintedArg = true; 319 } else { 320 llvm_unreachable("Unknown operand kind!"); 321 } 322 } 323 } 324 325 void PrintArguments(raw_ostream &OS) const { 326 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 327 if (Operands[i].isReg()) { 328 OS << "Op" << i << ", Op" << i << "IsKill"; 329 } else if (Operands[i].isImm()) { 330 OS << "imm" << i; 331 } else if (Operands[i].isFP()) { 332 OS << "f" << i; 333 } else { 334 llvm_unreachable("Unknown operand kind!"); 335 } 336 if (i + 1 != e) 337 OS << ", "; 338 } 339 } 340 341 342 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR, 343 ImmPredicateSet &ImmPredicates, 344 bool StripImmCodes = false) const { 345 for (unsigned i = 0, e = Operands.size(); i != e; ++i) { 346 if (PR[i] != "") 347 // Implicit physical register operand. e.g. Instruction::Mul expect to 348 // select to a binary op. On x86, mul may take a single operand with 349 // the other operand being implicit. We must emit something that looks 350 // like a binary instruction except for the very inner FastEmitInst_* 351 // call. 352 continue; 353 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 354 } 355 } 356 357 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates, 358 bool StripImmCodes = false) const { 359 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 360 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes); 361 } 362 }; 363 } // End anonymous namespace 364 365 namespace { 366 class FastISelMap { 367 typedef std::map<std::string, InstructionMemo> PredMap; 368 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap; 369 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap; 370 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap; 371 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap> 372 OperandsOpcodeTypeRetPredMap; 373 374 OperandsOpcodeTypeRetPredMap SimplePatterns; 375 376 std::map<OperandsSignature, std::vector<OperandsSignature> > 377 SignaturesWithConstantForms; 378 379 std::string InstNS; 380 ImmPredicateSet ImmediatePredicates; 381 public: 382 explicit FastISelMap(std::string InstNS); 383 384 void collectPatterns(CodeGenDAGPatterns &CGP); 385 void printImmediatePredicates(raw_ostream &OS); 386 void printFunctionDefinitions(raw_ostream &OS); 387 }; 388 } // End anonymous namespace 389 390 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { 391 return CGP.getSDNodeInfo(Op).getEnumName(); 392 } 393 394 static std::string getLegalCName(std::string OpName) { 395 std::string::size_type pos = OpName.find("::"); 396 if (pos != std::string::npos) 397 OpName.replace(pos, 2, "_"); 398 return OpName; 399 } 400 401 FastISelMap::FastISelMap(std::string instns) 402 : InstNS(instns) { 403 } 404 405 static std::string PhyRegForNode(TreePatternNode *Op, 406 const CodeGenTarget &Target) { 407 std::string PhysReg; 408 409 if (!Op->isLeaf()) 410 return PhysReg; 411 412 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef(); 413 if (!OpLeafRec->isSubClassOf("Register")) 414 return PhysReg; 415 416 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue()) 417 ->getValue(); 418 PhysReg += "::"; 419 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName(); 420 return PhysReg; 421 } 422 423 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) { 424 const CodeGenTarget &Target = CGP.getTargetInfo(); 425 426 // Determine the target's namespace name. 427 InstNS = Target.getInstNamespace() + "::"; 428 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 429 430 // Scan through all the patterns and record the simple ones. 431 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), 432 E = CGP.ptm_end(); I != E; ++I) { 433 const PatternToMatch &Pattern = *I; 434 435 // For now, just look at Instructions, so that we don't have to worry 436 // about emitting multiple instructions for a pattern. 437 TreePatternNode *Dst = Pattern.getDstPattern(); 438 if (Dst->isLeaf()) continue; 439 Record *Op = Dst->getOperator(); 440 if (!Op->isSubClassOf("Instruction")) 441 continue; 442 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); 443 if (II.Operands.empty()) 444 continue; 445 446 // For now, ignore multi-instruction patterns. 447 bool MultiInsts = false; 448 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) { 449 TreePatternNode *ChildOp = Dst->getChild(i); 450 if (ChildOp->isLeaf()) 451 continue; 452 if (ChildOp->getOperator()->isSubClassOf("Instruction")) { 453 MultiInsts = true; 454 break; 455 } 456 } 457 if (MultiInsts) 458 continue; 459 460 // For now, ignore instructions where the first operand is not an 461 // output register. 462 const CodeGenRegisterClass *DstRC = 0; 463 std::string SubRegNo; 464 if (Op->getName() != "EXTRACT_SUBREG") { 465 Record *Op0Rec = II.Operands[0].Rec; 466 if (Op0Rec->isSubClassOf("RegisterOperand")) 467 Op0Rec = Op0Rec->getValueAsDef("RegClass"); 468 if (!Op0Rec->isSubClassOf("RegisterClass")) 469 continue; 470 DstRC = &Target.getRegisterClass(Op0Rec); 471 if (!DstRC) 472 continue; 473 } else { 474 // If this isn't a leaf, then continue since the register classes are 475 // a bit too complicated for now. 476 if (!Dst->getChild(1)->isLeaf()) continue; 477 478 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue()); 479 if (SR) 480 SubRegNo = getQualifiedName(SR->getDef()); 481 else 482 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString(); 483 } 484 485 // Inspect the pattern. 486 TreePatternNode *InstPatNode = Pattern.getSrcPattern(); 487 if (!InstPatNode) continue; 488 if (InstPatNode->isLeaf()) continue; 489 490 // Ignore multiple result nodes for now. 491 if (InstPatNode->getNumTypes() > 1) continue; 492 493 Record *InstPatOp = InstPatNode->getOperator(); 494 std::string OpcodeName = getOpcodeName(InstPatOp, CGP); 495 MVT::SimpleValueType RetVT = MVT::isVoid; 496 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0); 497 MVT::SimpleValueType VT = RetVT; 498 if (InstPatNode->getNumChildren()) { 499 assert(InstPatNode->getChild(0)->getNumTypes() == 1); 500 VT = InstPatNode->getChild(0)->getType(0); 501 } 502 503 // For now, filter out any instructions with predicates. 504 if (!InstPatNode->getPredicateFns().empty()) 505 continue; 506 507 // Check all the operands. 508 OperandsSignature Operands; 509 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates, 510 DstRC)) 511 continue; 512 513 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>(); 514 if (InstPatNode->getOperator()->getName() == "imm" || 515 InstPatNode->getOperator()->getName() == "fpimm") 516 PhysRegInputs->push_back(""); 517 else { 518 // Compute the PhysRegs used by the given pattern, and check that 519 // the mapping from the src to dst patterns is simple. 520 bool FoundNonSimplePattern = false; 521 unsigned DstIndex = 0; 522 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) { 523 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target); 524 if (PhysReg.empty()) { 525 if (DstIndex >= Dst->getNumChildren() || 526 Dst->getChild(DstIndex)->getName() != 527 InstPatNode->getChild(i)->getName()) { 528 FoundNonSimplePattern = true; 529 break; 530 } 531 ++DstIndex; 532 } 533 534 PhysRegInputs->push_back(PhysReg); 535 } 536 537 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren()) 538 FoundNonSimplePattern = true; 539 540 if (FoundNonSimplePattern) 541 continue; 542 } 543 544 // Get the predicate that guards this pattern. 545 std::string PredicateCheck = Pattern.getPredicateCheck(); 546 547 // Ok, we found a pattern that we can handle. Remember it. 548 InstructionMemo Memo = { 549 Pattern.getDstPattern()->getOperator()->getName(), 550 DstRC, 551 SubRegNo, 552 PhysRegInputs 553 }; 554 555 if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck)) 556 PrintFatalError(Pattern.getSrcRecord()->getLoc(), 557 "Duplicate record in FastISel table!"); 558 559 SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo; 560 561 // If any of the operands were immediates with predicates on them, strip 562 // them down to a signature that doesn't have predicates so that we can 563 // associate them with the stripped predicate version. 564 if (Operands.hasAnyImmediateCodes()) { 565 SignaturesWithConstantForms[Operands.getWithoutImmCodes()] 566 .push_back(Operands); 567 } 568 } 569 } 570 571 void FastISelMap::printImmediatePredicates(raw_ostream &OS) { 572 if (ImmediatePredicates.begin() == ImmediatePredicates.end()) 573 return; 574 575 OS << "\n// FastEmit Immediate Predicate functions.\n"; 576 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(), 577 E = ImmediatePredicates.end(); I != E; ++I) { 578 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n"; 579 OS << I->getImmediatePredicateCode() << "\n}\n"; 580 } 581 582 OS << "\n\n"; 583 } 584 585 586 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) { 587 // Now emit code for all the patterns that we collected. 588 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(), 589 OE = SimplePatterns.end(); OI != OE; ++OI) { 590 const OperandsSignature &Operands = OI->first; 591 const OpcodeTypeRetPredMap &OTM = OI->second; 592 593 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 594 I != E; ++I) { 595 const std::string &Opcode = I->first; 596 const TypeRetPredMap &TM = I->second; 597 598 OS << "// FastEmit functions for " << Opcode << ".\n"; 599 OS << "\n"; 600 601 // Emit one function for each opcode,type pair. 602 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 603 TI != TE; ++TI) { 604 MVT::SimpleValueType VT = TI->first; 605 const RetPredMap &RM = TI->second; 606 if (RM.size() != 1) { 607 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 608 RI != RE; ++RI) { 609 MVT::SimpleValueType RetVT = RI->first; 610 const PredMap &PM = RI->second; 611 bool HasPred = false; 612 613 OS << "unsigned FastEmit_" 614 << getLegalCName(Opcode) 615 << "_" << getLegalCName(getName(VT)) 616 << "_" << getLegalCName(getName(RetVT)) << "_"; 617 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 618 OS << "("; 619 Operands.PrintParameters(OS); 620 OS << ") {\n"; 621 622 // Emit code for each possible instruction. There may be 623 // multiple if there are subtarget concerns. 624 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); 625 PI != PE; ++PI) { 626 std::string PredicateCheck = PI->first; 627 const InstructionMemo &Memo = PI->second; 628 629 if (PredicateCheck.empty()) { 630 assert(!HasPred && 631 "Multiple instructions match, at least one has " 632 "a predicate and at least one doesn't!"); 633 } else { 634 OS << " if (" + PredicateCheck + ") {\n"; 635 OS << " "; 636 HasPred = true; 637 } 638 639 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 640 if ((*Memo.PhysRegs)[i] != "") 641 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " 642 << "TII.get(TargetOpcode::COPY), " 643 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 644 } 645 646 OS << " return FastEmitInst_"; 647 if (Memo.SubRegNo.empty()) { 648 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, 649 ImmediatePredicates, true); 650 OS << "(" << InstNS << Memo.Name << ", "; 651 OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; 652 if (!Operands.empty()) 653 OS << ", "; 654 Operands.PrintArguments(OS, *Memo.PhysRegs); 655 OS << ");\n"; 656 } else { 657 OS << "extractsubreg(" << getName(RetVT); 658 OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n"; 659 } 660 661 if (HasPred) 662 OS << " }\n"; 663 664 } 665 // Return 0 if none of the predicates were satisfied. 666 if (HasPred) 667 OS << " return 0;\n"; 668 OS << "}\n"; 669 OS << "\n"; 670 } 671 672 // Emit one function for the type that demultiplexes on return type. 673 OS << "unsigned FastEmit_" 674 << getLegalCName(Opcode) << "_" 675 << getLegalCName(getName(VT)) << "_"; 676 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 677 OS << "(MVT RetVT"; 678 if (!Operands.empty()) 679 OS << ", "; 680 Operands.PrintParameters(OS); 681 OS << ") {\nswitch (RetVT.SimpleTy) {\n"; 682 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end(); 683 RI != RE; ++RI) { 684 MVT::SimpleValueType RetVT = RI->first; 685 OS << " case " << getName(RetVT) << ": return FastEmit_" 686 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT)) 687 << "_" << getLegalCName(getName(RetVT)) << "_"; 688 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 689 OS << "("; 690 Operands.PrintArguments(OS); 691 OS << ");\n"; 692 } 693 OS << " default: return 0;\n}\n}\n\n"; 694 695 } else { 696 // Non-variadic return type. 697 OS << "unsigned FastEmit_" 698 << getLegalCName(Opcode) << "_" 699 << getLegalCName(getName(VT)) << "_"; 700 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 701 OS << "(MVT RetVT"; 702 if (!Operands.empty()) 703 OS << ", "; 704 Operands.PrintParameters(OS); 705 OS << ") {\n"; 706 707 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first) 708 << ")\n return 0;\n"; 709 710 const PredMap &PM = RM.begin()->second; 711 bool HasPred = false; 712 713 // Emit code for each possible instruction. There may be 714 // multiple if there are subtarget concerns. 715 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE; 716 ++PI) { 717 std::string PredicateCheck = PI->first; 718 const InstructionMemo &Memo = PI->second; 719 720 if (PredicateCheck.empty()) { 721 assert(!HasPred && 722 "Multiple instructions match, at least one has " 723 "a predicate and at least one doesn't!"); 724 } else { 725 OS << " if (" + PredicateCheck + ") {\n"; 726 OS << " "; 727 HasPred = true; 728 } 729 730 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { 731 if ((*Memo.PhysRegs)[i] != "") 732 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, " 733 << "TII.get(TargetOpcode::COPY), " 734 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n"; 735 } 736 737 OS << " return FastEmitInst_"; 738 739 if (Memo.SubRegNo.empty()) { 740 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs, 741 ImmediatePredicates, true); 742 OS << "(" << InstNS << Memo.Name << ", "; 743 OS << "&" << InstNS << Memo.RC->getName() << "RegClass"; 744 if (!Operands.empty()) 745 OS << ", "; 746 Operands.PrintArguments(OS, *Memo.PhysRegs); 747 OS << ");\n"; 748 } else { 749 OS << "extractsubreg(RetVT, Op0, Op0IsKill, "; 750 OS << Memo.SubRegNo; 751 OS << ");\n"; 752 } 753 754 if (HasPred) 755 OS << " }\n"; 756 } 757 758 // Return 0 if none of the predicates were satisfied. 759 if (HasPred) 760 OS << " return 0;\n"; 761 OS << "}\n"; 762 OS << "\n"; 763 } 764 } 765 766 // Emit one function for the opcode that demultiplexes based on the type. 767 OS << "unsigned FastEmit_" 768 << getLegalCName(Opcode) << "_"; 769 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 770 OS << "(MVT VT, MVT RetVT"; 771 if (!Operands.empty()) 772 OS << ", "; 773 Operands.PrintParameters(OS); 774 OS << ") {\n"; 775 OS << " switch (VT.SimpleTy) {\n"; 776 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end(); 777 TI != TE; ++TI) { 778 MVT::SimpleValueType VT = TI->first; 779 std::string TypeName = getName(VT); 780 OS << " case " << TypeName << ": return FastEmit_" 781 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_"; 782 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 783 OS << "(RetVT"; 784 if (!Operands.empty()) 785 OS << ", "; 786 Operands.PrintArguments(OS); 787 OS << ");\n"; 788 } 789 OS << " default: return 0;\n"; 790 OS << " }\n"; 791 OS << "}\n"; 792 OS << "\n"; 793 } 794 795 OS << "// Top-level FastEmit function.\n"; 796 OS << "\n"; 797 798 // Emit one function for the operand signature that demultiplexes based 799 // on opcode and type. 800 OS << "unsigned FastEmit_"; 801 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 802 OS << "(MVT VT, MVT RetVT, unsigned Opcode"; 803 if (!Operands.empty()) 804 OS << ", "; 805 Operands.PrintParameters(OS); 806 OS << ") {\n"; 807 808 // If there are any forms of this signature available that operand on 809 // constrained forms of the immediate (e.g. 32-bit sext immediate in a 810 // 64-bit operand), check them first. 811 812 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI 813 = SignaturesWithConstantForms.find(Operands); 814 if (MI != SignaturesWithConstantForms.end()) { 815 // Unique any duplicates out of the list. 816 std::sort(MI->second.begin(), MI->second.end()); 817 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()), 818 MI->second.end()); 819 820 // Check each in order it was seen. It would be nice to have a good 821 // relative ordering between them, but we're not going for optimality 822 // here. 823 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) { 824 OS << " if ("; 825 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates); 826 OS << ")\n if (unsigned Reg = FastEmit_"; 827 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates); 828 OS << "(VT, RetVT, Opcode"; 829 if (!MI->second[i].empty()) 830 OS << ", "; 831 MI->second[i].PrintArguments(OS); 832 OS << "))\n return Reg;\n\n"; 833 } 834 835 // Done with this, remove it. 836 SignaturesWithConstantForms.erase(MI); 837 } 838 839 OS << " switch (Opcode) {\n"; 840 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end(); 841 I != E; ++I) { 842 const std::string &Opcode = I->first; 843 844 OS << " case " << Opcode << ": return FastEmit_" 845 << getLegalCName(Opcode) << "_"; 846 Operands.PrintManglingSuffix(OS, ImmediatePredicates); 847 OS << "(VT, RetVT"; 848 if (!Operands.empty()) 849 OS << ", "; 850 Operands.PrintArguments(OS); 851 OS << ");\n"; 852 } 853 OS << " default: return 0;\n"; 854 OS << " }\n"; 855 OS << "}\n"; 856 OS << "\n"; 857 } 858 859 // TODO: SignaturesWithConstantForms should be empty here. 860 } 861 862 namespace llvm { 863 864 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) { 865 CodeGenDAGPatterns CGP(RK); 866 const CodeGenTarget &Target = CGP.getTargetInfo(); 867 emitSourceFileHeader("\"Fast\" Instruction Selector for the " + 868 Target.getName() + " target", OS); 869 870 // Determine the target's namespace name. 871 std::string InstNS = Target.getInstNamespace() + "::"; 872 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!"); 873 874 FastISelMap F(InstNS); 875 F.collectPatterns(CGP); 876 F.printImmediatePredicates(OS); 877 F.printFunctionDefinitions(OS); 878 } 879 880 } // End llvm namespace 881