1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This transformation implements the well known scalar replacement of 11 /// aggregates transformation. It tries to identify promotable elements of an 12 /// aggregate alloca, and promote them to registers. It will also try to 13 /// convert uses of an element (or set of elements) of an alloca into a vector 14 /// or bitfield-style integer scalar if appropriate. 15 /// 16 /// It works to do this with minimal slicing of the alloca so that regions 17 /// which are merely transferred in and out of external memory remain unchanged 18 /// and are not decomposed to scalar code. 19 /// 20 /// Because this also performs alloca promotion, it can be thought of as also 21 /// serving the purpose of SSA formation. The algorithm iterates on the 22 /// function until all opportunities for promotion have been realized. 23 /// 24 //===----------------------------------------------------------------------===// 25 26 #define DEBUG_TYPE "sroa" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/Dominators.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/PtrUseVisitor.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/DIBuilder.h" 37 #include "llvm/DebugInfo.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/InstVisitor.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 57 #include "llvm/Transforms/Utils/SSAUpdater.h" 58 using namespace llvm; 59 60 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 61 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 62 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 63 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 64 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 65 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 66 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 67 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 68 STATISTIC(NumDeleted, "Number of instructions deleted"); 69 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 70 71 /// Hidden option to force the pass to not use DomTree and mem2reg, instead 72 /// forming SSA values through the SSAUpdater infrastructure. 73 static cl::opt<bool> 74 ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); 75 76 namespace { 77 /// \brief A custom IRBuilder inserter which prefixes all names if they are 78 /// preserved. 79 template <bool preserveNames = true> 80 class IRBuilderPrefixedInserter : 81 public IRBuilderDefaultInserter<preserveNames> { 82 std::string Prefix; 83 84 public: 85 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 86 87 protected: 88 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 89 BasicBlock::iterator InsertPt) const { 90 IRBuilderDefaultInserter<preserveNames>::InsertHelper( 91 I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt); 92 } 93 }; 94 95 // Specialization for not preserving the name is trivial. 96 template <> 97 class IRBuilderPrefixedInserter<false> : 98 public IRBuilderDefaultInserter<false> { 99 public: 100 void SetNamePrefix(const Twine &P) {} 101 }; 102 103 /// \brief Provide a typedef for IRBuilder that drops names in release builds. 104 #ifndef NDEBUG 105 typedef llvm::IRBuilder<true, ConstantFolder, 106 IRBuilderPrefixedInserter<true> > IRBuilderTy; 107 #else 108 typedef llvm::IRBuilder<false, ConstantFolder, 109 IRBuilderPrefixedInserter<false> > IRBuilderTy; 110 #endif 111 } 112 113 namespace { 114 /// \brief A used slice of an alloca. 115 /// 116 /// This structure represents a slice of an alloca used by some instruction. It 117 /// stores both the begin and end offsets of this use, a pointer to the use 118 /// itself, and a flag indicating whether we can classify the use as splittable 119 /// or not when forming partitions of the alloca. 120 class Slice { 121 /// \brief The beginning offset of the range. 122 uint64_t BeginOffset; 123 124 /// \brief The ending offset, not included in the range. 125 uint64_t EndOffset; 126 127 /// \brief Storage for both the use of this slice and whether it can be 128 /// split. 129 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 130 131 public: 132 Slice() : BeginOffset(), EndOffset() {} 133 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 134 : BeginOffset(BeginOffset), EndOffset(EndOffset), 135 UseAndIsSplittable(U, IsSplittable) {} 136 137 uint64_t beginOffset() const { return BeginOffset; } 138 uint64_t endOffset() const { return EndOffset; } 139 140 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 141 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 142 143 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 144 145 bool isDead() const { return getUse() == 0; } 146 void kill() { UseAndIsSplittable.setPointer(0); } 147 148 /// \brief Support for ordering ranges. 149 /// 150 /// This provides an ordering over ranges such that start offsets are 151 /// always increasing, and within equal start offsets, the end offsets are 152 /// decreasing. Thus the spanning range comes first in a cluster with the 153 /// same start position. 154 bool operator<(const Slice &RHS) const { 155 if (beginOffset() < RHS.beginOffset()) return true; 156 if (beginOffset() > RHS.beginOffset()) return false; 157 if (isSplittable() != RHS.isSplittable()) return !isSplittable(); 158 if (endOffset() > RHS.endOffset()) return true; 159 return false; 160 } 161 162 /// \brief Support comparison with a single offset to allow binary searches. 163 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 164 uint64_t RHSOffset) { 165 return LHS.beginOffset() < RHSOffset; 166 } 167 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 168 const Slice &RHS) { 169 return LHSOffset < RHS.beginOffset(); 170 } 171 172 bool operator==(const Slice &RHS) const { 173 return isSplittable() == RHS.isSplittable() && 174 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 175 } 176 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 177 }; 178 } // end anonymous namespace 179 180 namespace llvm { 181 template <typename T> struct isPodLike; 182 template <> struct isPodLike<Slice> { 183 static const bool value = true; 184 }; 185 } 186 187 namespace { 188 /// \brief Representation of the alloca slices. 189 /// 190 /// This class represents the slices of an alloca which are formed by its 191 /// various uses. If a pointer escapes, we can't fully build a representation 192 /// for the slices used and we reflect that in this structure. The uses are 193 /// stored, sorted by increasing beginning offset and with unsplittable slices 194 /// starting at a particular offset before splittable slices. 195 class AllocaSlices { 196 public: 197 /// \brief Construct the slices of a particular alloca. 198 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 199 200 /// \brief Test whether a pointer to the allocation escapes our analysis. 201 /// 202 /// If this is true, the slices are never fully built and should be 203 /// ignored. 204 bool isEscaped() const { return PointerEscapingInstr; } 205 206 /// \brief Support for iterating over the slices. 207 /// @{ 208 typedef SmallVectorImpl<Slice>::iterator iterator; 209 iterator begin() { return Slices.begin(); } 210 iterator end() { return Slices.end(); } 211 212 typedef SmallVectorImpl<Slice>::const_iterator const_iterator; 213 const_iterator begin() const { return Slices.begin(); } 214 const_iterator end() const { return Slices.end(); } 215 /// @} 216 217 /// \brief Allow iterating the dead users for this alloca. 218 /// 219 /// These are instructions which will never actually use the alloca as they 220 /// are outside the allocated range. They are safe to replace with undef and 221 /// delete. 222 /// @{ 223 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; 224 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } 225 dead_user_iterator dead_user_end() const { return DeadUsers.end(); } 226 /// @} 227 228 /// \brief Allow iterating the dead expressions referring to this alloca. 229 /// 230 /// These are operands which have cannot actually be used to refer to the 231 /// alloca as they are outside its range and the user doesn't correct for 232 /// that. These mostly consist of PHI node inputs and the like which we just 233 /// need to replace with undef. 234 /// @{ 235 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; 236 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } 237 dead_op_iterator dead_op_end() const { return DeadOperands.end(); } 238 /// @} 239 240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 241 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 242 void printSlice(raw_ostream &OS, const_iterator I, 243 StringRef Indent = " ") const; 244 void printUse(raw_ostream &OS, const_iterator I, 245 StringRef Indent = " ") const; 246 void print(raw_ostream &OS) const; 247 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; 248 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; 249 #endif 250 251 private: 252 template <typename DerivedT, typename RetT = void> class BuilderBase; 253 class SliceBuilder; 254 friend class AllocaSlices::SliceBuilder; 255 256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 257 /// \brief Handle to alloca instruction to simplify method interfaces. 258 AllocaInst &AI; 259 #endif 260 261 /// \brief The instruction responsible for this alloca not having a known set 262 /// of slices. 263 /// 264 /// When an instruction (potentially) escapes the pointer to the alloca, we 265 /// store a pointer to that here and abort trying to form slices of the 266 /// alloca. This will be null if the alloca slices are analyzed successfully. 267 Instruction *PointerEscapingInstr; 268 269 /// \brief The slices of the alloca. 270 /// 271 /// We store a vector of the slices formed by uses of the alloca here. This 272 /// vector is sorted by increasing begin offset, and then the unsplittable 273 /// slices before the splittable ones. See the Slice inner class for more 274 /// details. 275 SmallVector<Slice, 8> Slices; 276 277 /// \brief Instructions which will become dead if we rewrite the alloca. 278 /// 279 /// Note that these are not separated by slice. This is because we expect an 280 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 281 /// all these instructions can simply be removed and replaced with undef as 282 /// they come from outside of the allocated space. 283 SmallVector<Instruction *, 8> DeadUsers; 284 285 /// \brief Operands which will become dead if we rewrite the alloca. 286 /// 287 /// These are operands that in their particular use can be replaced with 288 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 289 /// to PHI nodes and the like. They aren't entirely dead (there might be 290 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 291 /// want to swap this particular input for undef to simplify the use lists of 292 /// the alloca. 293 SmallVector<Use *, 8> DeadOperands; 294 }; 295 } 296 297 static Value *foldSelectInst(SelectInst &SI) { 298 // If the condition being selected on is a constant or the same value is 299 // being selected between, fold the select. Yes this does (rarely) happen 300 // early on. 301 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 302 return SI.getOperand(1+CI->isZero()); 303 if (SI.getOperand(1) == SI.getOperand(2)) 304 return SI.getOperand(1); 305 306 return 0; 307 } 308 309 /// \brief Builder for the alloca slices. 310 /// 311 /// This class builds a set of alloca slices by recursively visiting the uses 312 /// of an alloca and making a slice for each load and store at each offset. 313 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 314 friend class PtrUseVisitor<SliceBuilder>; 315 friend class InstVisitor<SliceBuilder>; 316 typedef PtrUseVisitor<SliceBuilder> Base; 317 318 const uint64_t AllocSize; 319 AllocaSlices &S; 320 321 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 322 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 323 324 /// \brief Set to de-duplicate dead instructions found in the use walk. 325 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 326 327 public: 328 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S) 329 : PtrUseVisitor<SliceBuilder>(DL), 330 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {} 331 332 private: 333 void markAsDead(Instruction &I) { 334 if (VisitedDeadInsts.insert(&I)) 335 S.DeadUsers.push_back(&I); 336 } 337 338 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 339 bool IsSplittable = false) { 340 // Completely skip uses which have a zero size or start either before or 341 // past the end of the allocation. 342 if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) { 343 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset 344 << " which has zero size or starts outside of the " 345 << AllocSize << " byte alloca:\n" 346 << " alloca: " << S.AI << "\n" 347 << " use: " << I << "\n"); 348 return markAsDead(I); 349 } 350 351 uint64_t BeginOffset = Offset.getZExtValue(); 352 uint64_t EndOffset = BeginOffset + Size; 353 354 // Clamp the end offset to the end of the allocation. Note that this is 355 // formulated to handle even the case where "BeginOffset + Size" overflows. 356 // This may appear superficially to be something we could ignore entirely, 357 // but that is not so! There may be widened loads or PHI-node uses where 358 // some instructions are dead but not others. We can't completely ignore 359 // them, and so have to record at least the information here. 360 assert(AllocSize >= BeginOffset); // Established above. 361 if (Size > AllocSize - BeginOffset) { 362 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset 363 << " to remain within the " << AllocSize << " byte alloca:\n" 364 << " alloca: " << S.AI << "\n" 365 << " use: " << I << "\n"); 366 EndOffset = AllocSize; 367 } 368 369 S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 370 } 371 372 void visitBitCastInst(BitCastInst &BC) { 373 if (BC.use_empty()) 374 return markAsDead(BC); 375 376 return Base::visitBitCastInst(BC); 377 } 378 379 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 380 if (GEPI.use_empty()) 381 return markAsDead(GEPI); 382 383 return Base::visitGetElementPtrInst(GEPI); 384 } 385 386 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 387 uint64_t Size, bool IsVolatile) { 388 // We allow splitting of loads and stores where the type is an integer type 389 // and cover the entire alloca. This prevents us from splitting over 390 // eagerly. 391 // FIXME: In the great blue eventually, we should eagerly split all integer 392 // loads and stores, and then have a separate step that merges adjacent 393 // alloca partitions into a single partition suitable for integer widening. 394 // Or we should skip the merge step and rely on GVN and other passes to 395 // merge adjacent loads and stores that survive mem2reg. 396 bool IsSplittable = 397 Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize; 398 399 insertUse(I, Offset, Size, IsSplittable); 400 } 401 402 void visitLoadInst(LoadInst &LI) { 403 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 404 "All simple FCA loads should have been pre-split"); 405 406 if (!IsOffsetKnown) 407 return PI.setAborted(&LI); 408 409 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 410 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 411 } 412 413 void visitStoreInst(StoreInst &SI) { 414 Value *ValOp = SI.getValueOperand(); 415 if (ValOp == *U) 416 return PI.setEscapedAndAborted(&SI); 417 if (!IsOffsetKnown) 418 return PI.setAborted(&SI); 419 420 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); 421 422 // If this memory access can be shown to *statically* extend outside the 423 // bounds of of the allocation, it's behavior is undefined, so simply 424 // ignore it. Note that this is more strict than the generic clamping 425 // behavior of insertUse. We also try to handle cases which might run the 426 // risk of overflow. 427 // FIXME: We should instead consider the pointer to have escaped if this 428 // function is being instrumented for addressing bugs or race conditions. 429 if (Offset.isNegative() || Size > AllocSize || 430 Offset.ugt(AllocSize - Size)) { 431 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset 432 << " which extends past the end of the " << AllocSize 433 << " byte alloca:\n" 434 << " alloca: " << S.AI << "\n" 435 << " use: " << SI << "\n"); 436 return markAsDead(SI); 437 } 438 439 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 440 "All simple FCA stores should have been pre-split"); 441 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 442 } 443 444 445 void visitMemSetInst(MemSetInst &II) { 446 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 447 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 448 if ((Length && Length->getValue() == 0) || 449 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) 450 // Zero-length mem transfer intrinsics can be ignored entirely. 451 return markAsDead(II); 452 453 if (!IsOffsetKnown) 454 return PI.setAborted(&II); 455 456 insertUse(II, Offset, 457 Length ? Length->getLimitedValue() 458 : AllocSize - Offset.getLimitedValue(), 459 (bool)Length); 460 } 461 462 void visitMemTransferInst(MemTransferInst &II) { 463 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 464 if ((Length && Length->getValue() == 0) || 465 (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize))) 466 // Zero-length mem transfer intrinsics can be ignored entirely. 467 return markAsDead(II); 468 469 if (!IsOffsetKnown) 470 return PI.setAborted(&II); 471 472 uint64_t RawOffset = Offset.getLimitedValue(); 473 uint64_t Size = Length ? Length->getLimitedValue() 474 : AllocSize - RawOffset; 475 476 // Check for the special case where the same exact value is used for both 477 // source and dest. 478 if (*U == II.getRawDest() && *U == II.getRawSource()) { 479 // For non-volatile transfers this is a no-op. 480 if (!II.isVolatile()) 481 return markAsDead(II); 482 483 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 484 } 485 486 // If we have seen both source and destination for a mem transfer, then 487 // they both point to the same alloca. 488 bool Inserted; 489 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 490 llvm::tie(MTPI, Inserted) = 491 MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size())); 492 unsigned PrevIdx = MTPI->second; 493 if (!Inserted) { 494 Slice &PrevP = S.Slices[PrevIdx]; 495 496 // Check if the begin offsets match and this is a non-volatile transfer. 497 // In that case, we can completely elide the transfer. 498 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 499 PrevP.kill(); 500 return markAsDead(II); 501 } 502 503 // Otherwise we have an offset transfer within the same alloca. We can't 504 // split those. 505 PrevP.makeUnsplittable(); 506 } 507 508 // Insert the use now that we've fixed up the splittable nature. 509 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 510 511 // Check that we ended up with a valid index in the map. 512 assert(S.Slices[PrevIdx].getUse()->getUser() == &II && 513 "Map index doesn't point back to a slice with this user."); 514 } 515 516 // Disable SRoA for any intrinsics except for lifetime invariants. 517 // FIXME: What about debug intrinsics? This matches old behavior, but 518 // doesn't make sense. 519 void visitIntrinsicInst(IntrinsicInst &II) { 520 if (!IsOffsetKnown) 521 return PI.setAborted(&II); 522 523 if (II.getIntrinsicID() == Intrinsic::lifetime_start || 524 II.getIntrinsicID() == Intrinsic::lifetime_end) { 525 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 526 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 527 Length->getLimitedValue()); 528 insertUse(II, Offset, Size, true); 529 return; 530 } 531 532 Base::visitIntrinsicInst(II); 533 } 534 535 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 536 // We consider any PHI or select that results in a direct load or store of 537 // the same offset to be a viable use for slicing purposes. These uses 538 // are considered unsplittable and the size is the maximum loaded or stored 539 // size. 540 SmallPtrSet<Instruction *, 4> Visited; 541 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 542 Visited.insert(Root); 543 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 544 // If there are no loads or stores, the access is dead. We mark that as 545 // a size zero access. 546 Size = 0; 547 do { 548 Instruction *I, *UsedI; 549 llvm::tie(UsedI, I) = Uses.pop_back_val(); 550 551 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 552 Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); 553 continue; 554 } 555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 556 Value *Op = SI->getOperand(0); 557 if (Op == UsedI) 558 return SI; 559 Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); 560 continue; 561 } 562 563 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 564 if (!GEP->hasAllZeroIndices()) 565 return GEP; 566 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 567 !isa<SelectInst>(I)) { 568 return I; 569 } 570 571 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 572 ++UI) 573 if (Visited.insert(cast<Instruction>(*UI))) 574 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI))); 575 } while (!Uses.empty()); 576 577 return 0; 578 } 579 580 void visitPHINode(PHINode &PN) { 581 if (PN.use_empty()) 582 return markAsDead(PN); 583 if (!IsOffsetKnown) 584 return PI.setAborted(&PN); 585 586 // See if we already have computed info on this node. 587 uint64_t &PHISize = PHIOrSelectSizes[&PN]; 588 if (!PHISize) { 589 // This is a new PHI node, check for an unsafe use of the PHI node. 590 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize)) 591 return PI.setAborted(UnsafeI); 592 } 593 594 // For PHI and select operands outside the alloca, we can't nuke the entire 595 // phi or select -- the other side might still be relevant, so we special 596 // case them here and use a separate structure to track the operands 597 // themselves which should be replaced with undef. 598 // FIXME: This should instead be escaped in the event we're instrumenting 599 // for address sanitization. 600 if ((Offset.isNegative() && (-Offset).uge(PHISize)) || 601 (!Offset.isNegative() && Offset.uge(AllocSize))) { 602 S.DeadOperands.push_back(U); 603 return; 604 } 605 606 insertUse(PN, Offset, PHISize); 607 } 608 609 void visitSelectInst(SelectInst &SI) { 610 if (SI.use_empty()) 611 return markAsDead(SI); 612 if (Value *Result = foldSelectInst(SI)) { 613 if (Result == *U) 614 // If the result of the constant fold will be the pointer, recurse 615 // through the select as if we had RAUW'ed it. 616 enqueueUsers(SI); 617 else 618 // Otherwise the operand to the select is dead, and we can replace it 619 // with undef. 620 S.DeadOperands.push_back(U); 621 622 return; 623 } 624 if (!IsOffsetKnown) 625 return PI.setAborted(&SI); 626 627 // See if we already have computed info on this node. 628 uint64_t &SelectSize = PHIOrSelectSizes[&SI]; 629 if (!SelectSize) { 630 // This is a new Select, check for an unsafe use of it. 631 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize)) 632 return PI.setAborted(UnsafeI); 633 } 634 635 // For PHI and select operands outside the alloca, we can't nuke the entire 636 // phi or select -- the other side might still be relevant, so we special 637 // case them here and use a separate structure to track the operands 638 // themselves which should be replaced with undef. 639 // FIXME: This should instead be escaped in the event we're instrumenting 640 // for address sanitization. 641 if ((Offset.isNegative() && Offset.uge(SelectSize)) || 642 (!Offset.isNegative() && Offset.uge(AllocSize))) { 643 S.DeadOperands.push_back(U); 644 return; 645 } 646 647 insertUse(SI, Offset, SelectSize); 648 } 649 650 /// \brief Disable SROA entirely if there are unhandled users of the alloca. 651 void visitInstruction(Instruction &I) { 652 PI.setAborted(&I); 653 } 654 }; 655 656 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 657 : 658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 659 AI(AI), 660 #endif 661 PointerEscapingInstr(0) { 662 SliceBuilder PB(DL, AI, *this); 663 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 664 if (PtrI.isEscaped() || PtrI.isAborted()) { 665 // FIXME: We should sink the escape vs. abort info into the caller nicely, 666 // possibly by just storing the PtrInfo in the AllocaSlices. 667 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 668 : PtrI.getAbortingInst(); 669 assert(PointerEscapingInstr && "Did not track a bad instruction"); 670 return; 671 } 672 673 Slices.erase(std::remove_if(Slices.begin(), Slices.end(), 674 std::mem_fun_ref(&Slice::isDead)), 675 Slices.end()); 676 677 // Sort the uses. This arranges for the offsets to be in ascending order, 678 // and the sizes to be in descending order. 679 std::sort(Slices.begin(), Slices.end()); 680 } 681 682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 683 684 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 685 StringRef Indent) const { 686 printSlice(OS, I, Indent); 687 printUse(OS, I, Indent); 688 } 689 690 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 691 StringRef Indent) const { 692 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 693 << " slice #" << (I - begin()) 694 << (I->isSplittable() ? " (splittable)" : "") << "\n"; 695 } 696 697 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 698 StringRef Indent) const { 699 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 700 } 701 702 void AllocaSlices::print(raw_ostream &OS) const { 703 if (PointerEscapingInstr) { 704 OS << "Can't analyze slices for alloca: " << AI << "\n" 705 << " A pointer to this alloca escaped by:\n" 706 << " " << *PointerEscapingInstr << "\n"; 707 return; 708 } 709 710 OS << "Slices of alloca: " << AI << "\n"; 711 for (const_iterator I = begin(), E = end(); I != E; ++I) 712 print(OS, I); 713 } 714 715 void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); } 716 void AllocaSlices::dump() const { print(dbgs()); } 717 718 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 719 720 namespace { 721 /// \brief Implementation of LoadAndStorePromoter for promoting allocas. 722 /// 723 /// This subclass of LoadAndStorePromoter adds overrides to handle promoting 724 /// the loads and stores of an alloca instruction, as well as updating its 725 /// debug information. This is used when a domtree is unavailable and thus 726 /// mem2reg in its full form can't be used to handle promotion of allocas to 727 /// scalar values. 728 class AllocaPromoter : public LoadAndStorePromoter { 729 AllocaInst &AI; 730 DIBuilder &DIB; 731 732 SmallVector<DbgDeclareInst *, 4> DDIs; 733 SmallVector<DbgValueInst *, 4> DVIs; 734 735 public: 736 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, 737 AllocaInst &AI, DIBuilder &DIB) 738 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} 739 740 void run(const SmallVectorImpl<Instruction*> &Insts) { 741 // Retain the debug information attached to the alloca for use when 742 // rewriting loads and stores. 743 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { 744 for (Value::use_iterator UI = DebugNode->use_begin(), 745 UE = DebugNode->use_end(); 746 UI != UE; ++UI) 747 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 748 DDIs.push_back(DDI); 749 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) 750 DVIs.push_back(DVI); 751 } 752 753 LoadAndStorePromoter::run(Insts); 754 755 // While we have the debug information, clear it off of the alloca. The 756 // caller takes care of deleting the alloca. 757 while (!DDIs.empty()) 758 DDIs.pop_back_val()->eraseFromParent(); 759 while (!DVIs.empty()) 760 DVIs.pop_back_val()->eraseFromParent(); 761 } 762 763 virtual bool isInstInList(Instruction *I, 764 const SmallVectorImpl<Instruction*> &Insts) const { 765 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 766 return LI->getOperand(0) == &AI; 767 return cast<StoreInst>(I)->getPointerOperand() == &AI; 768 } 769 770 virtual void updateDebugInfo(Instruction *Inst) const { 771 for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(), 772 E = DDIs.end(); I != E; ++I) { 773 DbgDeclareInst *DDI = *I; 774 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 775 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 776 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 777 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 778 } 779 for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(), 780 E = DVIs.end(); I != E; ++I) { 781 DbgValueInst *DVI = *I; 782 Value *Arg = 0; 783 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 784 // If an argument is zero extended then use argument directly. The ZExt 785 // may be zapped by an optimization pass in future. 786 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 787 Arg = dyn_cast<Argument>(ZExt->getOperand(0)); 788 else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 789 Arg = dyn_cast<Argument>(SExt->getOperand(0)); 790 if (!Arg) 791 Arg = SI->getValueOperand(); 792 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 793 Arg = LI->getPointerOperand(); 794 } else { 795 continue; 796 } 797 Instruction *DbgVal = 798 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), 799 Inst); 800 DbgVal->setDebugLoc(DVI->getDebugLoc()); 801 } 802 } 803 }; 804 } // end anon namespace 805 806 807 namespace { 808 /// \brief An optimization pass providing Scalar Replacement of Aggregates. 809 /// 810 /// This pass takes allocations which can be completely analyzed (that is, they 811 /// don't escape) and tries to turn them into scalar SSA values. There are 812 /// a few steps to this process. 813 /// 814 /// 1) It takes allocations of aggregates and analyzes the ways in which they 815 /// are used to try to split them into smaller allocations, ideally of 816 /// a single scalar data type. It will split up memcpy and memset accesses 817 /// as necessary and try to isolate individual scalar accesses. 818 /// 2) It will transform accesses into forms which are suitable for SSA value 819 /// promotion. This can be replacing a memset with a scalar store of an 820 /// integer value, or it can involve speculating operations on a PHI or 821 /// select to be a PHI or select of the results. 822 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly 823 /// onto insert and extract operations on a vector value, and convert them to 824 /// this form. By doing so, it will enable promotion of vector aggregates to 825 /// SSA vector values. 826 class SROA : public FunctionPass { 827 const bool RequiresDomTree; 828 829 LLVMContext *C; 830 const DataLayout *DL; 831 DominatorTree *DT; 832 833 /// \brief Worklist of alloca instructions to simplify. 834 /// 835 /// Each alloca in the function is added to this. Each new alloca formed gets 836 /// added to it as well to recursively simplify unless that alloca can be 837 /// directly promoted. Finally, each time we rewrite a use of an alloca other 838 /// the one being actively rewritten, we add it back onto the list if not 839 /// already present to ensure it is re-visited. 840 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; 841 842 /// \brief A collection of instructions to delete. 843 /// We try to batch deletions to simplify code and make things a bit more 844 /// efficient. 845 SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts; 846 847 /// \brief Post-promotion worklist. 848 /// 849 /// Sometimes we discover an alloca which has a high probability of becoming 850 /// viable for SROA after a round of promotion takes place. In those cases, 851 /// the alloca is enqueued here for re-processing. 852 /// 853 /// Note that we have to be very careful to clear allocas out of this list in 854 /// the event they are deleted. 855 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist; 856 857 /// \brief A collection of alloca instructions we can directly promote. 858 std::vector<AllocaInst *> PromotableAllocas; 859 860 /// \brief A worklist of PHIs to speculate prior to promoting allocas. 861 /// 862 /// All of these PHIs have been checked for the safety of speculation and by 863 /// being speculated will allow promoting allocas currently in the promotable 864 /// queue. 865 SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs; 866 867 /// \brief A worklist of select instructions to speculate prior to promoting 868 /// allocas. 869 /// 870 /// All of these select instructions have been checked for the safety of 871 /// speculation and by being speculated will allow promoting allocas 872 /// currently in the promotable queue. 873 SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects; 874 875 public: 876 SROA(bool RequiresDomTree = true) 877 : FunctionPass(ID), RequiresDomTree(RequiresDomTree), 878 C(0), DL(0), DT(0) { 879 initializeSROAPass(*PassRegistry::getPassRegistry()); 880 } 881 bool runOnFunction(Function &F); 882 void getAnalysisUsage(AnalysisUsage &AU) const; 883 884 const char *getPassName() const { return "SROA"; } 885 static char ID; 886 887 private: 888 friend class PHIOrSelectSpeculator; 889 friend class AllocaSliceRewriter; 890 891 bool rewritePartition(AllocaInst &AI, AllocaSlices &S, 892 AllocaSlices::iterator B, AllocaSlices::iterator E, 893 int64_t BeginOffset, int64_t EndOffset, 894 ArrayRef<AllocaSlices::iterator> SplitUses); 895 bool splitAlloca(AllocaInst &AI, AllocaSlices &S); 896 bool runOnAlloca(AllocaInst &AI); 897 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); 898 bool promoteAllocas(Function &F); 899 }; 900 } 901 902 char SROA::ID = 0; 903 904 FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { 905 return new SROA(RequiresDomTree); 906 } 907 908 INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", 909 false, false) 910 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 911 INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", 912 false, false) 913 914 /// Walk the range of a partitioning looking for a common type to cover this 915 /// sequence of slices. 916 static Type *findCommonType(AllocaSlices::const_iterator B, 917 AllocaSlices::const_iterator E, 918 uint64_t EndOffset) { 919 Type *Ty = 0; 920 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 921 Use *U = I->getUse(); 922 if (isa<IntrinsicInst>(*U->getUser())) 923 continue; 924 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 925 continue; 926 927 Type *UserTy = 0; 928 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) 929 UserTy = LI->getType(); 930 else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) 931 UserTy = SI->getValueOperand()->getType(); 932 else 933 return 0; // Bail if we have weird uses. 934 935 if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) { 936 // If the type is larger than the partition, skip it. We only encounter 937 // this for split integer operations where we want to use the type of the 938 // entity causing the split. 939 if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 940 continue; 941 942 // If we have found an integer type use covering the alloca, use that 943 // regardless of the other types, as integers are often used for a 944 // "bucket 945 // of bits" type. 946 return ITy; 947 } 948 949 if (Ty && Ty != UserTy) 950 return 0; 951 952 Ty = UserTy; 953 } 954 return Ty; 955 } 956 957 /// PHI instructions that use an alloca and are subsequently loaded can be 958 /// rewritten to load both input pointers in the pred blocks and then PHI the 959 /// results, allowing the load of the alloca to be promoted. 960 /// From this: 961 /// %P2 = phi [i32* %Alloca, i32* %Other] 962 /// %V = load i32* %P2 963 /// to: 964 /// %V1 = load i32* %Alloca -> will be mem2reg'd 965 /// ... 966 /// %V2 = load i32* %Other 967 /// ... 968 /// %V = phi [i32 %V1, i32 %V2] 969 /// 970 /// We can do this to a select if its only uses are loads and if the operands 971 /// to the select can be loaded unconditionally. 972 /// 973 /// FIXME: This should be hoisted into a generic utility, likely in 974 /// Transforms/Util/Local.h 975 static bool isSafePHIToSpeculate(PHINode &PN, 976 const DataLayout *DL = 0) { 977 // For now, we can only do this promotion if the load is in the same block 978 // as the PHI, and if there are no stores between the phi and load. 979 // TODO: Allow recursive phi users. 980 // TODO: Allow stores. 981 BasicBlock *BB = PN.getParent(); 982 unsigned MaxAlign = 0; 983 bool HaveLoad = false; 984 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE; 985 ++UI) { 986 LoadInst *LI = dyn_cast<LoadInst>(*UI); 987 if (LI == 0 || !LI->isSimple()) 988 return false; 989 990 // For now we only allow loads in the same block as the PHI. This is 991 // a common case that happens when instcombine merges two loads through 992 // a PHI. 993 if (LI->getParent() != BB) 994 return false; 995 996 // Ensure that there are no instructions between the PHI and the load that 997 // could store. 998 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) 999 if (BBI->mayWriteToMemory()) 1000 return false; 1001 1002 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 1003 HaveLoad = true; 1004 } 1005 1006 if (!HaveLoad) 1007 return false; 1008 1009 // We can only transform this if it is safe to push the loads into the 1010 // predecessor blocks. The only thing to watch out for is that we can't put 1011 // a possibly trapping load in the predecessor if it is a critical edge. 1012 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1013 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1014 Value *InVal = PN.getIncomingValue(Idx); 1015 1016 // If the value is produced by the terminator of the predecessor (an 1017 // invoke) or it has side-effects, there is no valid place to put a load 1018 // in the predecessor. 1019 if (TI == InVal || TI->mayHaveSideEffects()) 1020 return false; 1021 1022 // If the predecessor has a single successor, then the edge isn't 1023 // critical. 1024 if (TI->getNumSuccessors() == 1) 1025 continue; 1026 1027 // If this pointer is always safe to load, or if we can prove that there 1028 // is already a load in the block, then we can move the load to the pred 1029 // block. 1030 if (InVal->isDereferenceablePointer() || 1031 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL)) 1032 continue; 1033 1034 return false; 1035 } 1036 1037 return true; 1038 } 1039 1040 static void speculatePHINodeLoads(PHINode &PN) { 1041 DEBUG(dbgs() << " original: " << PN << "\n"); 1042 1043 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); 1044 IRBuilderTy PHIBuilder(&PN); 1045 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1046 PN.getName() + ".sroa.speculated"); 1047 1048 // Get the TBAA tag and alignment to use from one of the loads. It doesn't 1049 // matter which one we get and if any differ. 1050 LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin()); 1051 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); 1052 unsigned Align = SomeLoad->getAlignment(); 1053 1054 // Rewrite all loads of the PN to use the new PHI. 1055 while (!PN.use_empty()) { 1056 LoadInst *LI = cast<LoadInst>(*PN.use_begin()); 1057 LI->replaceAllUsesWith(NewPN); 1058 LI->eraseFromParent(); 1059 } 1060 1061 // Inject loads into all of the pred blocks. 1062 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1063 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1064 TerminatorInst *TI = Pred->getTerminator(); 1065 Value *InVal = PN.getIncomingValue(Idx); 1066 IRBuilderTy PredBuilder(TI); 1067 1068 LoadInst *Load = PredBuilder.CreateLoad( 1069 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1070 ++NumLoadsSpeculated; 1071 Load->setAlignment(Align); 1072 if (TBAATag) 1073 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); 1074 NewPN->addIncoming(Load, Pred); 1075 } 1076 1077 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1078 PN.eraseFromParent(); 1079 } 1080 1081 /// Select instructions that use an alloca and are subsequently loaded can be 1082 /// rewritten to load both input pointers and then select between the result, 1083 /// allowing the load of the alloca to be promoted. 1084 /// From this: 1085 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1086 /// %V = load i32* %P2 1087 /// to: 1088 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1089 /// %V2 = load i32* %Other 1090 /// %V = select i1 %cond, i32 %V1, i32 %V2 1091 /// 1092 /// We can do this to a select if its only uses are loads and if the operand 1093 /// to the select can be loaded unconditionally. 1094 static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) { 1095 Value *TValue = SI.getTrueValue(); 1096 Value *FValue = SI.getFalseValue(); 1097 bool TDerefable = TValue->isDereferenceablePointer(); 1098 bool FDerefable = FValue->isDereferenceablePointer(); 1099 1100 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE; 1101 ++UI) { 1102 LoadInst *LI = dyn_cast<LoadInst>(*UI); 1103 if (LI == 0 || !LI->isSimple()) 1104 return false; 1105 1106 // Both operands to the select need to be dereferencable, either 1107 // absolutely (e.g. allocas) or at this point because we can see other 1108 // accesses to it. 1109 if (!TDerefable && 1110 !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL)) 1111 return false; 1112 if (!FDerefable && 1113 !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL)) 1114 return false; 1115 } 1116 1117 return true; 1118 } 1119 1120 static void speculateSelectInstLoads(SelectInst &SI) { 1121 DEBUG(dbgs() << " original: " << SI << "\n"); 1122 1123 IRBuilderTy IRB(&SI); 1124 Value *TV = SI.getTrueValue(); 1125 Value *FV = SI.getFalseValue(); 1126 // Replace the loads of the select with a select of two loads. 1127 while (!SI.use_empty()) { 1128 LoadInst *LI = cast<LoadInst>(*SI.use_begin()); 1129 assert(LI->isSimple() && "We only speculate simple loads"); 1130 1131 IRB.SetInsertPoint(LI); 1132 LoadInst *TL = 1133 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); 1134 LoadInst *FL = 1135 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); 1136 NumLoadsSpeculated += 2; 1137 1138 // Transfer alignment and TBAA info if present. 1139 TL->setAlignment(LI->getAlignment()); 1140 FL->setAlignment(LI->getAlignment()); 1141 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { 1142 TL->setMetadata(LLVMContext::MD_tbaa, Tag); 1143 FL->setMetadata(LLVMContext::MD_tbaa, Tag); 1144 } 1145 1146 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1147 LI->getName() + ".sroa.speculated"); 1148 1149 DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1150 LI->replaceAllUsesWith(V); 1151 LI->eraseFromParent(); 1152 } 1153 SI.eraseFromParent(); 1154 } 1155 1156 /// \brief Build a GEP out of a base pointer and indices. 1157 /// 1158 /// This will return the BasePtr if that is valid, or build a new GEP 1159 /// instruction using the IRBuilder if GEP-ing is needed. 1160 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1161 SmallVectorImpl<Value *> &Indices) { 1162 if (Indices.empty()) 1163 return BasePtr; 1164 1165 // A single zero index is a no-op, so check for this and avoid building a GEP 1166 // in that case. 1167 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1168 return BasePtr; 1169 1170 return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx"); 1171 } 1172 1173 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward 1174 /// TargetTy without changing the offset of the pointer. 1175 /// 1176 /// This routine assumes we've already established a properly offset GEP with 1177 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1178 /// zero-indices down through type layers until we find one the same as 1179 /// TargetTy. If we can't find one with the same type, we at least try to use 1180 /// one with the same size. If none of that works, we just produce the GEP as 1181 /// indicated by Indices to have the correct offset. 1182 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1183 Value *BasePtr, Type *Ty, Type *TargetTy, 1184 SmallVectorImpl<Value *> &Indices) { 1185 if (Ty == TargetTy) 1186 return buildGEP(IRB, BasePtr, Indices); 1187 1188 // See if we can descend into a struct and locate a field with the correct 1189 // type. 1190 unsigned NumLayers = 0; 1191 Type *ElementTy = Ty; 1192 do { 1193 if (ElementTy->isPointerTy()) 1194 break; 1195 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) { 1196 ElementTy = SeqTy->getElementType(); 1197 // Note that we use the default address space as this index is over an 1198 // array or a vector, not a pointer. 1199 Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0))); 1200 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1201 if (STy->element_begin() == STy->element_end()) 1202 break; // Nothing left to descend into. 1203 ElementTy = *STy->element_begin(); 1204 Indices.push_back(IRB.getInt32(0)); 1205 } else { 1206 break; 1207 } 1208 ++NumLayers; 1209 } while (ElementTy != TargetTy); 1210 if (ElementTy != TargetTy) 1211 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1212 1213 return buildGEP(IRB, BasePtr, Indices); 1214 } 1215 1216 /// \brief Recursively compute indices for a natural GEP. 1217 /// 1218 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1219 /// element types adding appropriate indices for the GEP. 1220 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1221 Value *Ptr, Type *Ty, APInt &Offset, 1222 Type *TargetTy, 1223 SmallVectorImpl<Value *> &Indices) { 1224 if (Offset == 0) 1225 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices); 1226 1227 // We can't recurse through pointer types. 1228 if (Ty->isPointerTy()) 1229 return 0; 1230 1231 // We try to analyze GEPs over vectors here, but note that these GEPs are 1232 // extremely poorly defined currently. The long-term goal is to remove GEPing 1233 // over a vector from the IR completely. 1234 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1235 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); 1236 if (ElementSizeInBits % 8) 1237 return 0; // GEPs over non-multiple of 8 size vector elements are invalid. 1238 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1239 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1240 if (NumSkippedElements.ugt(VecTy->getNumElements())) 1241 return 0; 1242 Offset -= NumSkippedElements * ElementSize; 1243 Indices.push_back(IRB.getInt(NumSkippedElements)); 1244 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1245 Offset, TargetTy, Indices); 1246 } 1247 1248 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1249 Type *ElementTy = ArrTy->getElementType(); 1250 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1251 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1252 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1253 return 0; 1254 1255 Offset -= NumSkippedElements * ElementSize; 1256 Indices.push_back(IRB.getInt(NumSkippedElements)); 1257 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1258 Indices); 1259 } 1260 1261 StructType *STy = dyn_cast<StructType>(Ty); 1262 if (!STy) 1263 return 0; 1264 1265 const StructLayout *SL = DL.getStructLayout(STy); 1266 uint64_t StructOffset = Offset.getZExtValue(); 1267 if (StructOffset >= SL->getSizeInBytes()) 1268 return 0; 1269 unsigned Index = SL->getElementContainingOffset(StructOffset); 1270 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1271 Type *ElementTy = STy->getElementType(Index); 1272 if (Offset.uge(DL.getTypeAllocSize(ElementTy))) 1273 return 0; // The offset points into alignment padding. 1274 1275 Indices.push_back(IRB.getInt32(Index)); 1276 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1277 Indices); 1278 } 1279 1280 /// \brief Get a natural GEP from a base pointer to a particular offset and 1281 /// resulting in a particular type. 1282 /// 1283 /// The goal is to produce a "natural" looking GEP that works with the existing 1284 /// composite types to arrive at the appropriate offset and element type for 1285 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1286 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1287 /// Indices, and setting Ty to the result subtype. 1288 /// 1289 /// If no natural GEP can be constructed, this function returns null. 1290 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1291 Value *Ptr, APInt Offset, Type *TargetTy, 1292 SmallVectorImpl<Value *> &Indices) { 1293 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1294 1295 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1296 // an i8. 1297 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) 1298 return 0; 1299 1300 Type *ElementTy = Ty->getElementType(); 1301 if (!ElementTy->isSized()) 1302 return 0; // We can't GEP through an unsized element. 1303 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1304 if (ElementSize == 0) 1305 return 0; // Zero-length arrays can't help us build a natural GEP. 1306 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1307 1308 Offset -= NumSkippedElements * ElementSize; 1309 Indices.push_back(IRB.getInt(NumSkippedElements)); 1310 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1311 Indices); 1312 } 1313 1314 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the 1315 /// resulting pointer has PointerTy. 1316 /// 1317 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1318 /// and produces the pointer type desired. Where it cannot, it will try to use 1319 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1320 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1321 /// bitcast to the type. 1322 /// 1323 /// The strategy for finding the more natural GEPs is to peel off layers of the 1324 /// pointer, walking back through bit casts and GEPs, searching for a base 1325 /// pointer from which we can compute a natural GEP with the desired 1326 /// properties. The algorithm tries to fold as many constant indices into 1327 /// a single GEP as possible, thus making each GEP more independent of the 1328 /// surrounding code. 1329 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, 1330 Value *Ptr, APInt Offset, Type *PointerTy) { 1331 // Even though we don't look through PHI nodes, we could be called on an 1332 // instruction in an unreachable block, which may be on a cycle. 1333 SmallPtrSet<Value *, 4> Visited; 1334 Visited.insert(Ptr); 1335 SmallVector<Value *, 4> Indices; 1336 1337 // We may end up computing an offset pointer that has the wrong type. If we 1338 // never are able to compute one directly that has the correct type, we'll 1339 // fall back to it, so keep it around here. 1340 Value *OffsetPtr = 0; 1341 1342 // Remember any i8 pointer we come across to re-use if we need to do a raw 1343 // byte offset. 1344 Value *Int8Ptr = 0; 1345 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1346 1347 Type *TargetTy = PointerTy->getPointerElementType(); 1348 1349 do { 1350 // First fold any existing GEPs into the offset. 1351 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1352 APInt GEPOffset(Offset.getBitWidth(), 0); 1353 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1354 break; 1355 Offset += GEPOffset; 1356 Ptr = GEP->getPointerOperand(); 1357 if (!Visited.insert(Ptr)) 1358 break; 1359 } 1360 1361 // See if we can perform a natural GEP here. 1362 Indices.clear(); 1363 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1364 Indices)) { 1365 if (P->getType() == PointerTy) { 1366 // Zap any offset pointer that we ended up computing in previous rounds. 1367 if (OffsetPtr && OffsetPtr->use_empty()) 1368 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) 1369 I->eraseFromParent(); 1370 return P; 1371 } 1372 if (!OffsetPtr) { 1373 OffsetPtr = P; 1374 } 1375 } 1376 1377 // Stash this pointer if we've found an i8*. 1378 if (Ptr->getType()->isIntegerTy(8)) { 1379 Int8Ptr = Ptr; 1380 Int8PtrOffset = Offset; 1381 } 1382 1383 // Peel off a layer of the pointer and update the offset appropriately. 1384 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1385 Ptr = cast<Operator>(Ptr)->getOperand(0); 1386 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1387 if (GA->mayBeOverridden()) 1388 break; 1389 Ptr = GA->getAliasee(); 1390 } else { 1391 break; 1392 } 1393 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1394 } while (Visited.insert(Ptr)); 1395 1396 if (!OffsetPtr) { 1397 if (!Int8Ptr) { 1398 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), 1399 "raw_cast"); 1400 Int8PtrOffset = Offset; 1401 } 1402 1403 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : 1404 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), 1405 "raw_idx"); 1406 } 1407 Ptr = OffsetPtr; 1408 1409 // On the off chance we were targeting i8*, guard the bitcast here. 1410 if (Ptr->getType() != PointerTy) 1411 Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast"); 1412 1413 return Ptr; 1414 } 1415 1416 /// \brief Test whether we can convert a value from the old to the new type. 1417 /// 1418 /// This predicate should be used to guard calls to convertValue in order to 1419 /// ensure that we only try to convert viable values. The strategy is that we 1420 /// will peel off single element struct and array wrappings to get to an 1421 /// underlying value, and convert that value. 1422 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1423 if (OldTy == NewTy) 1424 return true; 1425 if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy)) 1426 if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy)) 1427 if (NewITy->getBitWidth() >= OldITy->getBitWidth()) 1428 return true; 1429 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) 1430 return false; 1431 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1432 return false; 1433 1434 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1435 if (NewTy->isPointerTy() && OldTy->isPointerTy()) 1436 return true; 1437 if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) 1438 return true; 1439 return false; 1440 } 1441 1442 return true; 1443 } 1444 1445 /// \brief Generic routine to convert an SSA value to a value of a different 1446 /// type. 1447 /// 1448 /// This will try various different casting techniques, such as bitcasts, 1449 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1450 /// two types for viability with this routine. 1451 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1452 Type *Ty) { 1453 assert(canConvertValue(DL, V->getType(), Ty) && 1454 "Value not convertable to type"); 1455 if (V->getType() == Ty) 1456 return V; 1457 if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType())) 1458 if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty)) 1459 if (NewITy->getBitWidth() > OldITy->getBitWidth()) 1460 return IRB.CreateZExt(V, NewITy); 1461 if (V->getType()->isIntegerTy() && Ty->isPointerTy()) 1462 return IRB.CreateIntToPtr(V, Ty); 1463 if (V->getType()->isPointerTy() && Ty->isIntegerTy()) 1464 return IRB.CreatePtrToInt(V, Ty); 1465 1466 return IRB.CreateBitCast(V, Ty); 1467 } 1468 1469 /// \brief Test whether the given slice use can be promoted to a vector. 1470 /// 1471 /// This function is called to test each entry in a partioning which is slated 1472 /// for a single slice. 1473 static bool isVectorPromotionViableForSlice( 1474 const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset, 1475 uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize, 1476 AllocaSlices::const_iterator I) { 1477 // First validate the slice offsets. 1478 uint64_t BeginOffset = 1479 std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset; 1480 uint64_t BeginIndex = BeginOffset / ElementSize; 1481 if (BeginIndex * ElementSize != BeginOffset || 1482 BeginIndex >= Ty->getNumElements()) 1483 return false; 1484 uint64_t EndOffset = 1485 std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset; 1486 uint64_t EndIndex = EndOffset / ElementSize; 1487 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) 1488 return false; 1489 1490 assert(EndIndex > BeginIndex && "Empty vector!"); 1491 uint64_t NumElements = EndIndex - BeginIndex; 1492 Type *SliceTy = 1493 (NumElements == 1) ? Ty->getElementType() 1494 : VectorType::get(Ty->getElementType(), NumElements); 1495 1496 Type *SplitIntTy = 1497 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1498 1499 Use *U = I->getUse(); 1500 1501 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1502 if (MI->isVolatile()) 1503 return false; 1504 if (!I->isSplittable()) 1505 return false; // Skip any unsplittable intrinsics. 1506 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1507 // Disable vector promotion when there are loads or stores of an FCA. 1508 return false; 1509 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1510 if (LI->isVolatile()) 1511 return false; 1512 Type *LTy = LI->getType(); 1513 if (SliceBeginOffset > I->beginOffset() || 1514 SliceEndOffset < I->endOffset()) { 1515 assert(LTy->isIntegerTy()); 1516 LTy = SplitIntTy; 1517 } 1518 if (!canConvertValue(DL, SliceTy, LTy)) 1519 return false; 1520 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1521 if (SI->isVolatile()) 1522 return false; 1523 Type *STy = SI->getValueOperand()->getType(); 1524 if (SliceBeginOffset > I->beginOffset() || 1525 SliceEndOffset < I->endOffset()) { 1526 assert(STy->isIntegerTy()); 1527 STy = SplitIntTy; 1528 } 1529 if (!canConvertValue(DL, STy, SliceTy)) 1530 return false; 1531 } else { 1532 return false; 1533 } 1534 1535 return true; 1536 } 1537 1538 /// \brief Test whether the given alloca partitioning and range of slices can be 1539 /// promoted to a vector. 1540 /// 1541 /// This is a quick test to check whether we can rewrite a particular alloca 1542 /// partition (and its newly formed alloca) into a vector alloca with only 1543 /// whole-vector loads and stores such that it could be promoted to a vector 1544 /// SSA value. We only can ensure this for a limited set of operations, and we 1545 /// don't want to do the rewrites unless we are confident that the result will 1546 /// be promotable, so we have an early test here. 1547 static bool 1548 isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S, 1549 uint64_t SliceBeginOffset, uint64_t SliceEndOffset, 1550 AllocaSlices::const_iterator I, 1551 AllocaSlices::const_iterator E, 1552 ArrayRef<AllocaSlices::iterator> SplitUses) { 1553 VectorType *Ty = dyn_cast<VectorType>(AllocaTy); 1554 if (!Ty) 1555 return false; 1556 1557 uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType()); 1558 1559 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1560 // that aren't byte sized. 1561 if (ElementSize % 8) 1562 return false; 1563 assert((DL.getTypeSizeInBits(Ty) % 8) == 0 && 1564 "vector size not a multiple of element size?"); 1565 ElementSize /= 8; 1566 1567 for (; I != E; ++I) 1568 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, 1569 SliceEndOffset, Ty, ElementSize, I)) 1570 return false; 1571 1572 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), 1573 SUE = SplitUses.end(); 1574 SUI != SUE; ++SUI) 1575 if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset, 1576 SliceEndOffset, Ty, ElementSize, *SUI)) 1577 return false; 1578 1579 return true; 1580 } 1581 1582 /// \brief Test whether a slice of an alloca is valid for integer widening. 1583 /// 1584 /// This implements the necessary checking for the \c isIntegerWideningViable 1585 /// test below on a single slice of the alloca. 1586 static bool isIntegerWideningViableForSlice(const DataLayout &DL, 1587 Type *AllocaTy, 1588 uint64_t AllocBeginOffset, 1589 uint64_t Size, AllocaSlices &S, 1590 AllocaSlices::const_iterator I, 1591 bool &WholeAllocaOp) { 1592 uint64_t RelBegin = I->beginOffset() - AllocBeginOffset; 1593 uint64_t RelEnd = I->endOffset() - AllocBeginOffset; 1594 1595 // We can't reasonably handle cases where the load or store extends past 1596 // the end of the aloca's type and into its padding. 1597 if (RelEnd > Size) 1598 return false; 1599 1600 Use *U = I->getUse(); 1601 1602 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1603 if (LI->isVolatile()) 1604 return false; 1605 if (RelBegin == 0 && RelEnd == Size) 1606 WholeAllocaOp = true; 1607 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 1608 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1609 return false; 1610 } else if (RelBegin != 0 || RelEnd != Size || 1611 !canConvertValue(DL, AllocaTy, LI->getType())) { 1612 // Non-integer loads need to be convertible from the alloca type so that 1613 // they are promotable. 1614 return false; 1615 } 1616 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1617 Type *ValueTy = SI->getValueOperand()->getType(); 1618 if (SI->isVolatile()) 1619 return false; 1620 if (RelBegin == 0 && RelEnd == Size) 1621 WholeAllocaOp = true; 1622 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 1623 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1624 return false; 1625 } else if (RelBegin != 0 || RelEnd != Size || 1626 !canConvertValue(DL, ValueTy, AllocaTy)) { 1627 // Non-integer stores need to be convertible to the alloca type so that 1628 // they are promotable. 1629 return false; 1630 } 1631 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1632 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 1633 return false; 1634 if (!I->isSplittable()) 1635 return false; // Skip any unsplittable intrinsics. 1636 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1637 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1638 II->getIntrinsicID() != Intrinsic::lifetime_end) 1639 return false; 1640 } else { 1641 return false; 1642 } 1643 1644 return true; 1645 } 1646 1647 /// \brief Test whether the given alloca partition's integer operations can be 1648 /// widened to promotable ones. 1649 /// 1650 /// This is a quick test to check whether we can rewrite the integer loads and 1651 /// stores to a particular alloca into wider loads and stores and be able to 1652 /// promote the resulting alloca. 1653 static bool 1654 isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy, 1655 uint64_t AllocBeginOffset, AllocaSlices &S, 1656 AllocaSlices::const_iterator I, 1657 AllocaSlices::const_iterator E, 1658 ArrayRef<AllocaSlices::iterator> SplitUses) { 1659 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); 1660 // Don't create integer types larger than the maximum bitwidth. 1661 if (SizeInBits > IntegerType::MAX_INT_BITS) 1662 return false; 1663 1664 // Don't try to handle allocas with bit-padding. 1665 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) 1666 return false; 1667 1668 // We need to ensure that an integer type with the appropriate bitwidth can 1669 // be converted to the alloca type, whatever that is. We don't want to force 1670 // the alloca itself to have an integer type if there is a more suitable one. 1671 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 1672 if (!canConvertValue(DL, AllocaTy, IntTy) || 1673 !canConvertValue(DL, IntTy, AllocaTy)) 1674 return false; 1675 1676 uint64_t Size = DL.getTypeStoreSize(AllocaTy); 1677 1678 // While examining uses, we ensure that the alloca has a covering load or 1679 // store. We don't want to widen the integer operations only to fail to 1680 // promote due to some other unsplittable entry (which we may make splittable 1681 // later). However, if there are only splittable uses, go ahead and assume 1682 // that we cover the alloca. 1683 bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits); 1684 1685 for (; I != E; ++I) 1686 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, 1687 S, I, WholeAllocaOp)) 1688 return false; 1689 1690 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), 1691 SUE = SplitUses.end(); 1692 SUI != SUE; ++SUI) 1693 if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size, 1694 S, *SUI, WholeAllocaOp)) 1695 return false; 1696 1697 return WholeAllocaOp; 1698 } 1699 1700 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1701 IntegerType *Ty, uint64_t Offset, 1702 const Twine &Name) { 1703 DEBUG(dbgs() << " start: " << *V << "\n"); 1704 IntegerType *IntTy = cast<IntegerType>(V->getType()); 1705 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 1706 "Element extends past full value"); 1707 uint64_t ShAmt = 8*Offset; 1708 if (DL.isBigEndian()) 1709 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 1710 if (ShAmt) { 1711 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 1712 DEBUG(dbgs() << " shifted: " << *V << "\n"); 1713 } 1714 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 1715 "Cannot extract to a larger integer!"); 1716 if (Ty != IntTy) { 1717 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 1718 DEBUG(dbgs() << " trunced: " << *V << "\n"); 1719 } 1720 return V; 1721 } 1722 1723 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 1724 Value *V, uint64_t Offset, const Twine &Name) { 1725 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 1726 IntegerType *Ty = cast<IntegerType>(V->getType()); 1727 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 1728 "Cannot insert a larger integer!"); 1729 DEBUG(dbgs() << " start: " << *V << "\n"); 1730 if (Ty != IntTy) { 1731 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 1732 DEBUG(dbgs() << " extended: " << *V << "\n"); 1733 } 1734 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 1735 "Element store outside of alloca store"); 1736 uint64_t ShAmt = 8*Offset; 1737 if (DL.isBigEndian()) 1738 ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 1739 if (ShAmt) { 1740 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 1741 DEBUG(dbgs() << " shifted: " << *V << "\n"); 1742 } 1743 1744 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 1745 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 1746 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 1747 DEBUG(dbgs() << " masked: " << *Old << "\n"); 1748 V = IRB.CreateOr(Old, V, Name + ".insert"); 1749 DEBUG(dbgs() << " inserted: " << *V << "\n"); 1750 } 1751 return V; 1752 } 1753 1754 static Value *extractVector(IRBuilderTy &IRB, Value *V, 1755 unsigned BeginIndex, unsigned EndIndex, 1756 const Twine &Name) { 1757 VectorType *VecTy = cast<VectorType>(V->getType()); 1758 unsigned NumElements = EndIndex - BeginIndex; 1759 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 1760 1761 if (NumElements == VecTy->getNumElements()) 1762 return V; 1763 1764 if (NumElements == 1) { 1765 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 1766 Name + ".extract"); 1767 DEBUG(dbgs() << " extract: " << *V << "\n"); 1768 return V; 1769 } 1770 1771 SmallVector<Constant*, 8> Mask; 1772 Mask.reserve(NumElements); 1773 for (unsigned i = BeginIndex; i != EndIndex; ++i) 1774 Mask.push_back(IRB.getInt32(i)); 1775 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 1776 ConstantVector::get(Mask), 1777 Name + ".extract"); 1778 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 1779 return V; 1780 } 1781 1782 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 1783 unsigned BeginIndex, const Twine &Name) { 1784 VectorType *VecTy = cast<VectorType>(Old->getType()); 1785 assert(VecTy && "Can only insert a vector into a vector"); 1786 1787 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 1788 if (!Ty) { 1789 // Single element to insert. 1790 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 1791 Name + ".insert"); 1792 DEBUG(dbgs() << " insert: " << *V << "\n"); 1793 return V; 1794 } 1795 1796 assert(Ty->getNumElements() <= VecTy->getNumElements() && 1797 "Too many elements!"); 1798 if (Ty->getNumElements() == VecTy->getNumElements()) { 1799 assert(V->getType() == VecTy && "Vector type mismatch"); 1800 return V; 1801 } 1802 unsigned EndIndex = BeginIndex + Ty->getNumElements(); 1803 1804 // When inserting a smaller vector into the larger to store, we first 1805 // use a shuffle vector to widen it with undef elements, and then 1806 // a second shuffle vector to select between the loaded vector and the 1807 // incoming vector. 1808 SmallVector<Constant*, 8> Mask; 1809 Mask.reserve(VecTy->getNumElements()); 1810 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 1811 if (i >= BeginIndex && i < EndIndex) 1812 Mask.push_back(IRB.getInt32(i - BeginIndex)); 1813 else 1814 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 1815 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 1816 ConstantVector::get(Mask), 1817 Name + ".expand"); 1818 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 1819 1820 Mask.clear(); 1821 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 1822 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 1823 1824 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 1825 1826 DEBUG(dbgs() << " blend: " << *V << "\n"); 1827 return V; 1828 } 1829 1830 namespace { 1831 /// \brief Visitor to rewrite instructions using p particular slice of an alloca 1832 /// to use a new alloca. 1833 /// 1834 /// Also implements the rewriting to vector-based accesses when the partition 1835 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 1836 /// lives here. 1837 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { 1838 // Befriend the base class so it can delegate to private visit methods. 1839 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; 1840 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; 1841 1842 const DataLayout &DL; 1843 AllocaSlices &S; 1844 SROA &Pass; 1845 AllocaInst &OldAI, &NewAI; 1846 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 1847 Type *NewAllocaTy; 1848 1849 // If we are rewriting an alloca partition which can be written as pure 1850 // vector operations, we stash extra information here. When VecTy is 1851 // non-null, we have some strict guarantees about the rewritten alloca: 1852 // - The new alloca is exactly the size of the vector type here. 1853 // - The accesses all either map to the entire vector or to a single 1854 // element. 1855 // - The set of accessing instructions is only one of those handled above 1856 // in isVectorPromotionViable. Generally these are the same access kinds 1857 // which are promotable via mem2reg. 1858 VectorType *VecTy; 1859 Type *ElementTy; 1860 uint64_t ElementSize; 1861 1862 // This is a convenience and flag variable that will be null unless the new 1863 // alloca's integer operations should be widened to this integer type due to 1864 // passing isIntegerWideningViable above. If it is non-null, the desired 1865 // integer type will be stored here for easy access during rewriting. 1866 IntegerType *IntTy; 1867 1868 // The offset of the slice currently being rewritten. 1869 uint64_t BeginOffset, EndOffset; 1870 bool IsSplittable; 1871 bool IsSplit; 1872 Use *OldUse; 1873 Instruction *OldPtr; 1874 1875 // Output members carrying state about the result of visiting and rewriting 1876 // the slice of the alloca. 1877 bool IsUsedByRewrittenSpeculatableInstructions; 1878 1879 // Utility IR builder, whose name prefix is setup for each visited use, and 1880 // the insertion point is set to point to the user. 1881 IRBuilderTy IRB; 1882 1883 public: 1884 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass, 1885 AllocaInst &OldAI, AllocaInst &NewAI, 1886 uint64_t NewBeginOffset, uint64_t NewEndOffset, 1887 bool IsVectorPromotable = false, 1888 bool IsIntegerPromotable = false) 1889 : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 1890 NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset), 1891 NewAllocaTy(NewAI.getAllocatedType()), 1892 VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0), 1893 ElementTy(VecTy ? VecTy->getElementType() : 0), 1894 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), 1895 IntTy(IsIntegerPromotable 1896 ? Type::getIntNTy( 1897 NewAI.getContext(), 1898 DL.getTypeSizeInBits(NewAI.getAllocatedType())) 1899 : 0), 1900 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), 1901 OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false), 1902 IRB(NewAI.getContext(), ConstantFolder()) { 1903 if (VecTy) { 1904 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && 1905 "Only multiple-of-8 sized vector elements are viable"); 1906 ++NumVectorized; 1907 } 1908 assert((!IsVectorPromotable && !IsIntegerPromotable) || 1909 IsVectorPromotable != IsIntegerPromotable); 1910 } 1911 1912 bool visit(AllocaSlices::const_iterator I) { 1913 bool CanSROA = true; 1914 BeginOffset = I->beginOffset(); 1915 EndOffset = I->endOffset(); 1916 IsSplittable = I->isSplittable(); 1917 IsSplit = 1918 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 1919 1920 OldUse = I->getUse(); 1921 OldPtr = cast<Instruction>(OldUse->get()); 1922 1923 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 1924 IRB.SetInsertPoint(OldUserI); 1925 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 1926 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 1927 1928 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 1929 if (VecTy || IntTy) 1930 assert(CanSROA); 1931 return CanSROA; 1932 } 1933 1934 /// \brief Query whether this slice is used by speculatable instructions after 1935 /// rewriting. 1936 /// 1937 /// These instructions (PHIs and Selects currently) require the alloca slice 1938 /// to run back through the rewriter. Thus, they are promotable, but not on 1939 /// this iteration. This is distinct from a slice which is unpromotable for 1940 /// some other reason, in which case we don't even want to perform the 1941 /// speculation. This can be querried at any time and reflects whether (at 1942 /// that point) a visit call has rewritten a speculatable instruction on the 1943 /// current slice. 1944 bool isUsedByRewrittenSpeculatableInstructions() const { 1945 return IsUsedByRewrittenSpeculatableInstructions; 1946 } 1947 1948 private: 1949 // Make sure the other visit overloads are visible. 1950 using Base::visit; 1951 1952 // Every instruction which can end up as a user must have a rewrite rule. 1953 bool visitInstruction(Instruction &I) { 1954 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 1955 llvm_unreachable("No rewrite rule for this instruction!"); 1956 } 1957 1958 Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset, 1959 Type *PointerTy) { 1960 assert(Offset >= NewAllocaBeginOffset); 1961 return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(), 1962 Offset - NewAllocaBeginOffset), 1963 PointerTy); 1964 } 1965 1966 /// \brief Compute suitable alignment to access an offset into the new alloca. 1967 unsigned getOffsetAlign(uint64_t Offset) { 1968 unsigned NewAIAlign = NewAI.getAlignment(); 1969 if (!NewAIAlign) 1970 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); 1971 return MinAlign(NewAIAlign, Offset); 1972 } 1973 1974 /// \brief Compute suitable alignment to access a type at an offset of the 1975 /// new alloca. 1976 /// 1977 /// \returns zero if the type's ABI alignment is a suitable alignment, 1978 /// otherwise returns the maximal suitable alignment. 1979 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) { 1980 unsigned Align = getOffsetAlign(Offset); 1981 return Align == DL.getABITypeAlignment(Ty) ? 0 : Align; 1982 } 1983 1984 unsigned getIndex(uint64_t Offset) { 1985 assert(VecTy && "Can only call getIndex when rewriting a vector"); 1986 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 1987 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 1988 uint32_t Index = RelOffset / ElementSize; 1989 assert(Index * ElementSize == RelOffset); 1990 return Index; 1991 } 1992 1993 void deleteIfTriviallyDead(Value *V) { 1994 Instruction *I = cast<Instruction>(V); 1995 if (isInstructionTriviallyDead(I)) 1996 Pass.DeadInsts.insert(I); 1997 } 1998 1999 Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset, 2000 uint64_t NewEndOffset) { 2001 unsigned BeginIndex = getIndex(NewBeginOffset); 2002 unsigned EndIndex = getIndex(NewEndOffset); 2003 assert(EndIndex > BeginIndex && "Empty vector!"); 2004 2005 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2006 "load"); 2007 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2008 } 2009 2010 Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset, 2011 uint64_t NewEndOffset) { 2012 assert(IntTy && "We cannot insert an integer to the alloca"); 2013 assert(!LI.isVolatile()); 2014 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2015 "load"); 2016 V = convertValue(DL, IRB, V, IntTy); 2017 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2018 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2019 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) 2020 V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset, 2021 "extract"); 2022 return V; 2023 } 2024 2025 bool visitLoadInst(LoadInst &LI) { 2026 DEBUG(dbgs() << " original: " << LI << "\n"); 2027 Value *OldOp = LI.getOperand(0); 2028 assert(OldOp == OldPtr); 2029 2030 // Compute the intersecting offset range. 2031 assert(BeginOffset < NewAllocaEndOffset); 2032 assert(EndOffset > NewAllocaBeginOffset); 2033 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2034 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2035 2036 uint64_t Size = NewEndOffset - NewBeginOffset; 2037 2038 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8) 2039 : LI.getType(); 2040 bool IsPtrAdjusted = false; 2041 Value *V; 2042 if (VecTy) { 2043 V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset); 2044 } else if (IntTy && LI.getType()->isIntegerTy()) { 2045 V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset); 2046 } else if (NewBeginOffset == NewAllocaBeginOffset && 2047 canConvertValue(DL, NewAllocaTy, LI.getType())) { 2048 V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2049 LI.isVolatile(), "load"); 2050 } else { 2051 Type *LTy = TargetTy->getPointerTo(); 2052 V = IRB.CreateAlignedLoad( 2053 getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy), 2054 getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset), 2055 LI.isVolatile(), "load"); 2056 IsPtrAdjusted = true; 2057 } 2058 V = convertValue(DL, IRB, V, TargetTy); 2059 2060 if (IsSplit) { 2061 assert(!LI.isVolatile()); 2062 assert(LI.getType()->isIntegerTy() && 2063 "Only integer type loads and stores are split"); 2064 assert(Size < DL.getTypeStoreSize(LI.getType()) && 2065 "Split load isn't smaller than original load"); 2066 assert(LI.getType()->getIntegerBitWidth() == 2067 DL.getTypeStoreSizeInBits(LI.getType()) && 2068 "Non-byte-multiple bit width"); 2069 // Move the insertion point just past the load so that we can refer to it. 2070 IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI))); 2071 // Create a placeholder value with the same type as LI to use as the 2072 // basis for the new value. This allows us to replace the uses of LI with 2073 // the computed value, and then replace the placeholder with LI, leaving 2074 // LI only used for this computation. 2075 Value *Placeholder 2076 = new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); 2077 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset, 2078 "insert"); 2079 LI.replaceAllUsesWith(V); 2080 Placeholder->replaceAllUsesWith(&LI); 2081 delete Placeholder; 2082 } else { 2083 LI.replaceAllUsesWith(V); 2084 } 2085 2086 Pass.DeadInsts.insert(&LI); 2087 deleteIfTriviallyDead(OldOp); 2088 DEBUG(dbgs() << " to: " << *V << "\n"); 2089 return !LI.isVolatile() && !IsPtrAdjusted; 2090 } 2091 2092 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2093 uint64_t NewBeginOffset, 2094 uint64_t NewEndOffset) { 2095 if (V->getType() != VecTy) { 2096 unsigned BeginIndex = getIndex(NewBeginOffset); 2097 unsigned EndIndex = getIndex(NewEndOffset); 2098 assert(EndIndex > BeginIndex && "Empty vector!"); 2099 unsigned NumElements = EndIndex - BeginIndex; 2100 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2101 Type *SliceTy = 2102 (NumElements == 1) ? ElementTy 2103 : VectorType::get(ElementTy, NumElements); 2104 if (V->getType() != SliceTy) 2105 V = convertValue(DL, IRB, V, SliceTy); 2106 2107 // Mix in the existing elements. 2108 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2109 "load"); 2110 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2111 } 2112 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2113 Pass.DeadInsts.insert(&SI); 2114 2115 (void)Store; 2116 DEBUG(dbgs() << " to: " << *Store << "\n"); 2117 return true; 2118 } 2119 2120 bool rewriteIntegerStore(Value *V, StoreInst &SI, 2121 uint64_t NewBeginOffset, uint64_t NewEndOffset) { 2122 assert(IntTy && "We cannot extract an integer from the alloca"); 2123 assert(!SI.isVolatile()); 2124 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { 2125 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2126 "oldload"); 2127 Old = convertValue(DL, IRB, Old, IntTy); 2128 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2129 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2130 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, 2131 "insert"); 2132 } 2133 V = convertValue(DL, IRB, V, NewAllocaTy); 2134 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2135 Pass.DeadInsts.insert(&SI); 2136 (void)Store; 2137 DEBUG(dbgs() << " to: " << *Store << "\n"); 2138 return true; 2139 } 2140 2141 bool visitStoreInst(StoreInst &SI) { 2142 DEBUG(dbgs() << " original: " << SI << "\n"); 2143 Value *OldOp = SI.getOperand(1); 2144 assert(OldOp == OldPtr); 2145 2146 Value *V = SI.getValueOperand(); 2147 2148 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2149 // alloca that should be re-examined after promoting this alloca. 2150 if (V->getType()->isPointerTy()) 2151 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2152 Pass.PostPromotionWorklist.insert(AI); 2153 2154 // Compute the intersecting offset range. 2155 assert(BeginOffset < NewAllocaEndOffset); 2156 assert(EndOffset > NewAllocaBeginOffset); 2157 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2158 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2159 2160 uint64_t Size = NewEndOffset - NewBeginOffset; 2161 if (Size < DL.getTypeStoreSize(V->getType())) { 2162 assert(!SI.isVolatile()); 2163 assert(V->getType()->isIntegerTy() && 2164 "Only integer type loads and stores are split"); 2165 assert(V->getType()->getIntegerBitWidth() == 2166 DL.getTypeStoreSizeInBits(V->getType()) && 2167 "Non-byte-multiple bit width"); 2168 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8); 2169 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset, 2170 "extract"); 2171 } 2172 2173 if (VecTy) 2174 return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset, 2175 NewEndOffset); 2176 if (IntTy && V->getType()->isIntegerTy()) 2177 return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset); 2178 2179 StoreInst *NewSI; 2180 if (NewBeginOffset == NewAllocaBeginOffset && 2181 NewEndOffset == NewAllocaEndOffset && 2182 canConvertValue(DL, V->getType(), NewAllocaTy)) { 2183 V = convertValue(DL, IRB, V, NewAllocaTy); 2184 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2185 SI.isVolatile()); 2186 } else { 2187 Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset, 2188 V->getType()->getPointerTo()); 2189 NewSI = IRB.CreateAlignedStore( 2190 V, NewPtr, getOffsetTypeAlign( 2191 V->getType(), NewBeginOffset - NewAllocaBeginOffset), 2192 SI.isVolatile()); 2193 } 2194 (void)NewSI; 2195 Pass.DeadInsts.insert(&SI); 2196 deleteIfTriviallyDead(OldOp); 2197 2198 DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2199 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2200 } 2201 2202 /// \brief Compute an integer value from splatting an i8 across the given 2203 /// number of bytes. 2204 /// 2205 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2206 /// call this routine. 2207 /// FIXME: Heed the advice above. 2208 /// 2209 /// \param V The i8 value to splat. 2210 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2211 Value *getIntegerSplat(Value *V, unsigned Size) { 2212 assert(Size > 0 && "Expected a positive number of bytes."); 2213 IntegerType *VTy = cast<IntegerType>(V->getType()); 2214 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2215 if (Size == 1) 2216 return V; 2217 2218 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8); 2219 V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"), 2220 ConstantExpr::getUDiv( 2221 Constant::getAllOnesValue(SplatIntTy), 2222 ConstantExpr::getZExt( 2223 Constant::getAllOnesValue(V->getType()), 2224 SplatIntTy)), 2225 "isplat"); 2226 return V; 2227 } 2228 2229 /// \brief Compute a vector splat for a given element value. 2230 Value *getVectorSplat(Value *V, unsigned NumElements) { 2231 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2232 DEBUG(dbgs() << " splat: " << *V << "\n"); 2233 return V; 2234 } 2235 2236 bool visitMemSetInst(MemSetInst &II) { 2237 DEBUG(dbgs() << " original: " << II << "\n"); 2238 assert(II.getRawDest() == OldPtr); 2239 2240 // If the memset has a variable size, it cannot be split, just adjust the 2241 // pointer to the new alloca. 2242 if (!isa<Constant>(II.getLength())) { 2243 assert(!IsSplit); 2244 assert(BeginOffset >= NewAllocaBeginOffset); 2245 II.setDest( 2246 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); 2247 Type *CstTy = II.getAlignmentCst()->getType(); 2248 II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset))); 2249 2250 deleteIfTriviallyDead(OldPtr); 2251 return false; 2252 } 2253 2254 // Record this instruction for deletion. 2255 Pass.DeadInsts.insert(&II); 2256 2257 Type *AllocaTy = NewAI.getAllocatedType(); 2258 Type *ScalarTy = AllocaTy->getScalarType(); 2259 2260 // Compute the intersecting offset range. 2261 assert(BeginOffset < NewAllocaEndOffset); 2262 assert(EndOffset > NewAllocaBeginOffset); 2263 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2264 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2265 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; 2266 2267 // If this doesn't map cleanly onto the alloca type, and that type isn't 2268 // a single value type, just emit a memset. 2269 if (!VecTy && !IntTy && 2270 (BeginOffset > NewAllocaBeginOffset || 2271 EndOffset < NewAllocaEndOffset || 2272 !AllocaTy->isSingleValueType() || 2273 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || 2274 DL.getTypeSizeInBits(ScalarTy)%8 != 0)) { 2275 Type *SizeTy = II.getLength()->getType(); 2276 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2277 CallInst *New = IRB.CreateMemSet( 2278 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()), 2279 II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile()); 2280 (void)New; 2281 DEBUG(dbgs() << " to: " << *New << "\n"); 2282 return false; 2283 } 2284 2285 // If we can represent this as a simple value, we have to build the actual 2286 // value to store, which requires expanding the byte present in memset to 2287 // a sensible representation for the alloca type. This is essentially 2288 // splatting the byte to a sufficiently wide integer, splatting it across 2289 // any desired vector width, and bitcasting to the final type. 2290 Value *V; 2291 2292 if (VecTy) { 2293 // If this is a memset of a vectorized alloca, insert it. 2294 assert(ElementTy == ScalarTy); 2295 2296 unsigned BeginIndex = getIndex(NewBeginOffset); 2297 unsigned EndIndex = getIndex(NewEndOffset); 2298 assert(EndIndex > BeginIndex && "Empty vector!"); 2299 unsigned NumElements = EndIndex - BeginIndex; 2300 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2301 2302 Value *Splat = 2303 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); 2304 Splat = convertValue(DL, IRB, Splat, ElementTy); 2305 if (NumElements > 1) 2306 Splat = getVectorSplat(Splat, NumElements); 2307 2308 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2309 "oldload"); 2310 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2311 } else if (IntTy) { 2312 // If this is a memset on an alloca where we can widen stores, insert the 2313 // set integer. 2314 assert(!II.isVolatile()); 2315 2316 uint64_t Size = NewEndOffset - NewBeginOffset; 2317 V = getIntegerSplat(II.getValue(), Size); 2318 2319 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2320 EndOffset != NewAllocaBeginOffset)) { 2321 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2322 "oldload"); 2323 Old = convertValue(DL, IRB, Old, IntTy); 2324 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2325 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2326 } else { 2327 assert(V->getType() == IntTy && 2328 "Wrong type for an alloca wide integer!"); 2329 } 2330 V = convertValue(DL, IRB, V, AllocaTy); 2331 } else { 2332 // Established these invariants above. 2333 assert(NewBeginOffset == NewAllocaBeginOffset); 2334 assert(NewEndOffset == NewAllocaEndOffset); 2335 2336 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); 2337 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2338 V = getVectorSplat(V, AllocaVecTy->getNumElements()); 2339 2340 V = convertValue(DL, IRB, V, AllocaTy); 2341 } 2342 2343 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2344 II.isVolatile()); 2345 (void)New; 2346 DEBUG(dbgs() << " to: " << *New << "\n"); 2347 return !II.isVolatile(); 2348 } 2349 2350 bool visitMemTransferInst(MemTransferInst &II) { 2351 // Rewriting of memory transfer instructions can be a bit tricky. We break 2352 // them into two categories: split intrinsics and unsplit intrinsics. 2353 2354 DEBUG(dbgs() << " original: " << II << "\n"); 2355 2356 // Compute the intersecting offset range. 2357 assert(BeginOffset < NewAllocaEndOffset); 2358 assert(EndOffset > NewAllocaBeginOffset); 2359 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2360 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2361 2362 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); 2363 bool IsDest = II.getRawDest() == OldPtr; 2364 2365 // Compute the relative offset within the transfer. 2366 unsigned IntPtrWidth = DL.getPointerSizeInBits(); 2367 APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset); 2368 2369 unsigned Align = II.getAlignment(); 2370 uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset; 2371 if (Align > 1) 2372 Align = 2373 MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), 2374 MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset))); 2375 2376 // For unsplit intrinsics, we simply modify the source and destination 2377 // pointers in place. This isn't just an optimization, it is a matter of 2378 // correctness. With unsplit intrinsics we may be dealing with transfers 2379 // within a single alloca before SROA ran, or with transfers that have 2380 // a variable length. We may also be dealing with memmove instead of 2381 // memcpy, and so simply updating the pointers is the necessary for us to 2382 // update both source and dest of a single call. 2383 if (!IsSplittable) { 2384 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); 2385 if (IsDest) 2386 II.setDest( 2387 getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType())); 2388 else 2389 II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset, 2390 II.getRawSource()->getType())); 2391 2392 Type *CstTy = II.getAlignmentCst()->getType(); 2393 II.setAlignment(ConstantInt::get(CstTy, Align)); 2394 2395 DEBUG(dbgs() << " to: " << II << "\n"); 2396 deleteIfTriviallyDead(OldOp); 2397 return false; 2398 } 2399 // For split transfer intrinsics we have an incredibly useful assurance: 2400 // the source and destination do not reside within the same alloca, and at 2401 // least one of them does not escape. This means that we can replace 2402 // memmove with memcpy, and we don't need to worry about all manner of 2403 // downsides to splitting and transforming the operations. 2404 2405 // If this doesn't map cleanly onto the alloca type, and that type isn't 2406 // a single value type, just emit a memcpy. 2407 bool EmitMemCpy 2408 = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset || 2409 EndOffset < NewAllocaEndOffset || 2410 !NewAI.getAllocatedType()->isSingleValueType()); 2411 2412 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2413 // size hasn't been shrunk based on analysis of the viable range, this is 2414 // a no-op. 2415 if (EmitMemCpy && &OldAI == &NewAI) { 2416 // Ensure the start lines up. 2417 assert(NewBeginOffset == BeginOffset); 2418 2419 // Rewrite the size as needed. 2420 if (NewEndOffset != EndOffset) 2421 II.setLength(ConstantInt::get(II.getLength()->getType(), 2422 NewEndOffset - NewBeginOffset)); 2423 return false; 2424 } 2425 // Record this instruction for deletion. 2426 Pass.DeadInsts.insert(&II); 2427 2428 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2429 // alloca that should be re-examined after rewriting this instruction. 2430 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2431 if (AllocaInst *AI 2432 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) 2433 Pass.Worklist.insert(AI); 2434 2435 if (EmitMemCpy) { 2436 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() 2437 : II.getRawDest()->getType(); 2438 2439 // Compute the other pointer, folding as much as possible to produce 2440 // a single, simple GEP in most cases. 2441 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); 2442 2443 Value *OurPtr = getAdjustedAllocaPtr( 2444 IRB, NewBeginOffset, 2445 IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType()); 2446 Type *SizeTy = II.getLength()->getType(); 2447 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2448 2449 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, 2450 IsDest ? OtherPtr : OurPtr, 2451 Size, Align, II.isVolatile()); 2452 (void)New; 2453 DEBUG(dbgs() << " to: " << *New << "\n"); 2454 return false; 2455 } 2456 2457 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy 2458 // is equivalent to 1, but that isn't true if we end up rewriting this as 2459 // a load or store. 2460 if (!Align) 2461 Align = 1; 2462 2463 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2464 NewEndOffset == NewAllocaEndOffset; 2465 uint64_t Size = NewEndOffset - NewBeginOffset; 2466 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2467 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2468 unsigned NumElements = EndIndex - BeginIndex; 2469 IntegerType *SubIntTy 2470 = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0; 2471 2472 Type *OtherPtrTy = NewAI.getType(); 2473 if (VecTy && !IsWholeAlloca) { 2474 if (NumElements == 1) 2475 OtherPtrTy = VecTy->getElementType(); 2476 else 2477 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); 2478 2479 OtherPtrTy = OtherPtrTy->getPointerTo(); 2480 } else if (IntTy && !IsWholeAlloca) { 2481 OtherPtrTy = SubIntTy->getPointerTo(); 2482 } 2483 2484 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy); 2485 Value *DstPtr = &NewAI; 2486 if (!IsDest) 2487 std::swap(SrcPtr, DstPtr); 2488 2489 Value *Src; 2490 if (VecTy && !IsWholeAlloca && !IsDest) { 2491 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2492 "load"); 2493 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 2494 } else if (IntTy && !IsWholeAlloca && !IsDest) { 2495 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2496 "load"); 2497 Src = convertValue(DL, IRB, Src, IntTy); 2498 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2499 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 2500 } else { 2501 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), 2502 "copyload"); 2503 } 2504 2505 if (VecTy && !IsWholeAlloca && IsDest) { 2506 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2507 "oldload"); 2508 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 2509 } else if (IntTy && !IsWholeAlloca && IsDest) { 2510 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2511 "oldload"); 2512 Old = convertValue(DL, IRB, Old, IntTy); 2513 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2514 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 2515 Src = convertValue(DL, IRB, Src, NewAllocaTy); 2516 } 2517 2518 StoreInst *Store = cast<StoreInst>( 2519 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); 2520 (void)Store; 2521 DEBUG(dbgs() << " to: " << *Store << "\n"); 2522 return !II.isVolatile(); 2523 } 2524 2525 bool visitIntrinsicInst(IntrinsicInst &II) { 2526 assert(II.getIntrinsicID() == Intrinsic::lifetime_start || 2527 II.getIntrinsicID() == Intrinsic::lifetime_end); 2528 DEBUG(dbgs() << " original: " << II << "\n"); 2529 assert(II.getArgOperand(1) == OldPtr); 2530 2531 // Compute the intersecting offset range. 2532 assert(BeginOffset < NewAllocaEndOffset); 2533 assert(EndOffset > NewAllocaBeginOffset); 2534 uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2535 uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2536 2537 // Record this instruction for deletion. 2538 Pass.DeadInsts.insert(&II); 2539 2540 ConstantInt *Size 2541 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 2542 NewEndOffset - NewBeginOffset); 2543 Value *Ptr = 2544 getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType()); 2545 Value *New; 2546 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 2547 New = IRB.CreateLifetimeStart(Ptr, Size); 2548 else 2549 New = IRB.CreateLifetimeEnd(Ptr, Size); 2550 2551 (void)New; 2552 DEBUG(dbgs() << " to: " << *New << "\n"); 2553 return true; 2554 } 2555 2556 bool visitPHINode(PHINode &PN) { 2557 DEBUG(dbgs() << " original: " << PN << "\n"); 2558 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 2559 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 2560 2561 // We would like to compute a new pointer in only one place, but have it be 2562 // as local as possible to the PHI. To do that, we re-use the location of 2563 // the old pointer, which necessarily must be in the right position to 2564 // dominate the PHI. 2565 IRBuilderTy PtrBuilder(OldPtr); 2566 PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + 2567 "."); 2568 2569 Value *NewPtr = 2570 getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType()); 2571 // Replace the operands which were using the old pointer. 2572 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 2573 2574 DEBUG(dbgs() << " to: " << PN << "\n"); 2575 deleteIfTriviallyDead(OldPtr); 2576 2577 // Check whether we can speculate this PHI node, and if so remember that 2578 // fact and queue it up for another iteration after the speculation 2579 // occurs. 2580 if (isSafePHIToSpeculate(PN, &DL)) { 2581 Pass.SpeculatablePHIs.insert(&PN); 2582 IsUsedByRewrittenSpeculatableInstructions = true; 2583 return true; 2584 } 2585 2586 return false; // PHIs can't be promoted on their own. 2587 } 2588 2589 bool visitSelectInst(SelectInst &SI) { 2590 DEBUG(dbgs() << " original: " << SI << "\n"); 2591 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 2592 "Pointer isn't an operand!"); 2593 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 2594 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 2595 2596 Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType()); 2597 // Replace the operands which were using the old pointer. 2598 if (SI.getOperand(1) == OldPtr) 2599 SI.setOperand(1, NewPtr); 2600 if (SI.getOperand(2) == OldPtr) 2601 SI.setOperand(2, NewPtr); 2602 2603 DEBUG(dbgs() << " to: " << SI << "\n"); 2604 deleteIfTriviallyDead(OldPtr); 2605 2606 // Check whether we can speculate this select instruction, and if so 2607 // remember that fact and queue it up for another iteration after the 2608 // speculation occurs. 2609 if (isSafeSelectToSpeculate(SI, &DL)) { 2610 Pass.SpeculatableSelects.insert(&SI); 2611 IsUsedByRewrittenSpeculatableInstructions = true; 2612 return true; 2613 } 2614 2615 return false; // Selects can't be promoted on their own. 2616 } 2617 2618 }; 2619 } 2620 2621 namespace { 2622 /// \brief Visitor to rewrite aggregate loads and stores as scalar. 2623 /// 2624 /// This pass aggressively rewrites all aggregate loads and stores on 2625 /// a particular pointer (or any pointer derived from it which we can identify) 2626 /// with scalar loads and stores. 2627 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 2628 // Befriend the base class so it can delegate to private visit methods. 2629 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; 2630 2631 const DataLayout &DL; 2632 2633 /// Queue of pointer uses to analyze and potentially rewrite. 2634 SmallVector<Use *, 8> Queue; 2635 2636 /// Set to prevent us from cycling with phi nodes and loops. 2637 SmallPtrSet<User *, 8> Visited; 2638 2639 /// The current pointer use being rewritten. This is used to dig up the used 2640 /// value (as opposed to the user). 2641 Use *U; 2642 2643 public: 2644 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 2645 2646 /// Rewrite loads and stores through a pointer and all pointers derived from 2647 /// it. 2648 bool rewrite(Instruction &I) { 2649 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 2650 enqueueUsers(I); 2651 bool Changed = false; 2652 while (!Queue.empty()) { 2653 U = Queue.pop_back_val(); 2654 Changed |= visit(cast<Instruction>(U->getUser())); 2655 } 2656 return Changed; 2657 } 2658 2659 private: 2660 /// Enqueue all the users of the given instruction for further processing. 2661 /// This uses a set to de-duplicate users. 2662 void enqueueUsers(Instruction &I) { 2663 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; 2664 ++UI) 2665 if (Visited.insert(*UI)) 2666 Queue.push_back(&UI.getUse()); 2667 } 2668 2669 // Conservative default is to not rewrite anything. 2670 bool visitInstruction(Instruction &I) { return false; } 2671 2672 /// \brief Generic recursive split emission class. 2673 template <typename Derived> 2674 class OpSplitter { 2675 protected: 2676 /// The builder used to form new instructions. 2677 IRBuilderTy IRB; 2678 /// The indices which to be used with insert- or extractvalue to select the 2679 /// appropriate value within the aggregate. 2680 SmallVector<unsigned, 4> Indices; 2681 /// The indices to a GEP instruction which will move Ptr to the correct slot 2682 /// within the aggregate. 2683 SmallVector<Value *, 4> GEPIndices; 2684 /// The base pointer of the original op, used as a base for GEPing the 2685 /// split operations. 2686 Value *Ptr; 2687 2688 /// Initialize the splitter with an insertion point, Ptr and start with a 2689 /// single zero GEP index. 2690 OpSplitter(Instruction *InsertionPoint, Value *Ptr) 2691 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} 2692 2693 public: 2694 /// \brief Generic recursive split emission routine. 2695 /// 2696 /// This method recursively splits an aggregate op (load or store) into 2697 /// scalar or vector ops. It splits recursively until it hits a single value 2698 /// and emits that single value operation via the template argument. 2699 /// 2700 /// The logic of this routine relies on GEPs and insertvalue and 2701 /// extractvalue all operating with the same fundamental index list, merely 2702 /// formatted differently (GEPs need actual values). 2703 /// 2704 /// \param Ty The type being split recursively into smaller ops. 2705 /// \param Agg The aggregate value being built up or stored, depending on 2706 /// whether this is splitting a load or a store respectively. 2707 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 2708 if (Ty->isSingleValueType()) 2709 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); 2710 2711 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 2712 unsigned OldSize = Indices.size(); 2713 (void)OldSize; 2714 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 2715 ++Idx) { 2716 assert(Indices.size() == OldSize && "Did not return to the old size"); 2717 Indices.push_back(Idx); 2718 GEPIndices.push_back(IRB.getInt32(Idx)); 2719 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 2720 GEPIndices.pop_back(); 2721 Indices.pop_back(); 2722 } 2723 return; 2724 } 2725 2726 if (StructType *STy = dyn_cast<StructType>(Ty)) { 2727 unsigned OldSize = Indices.size(); 2728 (void)OldSize; 2729 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 2730 ++Idx) { 2731 assert(Indices.size() == OldSize && "Did not return to the old size"); 2732 Indices.push_back(Idx); 2733 GEPIndices.push_back(IRB.getInt32(Idx)); 2734 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 2735 GEPIndices.pop_back(); 2736 Indices.pop_back(); 2737 } 2738 return; 2739 } 2740 2741 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 2742 } 2743 }; 2744 2745 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 2746 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) 2747 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} 2748 2749 /// Emit a leaf load of a single value. This is called at the leaves of the 2750 /// recursive emission to actually load values. 2751 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 2752 assert(Ty->isSingleValueType()); 2753 // Load the single value and insert it using the indices. 2754 Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"); 2755 Value *Load = IRB.CreateLoad(GEP, Name + ".load"); 2756 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 2757 DEBUG(dbgs() << " to: " << *Load << "\n"); 2758 } 2759 }; 2760 2761 bool visitLoadInst(LoadInst &LI) { 2762 assert(LI.getPointerOperand() == *U); 2763 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 2764 return false; 2765 2766 // We have an aggregate being loaded, split it apart. 2767 DEBUG(dbgs() << " original: " << LI << "\n"); 2768 LoadOpSplitter Splitter(&LI, *U); 2769 Value *V = UndefValue::get(LI.getType()); 2770 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 2771 LI.replaceAllUsesWith(V); 2772 LI.eraseFromParent(); 2773 return true; 2774 } 2775 2776 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 2777 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) 2778 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} 2779 2780 /// Emit a leaf store of a single value. This is called at the leaves of the 2781 /// recursive emission to actually produce stores. 2782 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 2783 assert(Ty->isSingleValueType()); 2784 // Extract the single value and store it using the indices. 2785 Value *Store = IRB.CreateStore( 2786 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), 2787 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); 2788 (void)Store; 2789 DEBUG(dbgs() << " to: " << *Store << "\n"); 2790 } 2791 }; 2792 2793 bool visitStoreInst(StoreInst &SI) { 2794 if (!SI.isSimple() || SI.getPointerOperand() != *U) 2795 return false; 2796 Value *V = SI.getValueOperand(); 2797 if (V->getType()->isSingleValueType()) 2798 return false; 2799 2800 // We have an aggregate being stored, split it apart. 2801 DEBUG(dbgs() << " original: " << SI << "\n"); 2802 StoreOpSplitter Splitter(&SI, *U); 2803 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 2804 SI.eraseFromParent(); 2805 return true; 2806 } 2807 2808 bool visitBitCastInst(BitCastInst &BC) { 2809 enqueueUsers(BC); 2810 return false; 2811 } 2812 2813 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2814 enqueueUsers(GEPI); 2815 return false; 2816 } 2817 2818 bool visitPHINode(PHINode &PN) { 2819 enqueueUsers(PN); 2820 return false; 2821 } 2822 2823 bool visitSelectInst(SelectInst &SI) { 2824 enqueueUsers(SI); 2825 return false; 2826 } 2827 }; 2828 } 2829 2830 /// \brief Strip aggregate type wrapping. 2831 /// 2832 /// This removes no-op aggregate types wrapping an underlying type. It will 2833 /// strip as many layers of types as it can without changing either the type 2834 /// size or the allocated size. 2835 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 2836 if (Ty->isSingleValueType()) 2837 return Ty; 2838 2839 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 2840 uint64_t TypeSize = DL.getTypeSizeInBits(Ty); 2841 2842 Type *InnerTy; 2843 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 2844 InnerTy = ArrTy->getElementType(); 2845 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 2846 const StructLayout *SL = DL.getStructLayout(STy); 2847 unsigned Index = SL->getElementContainingOffset(0); 2848 InnerTy = STy->getElementType(Index); 2849 } else { 2850 return Ty; 2851 } 2852 2853 if (AllocSize > DL.getTypeAllocSize(InnerTy) || 2854 TypeSize > DL.getTypeSizeInBits(InnerTy)) 2855 return Ty; 2856 2857 return stripAggregateTypeWrapping(DL, InnerTy); 2858 } 2859 2860 /// \brief Try to find a partition of the aggregate type passed in for a given 2861 /// offset and size. 2862 /// 2863 /// This recurses through the aggregate type and tries to compute a subtype 2864 /// based on the offset and size. When the offset and size span a sub-section 2865 /// of an array, it will even compute a new array type for that sub-section, 2866 /// and the same for structs. 2867 /// 2868 /// Note that this routine is very strict and tries to find a partition of the 2869 /// type which produces the *exact* right offset and size. It is not forgiving 2870 /// when the size or offset cause either end of type-based partition to be off. 2871 /// Also, this is a best-effort routine. It is reasonable to give up and not 2872 /// return a type if necessary. 2873 static Type *getTypePartition(const DataLayout &DL, Type *Ty, 2874 uint64_t Offset, uint64_t Size) { 2875 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) 2876 return stripAggregateTypeWrapping(DL, Ty); 2877 if (Offset > DL.getTypeAllocSize(Ty) || 2878 (DL.getTypeAllocSize(Ty) - Offset) < Size) 2879 return 0; 2880 2881 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { 2882 // We can't partition pointers... 2883 if (SeqTy->isPointerTy()) 2884 return 0; 2885 2886 Type *ElementTy = SeqTy->getElementType(); 2887 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 2888 uint64_t NumSkippedElements = Offset / ElementSize; 2889 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { 2890 if (NumSkippedElements >= ArrTy->getNumElements()) 2891 return 0; 2892 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { 2893 if (NumSkippedElements >= VecTy->getNumElements()) 2894 return 0; 2895 } 2896 Offset -= NumSkippedElements * ElementSize; 2897 2898 // First check if we need to recurse. 2899 if (Offset > 0 || Size < ElementSize) { 2900 // Bail if the partition ends in a different array element. 2901 if ((Offset + Size) > ElementSize) 2902 return 0; 2903 // Recurse through the element type trying to peel off offset bytes. 2904 return getTypePartition(DL, ElementTy, Offset, Size); 2905 } 2906 assert(Offset == 0); 2907 2908 if (Size == ElementSize) 2909 return stripAggregateTypeWrapping(DL, ElementTy); 2910 assert(Size > ElementSize); 2911 uint64_t NumElements = Size / ElementSize; 2912 if (NumElements * ElementSize != Size) 2913 return 0; 2914 return ArrayType::get(ElementTy, NumElements); 2915 } 2916 2917 StructType *STy = dyn_cast<StructType>(Ty); 2918 if (!STy) 2919 return 0; 2920 2921 const StructLayout *SL = DL.getStructLayout(STy); 2922 if (Offset >= SL->getSizeInBytes()) 2923 return 0; 2924 uint64_t EndOffset = Offset + Size; 2925 if (EndOffset > SL->getSizeInBytes()) 2926 return 0; 2927 2928 unsigned Index = SL->getElementContainingOffset(Offset); 2929 Offset -= SL->getElementOffset(Index); 2930 2931 Type *ElementTy = STy->getElementType(Index); 2932 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 2933 if (Offset >= ElementSize) 2934 return 0; // The offset points into alignment padding. 2935 2936 // See if any partition must be contained by the element. 2937 if (Offset > 0 || Size < ElementSize) { 2938 if ((Offset + Size) > ElementSize) 2939 return 0; 2940 return getTypePartition(DL, ElementTy, Offset, Size); 2941 } 2942 assert(Offset == 0); 2943 2944 if (Size == ElementSize) 2945 return stripAggregateTypeWrapping(DL, ElementTy); 2946 2947 StructType::element_iterator EI = STy->element_begin() + Index, 2948 EE = STy->element_end(); 2949 if (EndOffset < SL->getSizeInBytes()) { 2950 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 2951 if (Index == EndIndex) 2952 return 0; // Within a single element and its padding. 2953 2954 // Don't try to form "natural" types if the elements don't line up with the 2955 // expected size. 2956 // FIXME: We could potentially recurse down through the last element in the 2957 // sub-struct to find a natural end point. 2958 if (SL->getElementOffset(EndIndex) != EndOffset) 2959 return 0; 2960 2961 assert(Index < EndIndex); 2962 EE = STy->element_begin() + EndIndex; 2963 } 2964 2965 // Try to build up a sub-structure. 2966 StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE), 2967 STy->isPacked()); 2968 const StructLayout *SubSL = DL.getStructLayout(SubTy); 2969 if (Size != SubSL->getSizeInBytes()) 2970 return 0; // The sub-struct doesn't have quite the size needed. 2971 2972 return SubTy; 2973 } 2974 2975 /// \brief Rewrite an alloca partition's users. 2976 /// 2977 /// This routine drives both of the rewriting goals of the SROA pass. It tries 2978 /// to rewrite uses of an alloca partition to be conducive for SSA value 2979 /// promotion. If the partition needs a new, more refined alloca, this will 2980 /// build that new alloca, preserving as much type information as possible, and 2981 /// rewrite the uses of the old alloca to point at the new one and have the 2982 /// appropriate new offsets. It also evaluates how successful the rewrite was 2983 /// at enabling promotion and if it was successful queues the alloca to be 2984 /// promoted. 2985 bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S, 2986 AllocaSlices::iterator B, AllocaSlices::iterator E, 2987 int64_t BeginOffset, int64_t EndOffset, 2988 ArrayRef<AllocaSlices::iterator> SplitUses) { 2989 assert(BeginOffset < EndOffset); 2990 uint64_t SliceSize = EndOffset - BeginOffset; 2991 2992 // Try to compute a friendly type for this partition of the alloca. This 2993 // won't always succeed, in which case we fall back to a legal integer type 2994 // or an i8 array of an appropriate size. 2995 Type *SliceTy = 0; 2996 if (Type *CommonUseTy = findCommonType(B, E, EndOffset)) 2997 if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize) 2998 SliceTy = CommonUseTy; 2999 if (!SliceTy) 3000 if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(), 3001 BeginOffset, SliceSize)) 3002 SliceTy = TypePartitionTy; 3003 if ((!SliceTy || (SliceTy->isArrayTy() && 3004 SliceTy->getArrayElementType()->isIntegerTy())) && 3005 DL->isLegalInteger(SliceSize * 8)) 3006 SliceTy = Type::getIntNTy(*C, SliceSize * 8); 3007 if (!SliceTy) 3008 SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize); 3009 assert(DL->getTypeAllocSize(SliceTy) >= SliceSize); 3010 3011 bool IsVectorPromotable = isVectorPromotionViable( 3012 *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses); 3013 3014 bool IsIntegerPromotable = 3015 !IsVectorPromotable && 3016 isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses); 3017 3018 // Check for the case where we're going to rewrite to a new alloca of the 3019 // exact same type as the original, and with the same access offsets. In that 3020 // case, re-use the existing alloca, but still run through the rewriter to 3021 // perform phi and select speculation. 3022 AllocaInst *NewAI; 3023 if (SliceTy == AI.getAllocatedType()) { 3024 assert(BeginOffset == 0 && 3025 "Non-zero begin offset but same alloca type"); 3026 NewAI = &AI; 3027 // FIXME: We should be able to bail at this point with "nothing changed". 3028 // FIXME: We might want to defer PHI speculation until after here. 3029 } else { 3030 unsigned Alignment = AI.getAlignment(); 3031 if (!Alignment) { 3032 // The minimum alignment which users can rely on when the explicit 3033 // alignment is omitted or zero is that required by the ABI for this 3034 // type. 3035 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 3036 } 3037 Alignment = MinAlign(Alignment, BeginOffset); 3038 // If we will get at least this much alignment from the type alone, leave 3039 // the alloca's alignment unconstrained. 3040 if (Alignment <= DL->getABITypeAlignment(SliceTy)) 3041 Alignment = 0; 3042 NewAI = new AllocaInst(SliceTy, 0, Alignment, 3043 AI.getName() + ".sroa." + Twine(B - S.begin()), &AI); 3044 ++NumNewAllocas; 3045 } 3046 3047 DEBUG(dbgs() << "Rewriting alloca partition " 3048 << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI 3049 << "\n"); 3050 3051 // Track the high watermark on several worklists that are only relevant for 3052 // promoted allocas. We will reset it to this point if the alloca is not in 3053 // fact scheduled for promotion. 3054 unsigned PPWOldSize = PostPromotionWorklist.size(); 3055 unsigned SPOldSize = SpeculatablePHIs.size(); 3056 unsigned SSOldSize = SpeculatableSelects.size(); 3057 unsigned NumUses = 0; 3058 3059 AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset, 3060 EndOffset, IsVectorPromotable, 3061 IsIntegerPromotable); 3062 bool Promotable = true; 3063 for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(), 3064 SUE = SplitUses.end(); 3065 SUI != SUE; ++SUI) { 3066 DEBUG(dbgs() << " rewriting split "); 3067 DEBUG(S.printSlice(dbgs(), *SUI, "")); 3068 Promotable &= Rewriter.visit(*SUI); 3069 ++NumUses; 3070 } 3071 for (AllocaSlices::iterator I = B; I != E; ++I) { 3072 DEBUG(dbgs() << " rewriting "); 3073 DEBUG(S.printSlice(dbgs(), I, "")); 3074 Promotable &= Rewriter.visit(I); 3075 ++NumUses; 3076 } 3077 3078 NumAllocaPartitionUses += NumUses; 3079 MaxUsesPerAllocaPartition = 3080 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); 3081 3082 if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) { 3083 DEBUG(dbgs() << " and queuing for promotion\n"); 3084 PromotableAllocas.push_back(NewAI); 3085 } else if (NewAI != &AI || 3086 (Promotable && 3087 Rewriter.isUsedByRewrittenSpeculatableInstructions())) { 3088 // If we can't promote the alloca, iterate on it to check for new 3089 // refinements exposed by splitting the current alloca. Don't iterate on an 3090 // alloca which didn't actually change and didn't get promoted. 3091 // 3092 // Alternatively, if we could promote the alloca but have speculatable 3093 // instructions then we will speculate them after finishing our processing 3094 // of the original alloca. Mark the new one for re-visiting in the next 3095 // iteration so the speculated operations can be rewritten. 3096 // 3097 // FIXME: We should actually track whether the rewriter changed anything. 3098 Worklist.insert(NewAI); 3099 } 3100 3101 // Drop any post-promotion work items if promotion didn't happen. 3102 if (!Promotable) { 3103 while (PostPromotionWorklist.size() > PPWOldSize) 3104 PostPromotionWorklist.pop_back(); 3105 while (SpeculatablePHIs.size() > SPOldSize) 3106 SpeculatablePHIs.pop_back(); 3107 while (SpeculatableSelects.size() > SSOldSize) 3108 SpeculatableSelects.pop_back(); 3109 } 3110 3111 return true; 3112 } 3113 3114 namespace { 3115 struct IsSliceEndLessOrEqualTo { 3116 uint64_t UpperBound; 3117 3118 IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {} 3119 3120 bool operator()(const AllocaSlices::iterator &I) { 3121 return I->endOffset() <= UpperBound; 3122 } 3123 }; 3124 } 3125 3126 static void 3127 removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses, 3128 uint64_t &MaxSplitUseEndOffset, uint64_t Offset) { 3129 if (Offset >= MaxSplitUseEndOffset) { 3130 SplitUses.clear(); 3131 MaxSplitUseEndOffset = 0; 3132 return; 3133 } 3134 3135 size_t SplitUsesOldSize = SplitUses.size(); 3136 SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(), 3137 IsSliceEndLessOrEqualTo(Offset)), 3138 SplitUses.end()); 3139 if (SplitUsesOldSize == SplitUses.size()) 3140 return; 3141 3142 // Recompute the max. While this is linear, so is remove_if. 3143 MaxSplitUseEndOffset = 0; 3144 for (SmallVectorImpl<AllocaSlices::iterator>::iterator 3145 SUI = SplitUses.begin(), 3146 SUE = SplitUses.end(); 3147 SUI != SUE; ++SUI) 3148 MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset); 3149 } 3150 3151 /// \brief Walks the slices of an alloca and form partitions based on them, 3152 /// rewriting each of their uses. 3153 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) { 3154 if (S.begin() == S.end()) 3155 return false; 3156 3157 unsigned NumPartitions = 0; 3158 bool Changed = false; 3159 SmallVector<AllocaSlices::iterator, 4> SplitUses; 3160 uint64_t MaxSplitUseEndOffset = 0; 3161 3162 uint64_t BeginOffset = S.begin()->beginOffset(); 3163 3164 for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end(); 3165 SI != SE; SI = SJ) { 3166 uint64_t MaxEndOffset = SI->endOffset(); 3167 3168 if (!SI->isSplittable()) { 3169 // When we're forming an unsplittable region, it must always start at the 3170 // first slice and will extend through its end. 3171 assert(BeginOffset == SI->beginOffset()); 3172 3173 // Form a partition including all of the overlapping slices with this 3174 // unsplittable slice. 3175 while (SJ != SE && SJ->beginOffset() < MaxEndOffset) { 3176 if (!SJ->isSplittable()) 3177 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); 3178 ++SJ; 3179 } 3180 } else { 3181 assert(SI->isSplittable()); // Established above. 3182 3183 // Collect all of the overlapping splittable slices. 3184 while (SJ != SE && SJ->beginOffset() < MaxEndOffset && 3185 SJ->isSplittable()) { 3186 MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset()); 3187 ++SJ; 3188 } 3189 3190 // Back up MaxEndOffset and SJ if we ended the span early when 3191 // encountering an unsplittable slice. 3192 if (SJ != SE && SJ->beginOffset() < MaxEndOffset) { 3193 assert(!SJ->isSplittable()); 3194 MaxEndOffset = SJ->beginOffset(); 3195 } 3196 } 3197 3198 // Check if we have managed to move the end offset forward yet. If so, 3199 // we'll have to rewrite uses and erase old split uses. 3200 if (BeginOffset < MaxEndOffset) { 3201 // Rewrite a sequence of overlapping slices. 3202 Changed |= 3203 rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses); 3204 ++NumPartitions; 3205 3206 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset); 3207 } 3208 3209 // Accumulate all the splittable slices from the [SI,SJ) region which 3210 // overlap going forward. 3211 for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK) 3212 if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) { 3213 SplitUses.push_back(SK); 3214 MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset); 3215 } 3216 3217 // If we're already at the end and we have no split uses, we're done. 3218 if (SJ == SE && SplitUses.empty()) 3219 break; 3220 3221 // If we have no split uses or no gap in offsets, we're ready to move to 3222 // the next slice. 3223 if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) { 3224 BeginOffset = SJ->beginOffset(); 3225 continue; 3226 } 3227 3228 // Even if we have split slices, if the next slice is splittable and the 3229 // split slices reach it, we can simply set up the beginning offset of the 3230 // next iteration to bridge between them. 3231 if (SJ != SE && SJ->isSplittable() && 3232 MaxSplitUseEndOffset > SJ->beginOffset()) { 3233 BeginOffset = MaxEndOffset; 3234 continue; 3235 } 3236 3237 // Otherwise, we have a tail of split slices. Rewrite them with an empty 3238 // range of slices. 3239 uint64_t PostSplitEndOffset = 3240 SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset(); 3241 3242 Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset, 3243 SplitUses); 3244 ++NumPartitions; 3245 3246 if (SJ == SE) 3247 break; // Skip the rest, we don't need to do any cleanup. 3248 3249 removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, 3250 PostSplitEndOffset); 3251 3252 // Now just reset the begin offset for the next iteration. 3253 BeginOffset = SJ->beginOffset(); 3254 } 3255 3256 NumAllocaPartitions += NumPartitions; 3257 MaxPartitionsPerAlloca = 3258 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); 3259 3260 return Changed; 3261 } 3262 3263 /// \brief Analyze an alloca for SROA. 3264 /// 3265 /// This analyzes the alloca to ensure we can reason about it, builds 3266 /// the slices of the alloca, and then hands it off to be split and 3267 /// rewritten as needed. 3268 bool SROA::runOnAlloca(AllocaInst &AI) { 3269 DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 3270 ++NumAllocasAnalyzed; 3271 3272 // Special case dead allocas, as they're trivial. 3273 if (AI.use_empty()) { 3274 AI.eraseFromParent(); 3275 return true; 3276 } 3277 3278 // Skip alloca forms that this analysis can't handle. 3279 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || 3280 DL->getTypeAllocSize(AI.getAllocatedType()) == 0) 3281 return false; 3282 3283 bool Changed = false; 3284 3285 // First, split any FCA loads and stores touching this alloca to promote 3286 // better splitting and promotion opportunities. 3287 AggLoadStoreRewriter AggRewriter(*DL); 3288 Changed |= AggRewriter.rewrite(AI); 3289 3290 // Build the slices using a recursive instruction-visiting builder. 3291 AllocaSlices S(*DL, AI); 3292 DEBUG(S.print(dbgs())); 3293 if (S.isEscaped()) 3294 return Changed; 3295 3296 // Delete all the dead users of this alloca before splitting and rewriting it. 3297 for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(), 3298 DE = S.dead_user_end(); 3299 DI != DE; ++DI) { 3300 Changed = true; 3301 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); 3302 DeadInsts.insert(*DI); 3303 } 3304 for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(), 3305 DE = S.dead_op_end(); 3306 DO != DE; ++DO) { 3307 Value *OldV = **DO; 3308 // Clobber the use with an undef value. 3309 **DO = UndefValue::get(OldV->getType()); 3310 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 3311 if (isInstructionTriviallyDead(OldI)) { 3312 Changed = true; 3313 DeadInsts.insert(OldI); 3314 } 3315 } 3316 3317 // No slices to split. Leave the dead alloca for a later pass to clean up. 3318 if (S.begin() == S.end()) 3319 return Changed; 3320 3321 Changed |= splitAlloca(AI, S); 3322 3323 DEBUG(dbgs() << " Speculating PHIs\n"); 3324 while (!SpeculatablePHIs.empty()) 3325 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 3326 3327 DEBUG(dbgs() << " Speculating Selects\n"); 3328 while (!SpeculatableSelects.empty()) 3329 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 3330 3331 return Changed; 3332 } 3333 3334 /// \brief Delete the dead instructions accumulated in this run. 3335 /// 3336 /// Recursively deletes the dead instructions we've accumulated. This is done 3337 /// at the very end to maximize locality of the recursive delete and to 3338 /// minimize the problems of invalidated instruction pointers as such pointers 3339 /// are used heavily in the intermediate stages of the algorithm. 3340 /// 3341 /// We also record the alloca instructions deleted here so that they aren't 3342 /// subsequently handed to mem2reg to promote. 3343 void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { 3344 while (!DeadInsts.empty()) { 3345 Instruction *I = DeadInsts.pop_back_val(); 3346 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 3347 3348 I->replaceAllUsesWith(UndefValue::get(I->getType())); 3349 3350 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 3351 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 3352 // Zero out the operand and see if it becomes trivially dead. 3353 *OI = 0; 3354 if (isInstructionTriviallyDead(U)) 3355 DeadInsts.insert(U); 3356 } 3357 3358 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 3359 DeletedAllocas.insert(AI); 3360 3361 ++NumDeleted; 3362 I->eraseFromParent(); 3363 } 3364 } 3365 3366 static void enqueueUsersInWorklist(Instruction &I, 3367 SmallVectorImpl<Use *> &UseWorklist, 3368 SmallPtrSet<Use *, 8> &VisitedUses) { 3369 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; 3370 ++UI) 3371 if (VisitedUses.insert(&UI.getUse())) 3372 UseWorklist.push_back(&UI.getUse()); 3373 } 3374 3375 /// \brief Promote the allocas, using the best available technique. 3376 /// 3377 /// This attempts to promote whatever allocas have been identified as viable in 3378 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 3379 /// If there is a domtree available, we attempt to promote using the full power 3380 /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is 3381 /// based on the SSAUpdater utilities. This function returns whether any 3382 /// promotion occurred. 3383 bool SROA::promoteAllocas(Function &F) { 3384 if (PromotableAllocas.empty()) 3385 return false; 3386 3387 NumPromoted += PromotableAllocas.size(); 3388 3389 if (DT && !ForceSSAUpdater) { 3390 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 3391 PromoteMemToReg(PromotableAllocas, *DT, DL); 3392 PromotableAllocas.clear(); 3393 return true; 3394 } 3395 3396 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); 3397 SSAUpdater SSA; 3398 DIBuilder DIB(*F.getParent()); 3399 SmallVector<Instruction*, 64> Insts; 3400 3401 // We need a worklist to walk the uses of each alloca. 3402 SmallVector<Use *, 8> UseWorklist; 3403 SmallPtrSet<Use *, 8> VisitedUses; 3404 SmallVector<Instruction *, 32> DeadInsts; 3405 3406 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { 3407 AllocaInst *AI = PromotableAllocas[Idx]; 3408 UseWorklist.clear(); 3409 VisitedUses.clear(); 3410 3411 enqueueUsersInWorklist(*AI, UseWorklist, VisitedUses); 3412 3413 while (!UseWorklist.empty()) { 3414 Use *U = UseWorklist.pop_back_val(); 3415 Instruction &I = *cast<Instruction>(U->getUser()); 3416 3417 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about 3418 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs 3419 // leading to them) here. Eventually it should use them to optimize the 3420 // scalar values produced. 3421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 3422 assert(II->getIntrinsicID() == Intrinsic::lifetime_start || 3423 II->getIntrinsicID() == Intrinsic::lifetime_end); 3424 II->eraseFromParent(); 3425 continue; 3426 } 3427 3428 // Push the loads and stores we find onto the list. SROA will already 3429 // have validated that all loads and stores are viable candidates for 3430 // promotion. 3431 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 3432 assert(LI->getType() == AI->getAllocatedType()); 3433 Insts.push_back(LI); 3434 continue; 3435 } 3436 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 3437 assert(SI->getValueOperand()->getType() == AI->getAllocatedType()); 3438 Insts.push_back(SI); 3439 continue; 3440 } 3441 3442 // For everything else, we know that only no-op bitcasts and GEPs will 3443 // make it this far, just recurse through them and recall them for later 3444 // removal. 3445 DeadInsts.push_back(&I); 3446 enqueueUsersInWorklist(I, UseWorklist, VisitedUses); 3447 } 3448 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); 3449 Insts.clear(); 3450 while (!DeadInsts.empty()) 3451 DeadInsts.pop_back_val()->eraseFromParent(); 3452 AI->eraseFromParent(); 3453 } 3454 3455 PromotableAllocas.clear(); 3456 return true; 3457 } 3458 3459 namespace { 3460 /// \brief A predicate to test whether an alloca belongs to a set. 3461 class IsAllocaInSet { 3462 typedef SmallPtrSet<AllocaInst *, 4> SetType; 3463 const SetType &Set; 3464 3465 public: 3466 typedef AllocaInst *argument_type; 3467 3468 IsAllocaInSet(const SetType &Set) : Set(Set) {} 3469 bool operator()(AllocaInst *AI) const { return Set.count(AI); } 3470 }; 3471 } 3472 3473 bool SROA::runOnFunction(Function &F) { 3474 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 3475 C = &F.getContext(); 3476 DL = getAnalysisIfAvailable<DataLayout>(); 3477 if (!DL) { 3478 DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); 3479 return false; 3480 } 3481 DT = getAnalysisIfAvailable<DominatorTree>(); 3482 3483 BasicBlock &EntryBB = F.getEntryBlock(); 3484 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); 3485 I != E; ++I) 3486 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 3487 Worklist.insert(AI); 3488 3489 bool Changed = false; 3490 // A set of deleted alloca instruction pointers which should be removed from 3491 // the list of promotable allocas. 3492 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 3493 3494 do { 3495 while (!Worklist.empty()) { 3496 Changed |= runOnAlloca(*Worklist.pop_back_val()); 3497 deleteDeadInstructions(DeletedAllocas); 3498 3499 // Remove the deleted allocas from various lists so that we don't try to 3500 // continue processing them. 3501 if (!DeletedAllocas.empty()) { 3502 Worklist.remove_if(IsAllocaInSet(DeletedAllocas)); 3503 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas)); 3504 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), 3505 PromotableAllocas.end(), 3506 IsAllocaInSet(DeletedAllocas)), 3507 PromotableAllocas.end()); 3508 DeletedAllocas.clear(); 3509 } 3510 } 3511 3512 Changed |= promoteAllocas(F); 3513 3514 Worklist = PostPromotionWorklist; 3515 PostPromotionWorklist.clear(); 3516 } while (!Worklist.empty()); 3517 3518 return Changed; 3519 } 3520 3521 void SROA::getAnalysisUsage(AnalysisUsage &AU) const { 3522 if (RequiresDomTree) 3523 AU.addRequired<DominatorTree>(); 3524 AU.setPreservesCFG(); 3525 } 3526