Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for load, store and alloca.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/Loads.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/IntrinsicInst.h"
     19 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     20 #include "llvm/Transforms/Utils/Local.h"
     21 using namespace llvm;
     22 
     23 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
     24 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
     25 
     26 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
     27 /// some part of a constant global variable.  This intentionally only accepts
     28 /// constant expressions because we can't rewrite arbitrary instructions.
     29 static bool pointsToConstantGlobal(Value *V) {
     30   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
     31     return GV->isConstant();
     32   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
     33     if (CE->getOpcode() == Instruction::BitCast ||
     34         CE->getOpcode() == Instruction::GetElementPtr)
     35       return pointsToConstantGlobal(CE->getOperand(0));
     36   return false;
     37 }
     38 
     39 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
     40 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
     41 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
     42 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
     43 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
     44 /// the alloca, and if the source pointer is a pointer to a constant global, we
     45 /// can optimize this.
     46 static bool
     47 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
     48                                SmallVectorImpl<Instruction *> &ToDelete,
     49                                bool IsOffset = false) {
     50   // We track lifetime intrinsics as we encounter them.  If we decide to go
     51   // ahead and replace the value with the global, this lets the caller quickly
     52   // eliminate the markers.
     53 
     54   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
     55     User *U = cast<Instruction>(*UI);
     56 
     57     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
     58       // Ignore non-volatile loads, they are always ok.
     59       if (!LI->isSimple()) return false;
     60       continue;
     61     }
     62 
     63     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
     64       // If uses of the bitcast are ok, we are ok.
     65       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
     66         return false;
     67       continue;
     68     }
     69     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
     70       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
     71       // doesn't, it does.
     72       if (!isOnlyCopiedFromConstantGlobal(
     73               GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
     74         return false;
     75       continue;
     76     }
     77 
     78     if (CallSite CS = U) {
     79       // If this is the function being called then we treat it like a load and
     80       // ignore it.
     81       if (CS.isCallee(UI))
     82         continue;
     83 
     84       // If this is a readonly/readnone call site, then we know it is just a
     85       // load (but one that potentially returns the value itself), so we can
     86       // ignore it if we know that the value isn't captured.
     87       unsigned ArgNo = CS.getArgumentNo(UI);
     88       if (CS.onlyReadsMemory() &&
     89           (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
     90         continue;
     91 
     92       // If this is being passed as a byval argument, the caller is making a
     93       // copy, so it is only a read of the alloca.
     94       if (CS.isByValArgument(ArgNo))
     95         continue;
     96     }
     97 
     98     // Lifetime intrinsics can be handled by the caller.
     99     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
    100       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    101           II->getIntrinsicID() == Intrinsic::lifetime_end) {
    102         assert(II->use_empty() && "Lifetime markers have no result to use!");
    103         ToDelete.push_back(II);
    104         continue;
    105       }
    106     }
    107 
    108     // If this is isn't our memcpy/memmove, reject it as something we can't
    109     // handle.
    110     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
    111     if (MI == 0)
    112       return false;
    113 
    114     // If the transfer is using the alloca as a source of the transfer, then
    115     // ignore it since it is a load (unless the transfer is volatile).
    116     if (UI.getOperandNo() == 1) {
    117       if (MI->isVolatile()) return false;
    118       continue;
    119     }
    120 
    121     // If we already have seen a copy, reject the second one.
    122     if (TheCopy) return false;
    123 
    124     // If the pointer has been offset from the start of the alloca, we can't
    125     // safely handle this.
    126     if (IsOffset) return false;
    127 
    128     // If the memintrinsic isn't using the alloca as the dest, reject it.
    129     if (UI.getOperandNo() != 0) return false;
    130 
    131     // If the source of the memcpy/move is not a constant global, reject it.
    132     if (!pointsToConstantGlobal(MI->getSource()))
    133       return false;
    134 
    135     // Otherwise, the transform is safe.  Remember the copy instruction.
    136     TheCopy = MI;
    137   }
    138   return true;
    139 }
    140 
    141 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
    142 /// modified by a copy from a constant global.  If we can prove this, we can
    143 /// replace any uses of the alloca with uses of the global directly.
    144 static MemTransferInst *
    145 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
    146                                SmallVectorImpl<Instruction *> &ToDelete) {
    147   MemTransferInst *TheCopy = 0;
    148   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
    149     return TheCopy;
    150   return 0;
    151 }
    152 
    153 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
    154   // Ensure that the alloca array size argument has type intptr_t, so that
    155   // any casting is exposed early.
    156   if (TD) {
    157     Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
    158     if (AI.getArraySize()->getType() != IntPtrTy) {
    159       Value *V = Builder->CreateIntCast(AI.getArraySize(),
    160                                         IntPtrTy, false);
    161       AI.setOperand(0, V);
    162       return &AI;
    163     }
    164   }
    165 
    166   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
    167   if (AI.isArrayAllocation()) {  // Check C != 1
    168     if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
    169       Type *NewTy =
    170         ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
    171       AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
    172       New->setAlignment(AI.getAlignment());
    173 
    174       // Scan to the end of the allocation instructions, to skip over a block of
    175       // allocas if possible...also skip interleaved debug info
    176       //
    177       BasicBlock::iterator It = New;
    178       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
    179 
    180       // Now that I is pointing to the first non-allocation-inst in the block,
    181       // insert our getelementptr instruction...
    182       //
    183       Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
    184       Value *Idx[2];
    185       Idx[0] = NullIdx;
    186       Idx[1] = NullIdx;
    187       Instruction *GEP =
    188            GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
    189       InsertNewInstBefore(GEP, *It);
    190 
    191       // Now make everything use the getelementptr instead of the original
    192       // allocation.
    193       return ReplaceInstUsesWith(AI, GEP);
    194     } else if (isa<UndefValue>(AI.getArraySize())) {
    195       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
    196     }
    197   }
    198 
    199   if (TD && AI.getAllocatedType()->isSized()) {
    200     // If the alignment is 0 (unspecified), assign it the preferred alignment.
    201     if (AI.getAlignment() == 0)
    202       AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
    203 
    204     // Move all alloca's of zero byte objects to the entry block and merge them
    205     // together.  Note that we only do this for alloca's, because malloc should
    206     // allocate and return a unique pointer, even for a zero byte allocation.
    207     if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
    208       // For a zero sized alloca there is no point in doing an array allocation.
    209       // This is helpful if the array size is a complicated expression not used
    210       // elsewhere.
    211       if (AI.isArrayAllocation()) {
    212         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
    213         return &AI;
    214       }
    215 
    216       // Get the first instruction in the entry block.
    217       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
    218       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
    219       if (FirstInst != &AI) {
    220         // If the entry block doesn't start with a zero-size alloca then move
    221         // this one to the start of the entry block.  There is no problem with
    222         // dominance as the array size was forced to a constant earlier already.
    223         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
    224         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
    225             TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
    226           AI.moveBefore(FirstInst);
    227           return &AI;
    228         }
    229 
    230         // If the alignment of the entry block alloca is 0 (unspecified),
    231         // assign it the preferred alignment.
    232         if (EntryAI->getAlignment() == 0)
    233           EntryAI->setAlignment(
    234             TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
    235         // Replace this zero-sized alloca with the one at the start of the entry
    236         // block after ensuring that the address will be aligned enough for both
    237         // types.
    238         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
    239                                      AI.getAlignment());
    240         EntryAI->setAlignment(MaxAlign);
    241         if (AI.getType() != EntryAI->getType())
    242           return new BitCastInst(EntryAI, AI.getType());
    243         return ReplaceInstUsesWith(AI, EntryAI);
    244       }
    245     }
    246   }
    247 
    248   if (AI.getAlignment()) {
    249     // Check to see if this allocation is only modified by a memcpy/memmove from
    250     // a constant global whose alignment is equal to or exceeds that of the
    251     // allocation.  If this is the case, we can change all users to use
    252     // the constant global instead.  This is commonly produced by the CFE by
    253     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
    254     // is only subsequently read.
    255     SmallVector<Instruction *, 4> ToDelete;
    256     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
    257       unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
    258                                                         AI.getAlignment(), TD);
    259       if (AI.getAlignment() <= SourceAlign) {
    260         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
    261         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
    262         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
    263           EraseInstFromFunction(*ToDelete[i]);
    264         Constant *TheSrc = cast<Constant>(Copy->getSource());
    265         Instruction *NewI
    266           = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
    267                                                              AI.getType()));
    268         EraseInstFromFunction(*Copy);
    269         ++NumGlobalCopies;
    270         return NewI;
    271       }
    272     }
    273   }
    274 
    275   // At last, use the generic allocation site handler to aggressively remove
    276   // unused allocas.
    277   return visitAllocSite(AI);
    278 }
    279 
    280 
    281 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
    282 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
    283                                         const DataLayout *TD) {
    284   User *CI = cast<User>(LI.getOperand(0));
    285   Value *CastOp = CI->getOperand(0);
    286 
    287   PointerType *DestTy = cast<PointerType>(CI->getType());
    288   Type *DestPTy = DestTy->getElementType();
    289   if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
    290 
    291     // If the address spaces don't match, don't eliminate the cast.
    292     if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
    293       return 0;
    294 
    295     Type *SrcPTy = SrcTy->getElementType();
    296 
    297     if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
    298          DestPTy->isVectorTy()) {
    299       // If the source is an array, the code below will not succeed.  Check to
    300       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
    301       // constants.
    302       if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
    303         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
    304           if (ASrcTy->getNumElements() != 0) {
    305             Value *Idxs[2];
    306             Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
    307             Idxs[1] = Idxs[0];
    308             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
    309             SrcTy = cast<PointerType>(CastOp->getType());
    310             SrcPTy = SrcTy->getElementType();
    311           }
    312 
    313       if (IC.getDataLayout() &&
    314           (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
    315             SrcPTy->isVectorTy()) &&
    316           // Do not allow turning this into a load of an integer, which is then
    317           // casted to a pointer, this pessimizes pointer analysis a lot.
    318           (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
    319           IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
    320                IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
    321 
    322         // Okay, we are casting from one integer or pointer type to another of
    323         // the same size.  Instead of casting the pointer before the load, cast
    324         // the result of the loaded value.
    325         LoadInst *NewLoad =
    326           IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
    327         NewLoad->setAlignment(LI.getAlignment());
    328         NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
    329         // Now cast the result of the load.
    330         return new BitCastInst(NewLoad, LI.getType());
    331       }
    332     }
    333   }
    334   return 0;
    335 }
    336 
    337 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
    338   Value *Op = LI.getOperand(0);
    339 
    340   // Attempt to improve the alignment.
    341   if (TD) {
    342     unsigned KnownAlign =
    343       getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
    344     unsigned LoadAlign = LI.getAlignment();
    345     unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
    346       TD->getABITypeAlignment(LI.getType());
    347 
    348     if (KnownAlign > EffectiveLoadAlign)
    349       LI.setAlignment(KnownAlign);
    350     else if (LoadAlign == 0)
    351       LI.setAlignment(EffectiveLoadAlign);
    352   }
    353 
    354   // load (cast X) --> cast (load X) iff safe.
    355   if (isa<CastInst>(Op))
    356     if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
    357       return Res;
    358 
    359   // None of the following transforms are legal for volatile/atomic loads.
    360   // FIXME: Some of it is okay for atomic loads; needs refactoring.
    361   if (!LI.isSimple()) return 0;
    362 
    363   // Do really simple store-to-load forwarding and load CSE, to catch cases
    364   // where there are several consecutive memory accesses to the same location,
    365   // separated by a few arithmetic operations.
    366   BasicBlock::iterator BBI = &LI;
    367   if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
    368     return ReplaceInstUsesWith(LI, AvailableVal);
    369 
    370   // load(gep null, ...) -> unreachable
    371   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
    372     const Value *GEPI0 = GEPI->getOperand(0);
    373     // TODO: Consider a target hook for valid address spaces for this xform.
    374     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
    375       // Insert a new store to null instruction before the load to indicate
    376       // that this code is not reachable.  We do this instead of inserting
    377       // an unreachable instruction directly because we cannot modify the
    378       // CFG.
    379       new StoreInst(UndefValue::get(LI.getType()),
    380                     Constant::getNullValue(Op->getType()), &LI);
    381       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
    382     }
    383   }
    384 
    385   // load null/undef -> unreachable
    386   // TODO: Consider a target hook for valid address spaces for this xform.
    387   if (isa<UndefValue>(Op) ||
    388       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
    389     // Insert a new store to null instruction before the load to indicate that
    390     // this code is not reachable.  We do this instead of inserting an
    391     // unreachable instruction directly because we cannot modify the CFG.
    392     new StoreInst(UndefValue::get(LI.getType()),
    393                   Constant::getNullValue(Op->getType()), &LI);
    394     return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
    395   }
    396 
    397   // Instcombine load (constantexpr_cast global) -> cast (load global)
    398   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
    399     if (CE->isCast())
    400       if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
    401         return Res;
    402 
    403   if (Op->hasOneUse()) {
    404     // Change select and PHI nodes to select values instead of addresses: this
    405     // helps alias analysis out a lot, allows many others simplifications, and
    406     // exposes redundancy in the code.
    407     //
    408     // Note that we cannot do the transformation unless we know that the
    409     // introduced loads cannot trap!  Something like this is valid as long as
    410     // the condition is always false: load (select bool %C, int* null, int* %G),
    411     // but it would not be valid if we transformed it to load from null
    412     // unconditionally.
    413     //
    414     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
    415       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
    416       unsigned Align = LI.getAlignment();
    417       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
    418           isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
    419         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
    420                                            SI->getOperand(1)->getName()+".val");
    421         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
    422                                            SI->getOperand(2)->getName()+".val");
    423         V1->setAlignment(Align);
    424         V2->setAlignment(Align);
    425         return SelectInst::Create(SI->getCondition(), V1, V2);
    426       }
    427 
    428       // load (select (cond, null, P)) -> load P
    429       if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
    430         if (C->isNullValue()) {
    431           LI.setOperand(0, SI->getOperand(2));
    432           return &LI;
    433         }
    434 
    435       // load (select (cond, P, null)) -> load P
    436       if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
    437         if (C->isNullValue()) {
    438           LI.setOperand(0, SI->getOperand(1));
    439           return &LI;
    440         }
    441     }
    442   }
    443   return 0;
    444 }
    445 
    446 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
    447 /// when possible.  This makes it generally easy to do alias analysis and/or
    448 /// SROA/mem2reg of the memory object.
    449 static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
    450   User *CI = cast<User>(SI.getOperand(1));
    451   Value *CastOp = CI->getOperand(0);
    452 
    453   Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
    454   PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
    455   if (SrcTy == 0) return 0;
    456 
    457   Type *SrcPTy = SrcTy->getElementType();
    458 
    459   if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
    460     return 0;
    461 
    462   /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
    463   /// to its first element.  This allows us to handle things like:
    464   ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
    465   /// on 32-bit hosts.
    466   SmallVector<Value*, 4> NewGEPIndices;
    467 
    468   // If the source is an array, the code below will not succeed.  Check to
    469   // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
    470   // constants.
    471   if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
    472     // Index through pointer.
    473     Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
    474     NewGEPIndices.push_back(Zero);
    475 
    476     while (1) {
    477       if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
    478         if (!STy->getNumElements()) /* Struct can be empty {} */
    479           break;
    480         NewGEPIndices.push_back(Zero);
    481         SrcPTy = STy->getElementType(0);
    482       } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
    483         NewGEPIndices.push_back(Zero);
    484         SrcPTy = ATy->getElementType();
    485       } else {
    486         break;
    487       }
    488     }
    489 
    490     SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
    491   }
    492 
    493   if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
    494     return 0;
    495 
    496   // If the pointers point into different address spaces or if they point to
    497   // values with different sizes, we can't do the transformation.
    498   if (!IC.getDataLayout() ||
    499       SrcTy->getAddressSpace() !=
    500         cast<PointerType>(CI->getType())->getAddressSpace() ||
    501       IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
    502       IC.getDataLayout()->getTypeSizeInBits(DestPTy))
    503     return 0;
    504 
    505   // Okay, we are casting from one integer or pointer type to another of
    506   // the same size.  Instead of casting the pointer before
    507   // the store, cast the value to be stored.
    508   Value *NewCast;
    509   Value *SIOp0 = SI.getOperand(0);
    510   Instruction::CastOps opcode = Instruction::BitCast;
    511   Type* CastSrcTy = SIOp0->getType();
    512   Type* CastDstTy = SrcPTy;
    513   if (CastDstTy->isPointerTy()) {
    514     if (CastSrcTy->isIntegerTy())
    515       opcode = Instruction::IntToPtr;
    516   } else if (CastDstTy->isIntegerTy()) {
    517     if (SIOp0->getType()->isPointerTy())
    518       opcode = Instruction::PtrToInt;
    519   }
    520 
    521   // SIOp0 is a pointer to aggregate and this is a store to the first field,
    522   // emit a GEP to index into its first field.
    523   if (!NewGEPIndices.empty())
    524     CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
    525 
    526   NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
    527                                    SIOp0->getName()+".c");
    528   SI.setOperand(0, NewCast);
    529   SI.setOperand(1, CastOp);
    530   return &SI;
    531 }
    532 
    533 /// equivalentAddressValues - Test if A and B will obviously have the same
    534 /// value. This includes recognizing that %t0 and %t1 will have the same
    535 /// value in code like this:
    536 ///   %t0 = getelementptr \@a, 0, 3
    537 ///   store i32 0, i32* %t0
    538 ///   %t1 = getelementptr \@a, 0, 3
    539 ///   %t2 = load i32* %t1
    540 ///
    541 static bool equivalentAddressValues(Value *A, Value *B) {
    542   // Test if the values are trivially equivalent.
    543   if (A == B) return true;
    544 
    545   // Test if the values come form identical arithmetic instructions.
    546   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
    547   // its only used to compare two uses within the same basic block, which
    548   // means that they'll always either have the same value or one of them
    549   // will have an undefined value.
    550   if (isa<BinaryOperator>(A) ||
    551       isa<CastInst>(A) ||
    552       isa<PHINode>(A) ||
    553       isa<GetElementPtrInst>(A))
    554     if (Instruction *BI = dyn_cast<Instruction>(B))
    555       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
    556         return true;
    557 
    558   // Otherwise they may not be equivalent.
    559   return false;
    560 }
    561 
    562 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
    563   Value *Val = SI.getOperand(0);
    564   Value *Ptr = SI.getOperand(1);
    565 
    566   // Attempt to improve the alignment.
    567   if (TD) {
    568     unsigned KnownAlign =
    569       getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
    570                                  TD);
    571     unsigned StoreAlign = SI.getAlignment();
    572     unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
    573       TD->getABITypeAlignment(Val->getType());
    574 
    575     if (KnownAlign > EffectiveStoreAlign)
    576       SI.setAlignment(KnownAlign);
    577     else if (StoreAlign == 0)
    578       SI.setAlignment(EffectiveStoreAlign);
    579   }
    580 
    581   // Don't hack volatile/atomic stores.
    582   // FIXME: Some bits are legal for atomic stores; needs refactoring.
    583   if (!SI.isSimple()) return 0;
    584 
    585   // If the RHS is an alloca with a single use, zapify the store, making the
    586   // alloca dead.
    587   if (Ptr->hasOneUse()) {
    588     if (isa<AllocaInst>(Ptr))
    589       return EraseInstFromFunction(SI);
    590     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
    591       if (isa<AllocaInst>(GEP->getOperand(0))) {
    592         if (GEP->getOperand(0)->hasOneUse())
    593           return EraseInstFromFunction(SI);
    594       }
    595     }
    596   }
    597 
    598   // Do really simple DSE, to catch cases where there are several consecutive
    599   // stores to the same location, separated by a few arithmetic operations. This
    600   // situation often occurs with bitfield accesses.
    601   BasicBlock::iterator BBI = &SI;
    602   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
    603        --ScanInsts) {
    604     --BBI;
    605     // Don't count debug info directives, lest they affect codegen,
    606     // and we skip pointer-to-pointer bitcasts, which are NOPs.
    607     if (isa<DbgInfoIntrinsic>(BBI) ||
    608         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
    609       ScanInsts++;
    610       continue;
    611     }
    612 
    613     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
    614       // Prev store isn't volatile, and stores to the same location?
    615       if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
    616                                                         SI.getOperand(1))) {
    617         ++NumDeadStore;
    618         ++BBI;
    619         EraseInstFromFunction(*PrevSI);
    620         continue;
    621       }
    622       break;
    623     }
    624 
    625     // If this is a load, we have to stop.  However, if the loaded value is from
    626     // the pointer we're loading and is producing the pointer we're storing,
    627     // then *this* store is dead (X = load P; store X -> P).
    628     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
    629       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
    630           LI->isSimple())
    631         return EraseInstFromFunction(SI);
    632 
    633       // Otherwise, this is a load from some other location.  Stores before it
    634       // may not be dead.
    635       break;
    636     }
    637 
    638     // Don't skip over loads or things that can modify memory.
    639     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
    640       break;
    641   }
    642 
    643   // store X, null    -> turns into 'unreachable' in SimplifyCFG
    644   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
    645     if (!isa<UndefValue>(Val)) {
    646       SI.setOperand(0, UndefValue::get(Val->getType()));
    647       if (Instruction *U = dyn_cast<Instruction>(Val))
    648         Worklist.Add(U);  // Dropped a use.
    649     }
    650     return 0;  // Do not modify these!
    651   }
    652 
    653   // store undef, Ptr -> noop
    654   if (isa<UndefValue>(Val))
    655     return EraseInstFromFunction(SI);
    656 
    657   // If the pointer destination is a cast, see if we can fold the cast into the
    658   // source instead.
    659   if (isa<CastInst>(Ptr))
    660     if (Instruction *Res = InstCombineStoreToCast(*this, SI))
    661       return Res;
    662   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
    663     if (CE->isCast())
    664       if (Instruction *Res = InstCombineStoreToCast(*this, SI))
    665         return Res;
    666 
    667 
    668   // If this store is the last instruction in the basic block (possibly
    669   // excepting debug info instructions), and if the block ends with an
    670   // unconditional branch, try to move it to the successor block.
    671   BBI = &SI;
    672   do {
    673     ++BBI;
    674   } while (isa<DbgInfoIntrinsic>(BBI) ||
    675            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
    676   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
    677     if (BI->isUnconditional())
    678       if (SimplifyStoreAtEndOfBlock(SI))
    679         return 0;  // xform done!
    680 
    681   return 0;
    682 }
    683 
    684 /// SimplifyStoreAtEndOfBlock - Turn things like:
    685 ///   if () { *P = v1; } else { *P = v2 }
    686 /// into a phi node with a store in the successor.
    687 ///
    688 /// Simplify things like:
    689 ///   *P = v1; if () { *P = v2; }
    690 /// into a phi node with a store in the successor.
    691 ///
    692 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
    693   BasicBlock *StoreBB = SI.getParent();
    694 
    695   // Check to see if the successor block has exactly two incoming edges.  If
    696   // so, see if the other predecessor contains a store to the same location.
    697   // if so, insert a PHI node (if needed) and move the stores down.
    698   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
    699 
    700   // Determine whether Dest has exactly two predecessors and, if so, compute
    701   // the other predecessor.
    702   pred_iterator PI = pred_begin(DestBB);
    703   BasicBlock *P = *PI;
    704   BasicBlock *OtherBB = 0;
    705 
    706   if (P != StoreBB)
    707     OtherBB = P;
    708 
    709   if (++PI == pred_end(DestBB))
    710     return false;
    711 
    712   P = *PI;
    713   if (P != StoreBB) {
    714     if (OtherBB)
    715       return false;
    716     OtherBB = P;
    717   }
    718   if (++PI != pred_end(DestBB))
    719     return false;
    720 
    721   // Bail out if all the relevant blocks aren't distinct (this can happen,
    722   // for example, if SI is in an infinite loop)
    723   if (StoreBB == DestBB || OtherBB == DestBB)
    724     return false;
    725 
    726   // Verify that the other block ends in a branch and is not otherwise empty.
    727   BasicBlock::iterator BBI = OtherBB->getTerminator();
    728   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
    729   if (!OtherBr || BBI == OtherBB->begin())
    730     return false;
    731 
    732   // If the other block ends in an unconditional branch, check for the 'if then
    733   // else' case.  there is an instruction before the branch.
    734   StoreInst *OtherStore = 0;
    735   if (OtherBr->isUnconditional()) {
    736     --BBI;
    737     // Skip over debugging info.
    738     while (isa<DbgInfoIntrinsic>(BBI) ||
    739            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
    740       if (BBI==OtherBB->begin())
    741         return false;
    742       --BBI;
    743     }
    744     // If this isn't a store, isn't a store to the same location, or is not the
    745     // right kind of store, bail out.
    746     OtherStore = dyn_cast<StoreInst>(BBI);
    747     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
    748         !SI.isSameOperationAs(OtherStore))
    749       return false;
    750   } else {
    751     // Otherwise, the other block ended with a conditional branch. If one of the
    752     // destinations is StoreBB, then we have the if/then case.
    753     if (OtherBr->getSuccessor(0) != StoreBB &&
    754         OtherBr->getSuccessor(1) != StoreBB)
    755       return false;
    756 
    757     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
    758     // if/then triangle.  See if there is a store to the same ptr as SI that
    759     // lives in OtherBB.
    760     for (;; --BBI) {
    761       // Check to see if we find the matching store.
    762       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
    763         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
    764             !SI.isSameOperationAs(OtherStore))
    765           return false;
    766         break;
    767       }
    768       // If we find something that may be using or overwriting the stored
    769       // value, or if we run out of instructions, we can't do the xform.
    770       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
    771           BBI == OtherBB->begin())
    772         return false;
    773     }
    774 
    775     // In order to eliminate the store in OtherBr, we have to
    776     // make sure nothing reads or overwrites the stored value in
    777     // StoreBB.
    778     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
    779       // FIXME: This should really be AA driven.
    780       if (I->mayReadFromMemory() || I->mayWriteToMemory())
    781         return false;
    782     }
    783   }
    784 
    785   // Insert a PHI node now if we need it.
    786   Value *MergedVal = OtherStore->getOperand(0);
    787   if (MergedVal != SI.getOperand(0)) {
    788     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
    789     PN->addIncoming(SI.getOperand(0), SI.getParent());
    790     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
    791     MergedVal = InsertNewInstBefore(PN, DestBB->front());
    792   }
    793 
    794   // Advance to a place where it is safe to insert the new store and
    795   // insert it.
    796   BBI = DestBB->getFirstInsertionPt();
    797   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
    798                                    SI.isVolatile(),
    799                                    SI.getAlignment(),
    800                                    SI.getOrdering(),
    801                                    SI.getSynchScope());
    802   InsertNewInstBefore(NewSI, *BBI);
    803   NewSI->setDebugLoc(OtherStore->getDebugLoc());
    804 
    805   // If the two stores had the same TBAA tag, preserve it.
    806   if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
    807     if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
    808                                OtherStore->getMetadata(LLVMContext::MD_tbaa))))
    809       NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
    810 
    811 
    812   // Nuke the old stores.
    813   EraseInstFromFunction(SI);
    814   EraseInstFromFunction(*OtherStore);
    815   return true;
    816 }
    817