1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2010 Jitse Niesen <jitse (at) maths.leeds.ac.uk> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_TRIDIAGONALIZATION_H 12 #define EIGEN_TRIDIAGONALIZATION_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; 19 template<typename MatrixType> 20 struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > 21 { 22 typedef typename MatrixType::PlainObject ReturnType; 23 }; 24 25 template<typename MatrixType, typename CoeffVectorType> 26 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); 27 } 28 29 /** \eigenvalues_module \ingroup Eigenvalues_Module 30 * 31 * 32 * \class Tridiagonalization 33 * 34 * \brief Tridiagonal decomposition of a selfadjoint matrix 35 * 36 * \tparam _MatrixType the type of the matrix of which we are computing the 37 * tridiagonal decomposition; this is expected to be an instantiation of the 38 * Matrix class template. 39 * 40 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 41 * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 42 * 43 * A tridiagonal matrix is a matrix which has nonzero elements only on the 44 * main diagonal and the first diagonal below and above it. The Hessenberg 45 * decomposition of a selfadjoint matrix is in fact a tridiagonal 46 * decomposition. This class is used in SelfAdjointEigenSolver to compute the 47 * eigenvalues and eigenvectors of a selfadjoint matrix. 48 * 49 * Call the function compute() to compute the tridiagonal decomposition of a 50 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) 51 * constructor which computes the tridiagonal Schur decomposition at 52 * construction time. Once the decomposition is computed, you can use the 53 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the 54 * decomposition. 55 * 56 * The documentation of Tridiagonalization(const MatrixType&) contains an 57 * example of the typical use of this class. 58 * 59 * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver 60 */ 61 template<typename _MatrixType> class Tridiagonalization 62 { 63 public: 64 65 /** \brief Synonym for the template parameter \p _MatrixType. */ 66 typedef _MatrixType MatrixType; 67 68 typedef typename MatrixType::Scalar Scalar; 69 typedef typename NumTraits<Scalar>::Real RealScalar; 70 typedef typename MatrixType::Index Index; 71 72 enum { 73 Size = MatrixType::RowsAtCompileTime, 74 SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), 75 Options = MatrixType::Options, 76 MaxSize = MatrixType::MaxRowsAtCompileTime, 77 MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) 78 }; 79 80 typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; 81 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; 82 typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; 83 typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; 84 typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; 85 86 typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, 87 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, 88 const Diagonal<const MatrixType> 89 >::type DiagonalReturnType; 90 91 typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, 92 typename internal::add_const_on_value_type<typename Diagonal< 93 Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type, 94 const Diagonal< 95 Block<const MatrixType,SizeMinusOne,SizeMinusOne> > 96 >::type SubDiagonalReturnType; 97 98 /** \brief Return type of matrixQ() */ 99 typedef typename HouseholderSequence<MatrixType,CoeffVectorType>::ConjugateReturnType HouseholderSequenceType; 100 101 /** \brief Default constructor. 102 * 103 * \param [in] size Positive integer, size of the matrix whose tridiagonal 104 * decomposition will be computed. 105 * 106 * The default constructor is useful in cases in which the user intends to 107 * perform decompositions via compute(). The \p size parameter is only 108 * used as a hint. It is not an error to give a wrong \p size, but it may 109 * impair performance. 110 * 111 * \sa compute() for an example. 112 */ 113 Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) 114 : m_matrix(size,size), 115 m_hCoeffs(size > 1 ? size-1 : 1), 116 m_isInitialized(false) 117 {} 118 119 /** \brief Constructor; computes tridiagonal decomposition of given matrix. 120 * 121 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition 122 * is to be computed. 123 * 124 * This constructor calls compute() to compute the tridiagonal decomposition. 125 * 126 * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp 127 * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out 128 */ 129 Tridiagonalization(const MatrixType& matrix) 130 : m_matrix(matrix), 131 m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), 132 m_isInitialized(false) 133 { 134 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); 135 m_isInitialized = true; 136 } 137 138 /** \brief Computes tridiagonal decomposition of given matrix. 139 * 140 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition 141 * is to be computed. 142 * \returns Reference to \c *this 143 * 144 * The tridiagonal decomposition is computed by bringing the columns of 145 * the matrix successively in the required form using Householder 146 * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes 147 * the size of the given matrix. 148 * 149 * This method reuses of the allocated data in the Tridiagonalization 150 * object, if the size of the matrix does not change. 151 * 152 * Example: \include Tridiagonalization_compute.cpp 153 * Output: \verbinclude Tridiagonalization_compute.out 154 */ 155 Tridiagonalization& compute(const MatrixType& matrix) 156 { 157 m_matrix = matrix; 158 m_hCoeffs.resize(matrix.rows()-1, 1); 159 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); 160 m_isInitialized = true; 161 return *this; 162 } 163 164 /** \brief Returns the Householder coefficients. 165 * 166 * \returns a const reference to the vector of Householder coefficients 167 * 168 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 169 * the member function compute(const MatrixType&) has been called before 170 * to compute the tridiagonal decomposition of a matrix. 171 * 172 * The Householder coefficients allow the reconstruction of the matrix 173 * \f$ Q \f$ in the tridiagonal decomposition from the packed data. 174 * 175 * Example: \include Tridiagonalization_householderCoefficients.cpp 176 * Output: \verbinclude Tridiagonalization_householderCoefficients.out 177 * 178 * \sa packedMatrix(), \ref Householder_Module "Householder module" 179 */ 180 inline CoeffVectorType householderCoefficients() const 181 { 182 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 183 return m_hCoeffs; 184 } 185 186 /** \brief Returns the internal representation of the decomposition 187 * 188 * \returns a const reference to a matrix with the internal representation 189 * of the decomposition. 190 * 191 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 192 * the member function compute(const MatrixType&) has been called before 193 * to compute the tridiagonal decomposition of a matrix. 194 * 195 * The returned matrix contains the following information: 196 * - the strict upper triangular part is equal to the input matrix A. 197 * - the diagonal and lower sub-diagonal represent the real tridiagonal 198 * symmetric matrix T. 199 * - the rest of the lower part contains the Householder vectors that, 200 * combined with Householder coefficients returned by 201 * householderCoefficients(), allows to reconstruct the matrix Q as 202 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. 203 * Here, the matrices \f$ H_i \f$ are the Householder transformations 204 * \f$ H_i = (I - h_i v_i v_i^T) \f$ 205 * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and 206 * \f$ v_i \f$ is the Householder vector defined by 207 * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ 208 * with M the matrix returned by this function. 209 * 210 * See LAPACK for further details on this packed storage. 211 * 212 * Example: \include Tridiagonalization_packedMatrix.cpp 213 * Output: \verbinclude Tridiagonalization_packedMatrix.out 214 * 215 * \sa householderCoefficients() 216 */ 217 inline const MatrixType& packedMatrix() const 218 { 219 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 220 return m_matrix; 221 } 222 223 /** \brief Returns the unitary matrix Q in the decomposition 224 * 225 * \returns object representing the matrix Q 226 * 227 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 228 * the member function compute(const MatrixType&) has been called before 229 * to compute the tridiagonal decomposition of a matrix. 230 * 231 * This function returns a light-weight object of template class 232 * HouseholderSequence. You can either apply it directly to a matrix or 233 * you can convert it to a matrix of type #MatrixType. 234 * 235 * \sa Tridiagonalization(const MatrixType&) for an example, 236 * matrixT(), class HouseholderSequence 237 */ 238 HouseholderSequenceType matrixQ() const 239 { 240 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 241 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) 242 .setLength(m_matrix.rows() - 1) 243 .setShift(1); 244 } 245 246 /** \brief Returns an expression of the tridiagonal matrix T in the decomposition 247 * 248 * \returns expression object representing the matrix T 249 * 250 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 251 * the member function compute(const MatrixType&) has been called before 252 * to compute the tridiagonal decomposition of a matrix. 253 * 254 * Currently, this function can be used to extract the matrix T from internal 255 * data and copy it to a dense matrix object. In most cases, it may be 256 * sufficient to directly use the packed matrix or the vector expressions 257 * returned by diagonal() and subDiagonal() instead of creating a new 258 * dense copy matrix with this function. 259 * 260 * \sa Tridiagonalization(const MatrixType&) for an example, 261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal() 262 */ 263 MatrixTReturnType matrixT() const 264 { 265 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 266 return MatrixTReturnType(m_matrix.real()); 267 } 268 269 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. 270 * 271 * \returns expression representing the diagonal of T 272 * 273 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 274 * the member function compute(const MatrixType&) has been called before 275 * to compute the tridiagonal decomposition of a matrix. 276 * 277 * Example: \include Tridiagonalization_diagonal.cpp 278 * Output: \verbinclude Tridiagonalization_diagonal.out 279 * 280 * \sa matrixT(), subDiagonal() 281 */ 282 DiagonalReturnType diagonal() const; 283 284 /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. 285 * 286 * \returns expression representing the subdiagonal of T 287 * 288 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 289 * the member function compute(const MatrixType&) has been called before 290 * to compute the tridiagonal decomposition of a matrix. 291 * 292 * \sa diagonal() for an example, matrixT() 293 */ 294 SubDiagonalReturnType subDiagonal() const; 295 296 protected: 297 298 MatrixType m_matrix; 299 CoeffVectorType m_hCoeffs; 300 bool m_isInitialized; 301 }; 302 303 template<typename MatrixType> 304 typename Tridiagonalization<MatrixType>::DiagonalReturnType 305 Tridiagonalization<MatrixType>::diagonal() const 306 { 307 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 308 return m_matrix.diagonal(); 309 } 310 311 template<typename MatrixType> 312 typename Tridiagonalization<MatrixType>::SubDiagonalReturnType 313 Tridiagonalization<MatrixType>::subDiagonal() const 314 { 315 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 316 Index n = m_matrix.rows(); 317 return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal(); 318 } 319 320 namespace internal { 321 322 /** \internal 323 * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. 324 * 325 * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. 326 * On output, the strict upper part is left unchanged, and the lower triangular part 327 * represents the T and Q matrices in packed format has detailed below. 328 * \param[out] hCoeffs returned Householder coefficients (see below) 329 * 330 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal 331 * and lower sub-diagonal of the matrix \a matA. 332 * The unitary matrix Q is represented in a compact way as a product of 333 * Householder reflectors \f$ H_i \f$ such that: 334 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. 335 * The Householder reflectors are defined as 336 * \f$ H_i = (I - h_i v_i v_i^T) \f$ 337 * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and 338 * \f$ v_i \f$ is the Householder vector defined by 339 * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. 340 * 341 * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. 342 * 343 * \sa Tridiagonalization::packedMatrix() 344 */ 345 template<typename MatrixType, typename CoeffVectorType> 346 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) 347 { 348 typedef typename MatrixType::Index Index; 349 typedef typename MatrixType::Scalar Scalar; 350 typedef typename MatrixType::RealScalar RealScalar; 351 Index n = matA.rows(); 352 eigen_assert(n==matA.cols()); 353 eigen_assert(n==hCoeffs.size()+1 || n==1); 354 355 for (Index i = 0; i<n-1; ++i) 356 { 357 Index remainingSize = n-i-1; 358 RealScalar beta; 359 Scalar h; 360 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); 361 362 // Apply similarity transformation to remaining columns, 363 // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) 364 matA.col(i).coeffRef(i+1) = 1; 365 366 hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() 367 * (conj(h) * matA.col(i).tail(remainingSize))); 368 369 hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); 370 371 matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() 372 .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1); 373 374 matA.col(i).coeffRef(i+1) = beta; 375 hCoeffs.coeffRef(i) = h; 376 } 377 } 378 379 // forward declaration, implementation at the end of this file 380 template<typename MatrixType, 381 int Size=MatrixType::ColsAtCompileTime, 382 bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> 383 struct tridiagonalization_inplace_selector; 384 385 /** \brief Performs a full tridiagonalization in place 386 * 387 * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal 388 * decomposition is to be computed. Only the lower triangular part referenced. 389 * The rest is left unchanged. On output, the orthogonal matrix Q 390 * in the decomposition if \p extractQ is true. 391 * \param[out] diag The diagonal of the tridiagonal matrix T in the 392 * decomposition. 393 * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in 394 * the decomposition. 395 * \param[in] extractQ If true, the orthogonal matrix Q in the 396 * decomposition is computed and stored in \p mat. 397 * 398 * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place 399 * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real 400 * symmetric tridiagonal matrix. 401 * 402 * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If 403 * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower 404 * part of the matrix \p mat is destroyed. 405 * 406 * The vectors \p diag and \p subdiag are not resized. The function 407 * assumes that they are already of the correct size. The length of the 408 * vector \p diag should equal the number of rows in \p mat, and the 409 * length of the vector \p subdiag should be one left. 410 * 411 * This implementation contains an optimized path for 3-by-3 matrices 412 * which is especially useful for plane fitting. 413 * 414 * \note Currently, it requires two temporary vectors to hold the intermediate 415 * Householder coefficients, and to reconstruct the matrix Q from the Householder 416 * reflectors. 417 * 418 * Example (this uses the same matrix as the example in 419 * Tridiagonalization::Tridiagonalization(const MatrixType&)): 420 * \include Tridiagonalization_decomposeInPlace.cpp 421 * Output: \verbinclude Tridiagonalization_decomposeInPlace.out 422 * 423 * \sa class Tridiagonalization 424 */ 425 template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> 426 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 427 { 428 typedef typename MatrixType::Index Index; 429 //Index n = mat.rows(); 430 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); 431 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); 432 } 433 434 /** \internal 435 * General full tridiagonalization 436 */ 437 template<typename MatrixType, int Size, bool IsComplex> 438 struct tridiagonalization_inplace_selector 439 { 440 typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; 441 typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; 442 typedef typename MatrixType::Index Index; 443 template<typename DiagonalType, typename SubDiagonalType> 444 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 445 { 446 CoeffVectorType hCoeffs(mat.cols()-1); 447 tridiagonalization_inplace(mat,hCoeffs); 448 diag = mat.diagonal().real(); 449 subdiag = mat.template diagonal<-1>().real(); 450 if(extractQ) 451 mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) 452 .setLength(mat.rows() - 1) 453 .setShift(1); 454 } 455 }; 456 457 /** \internal 458 * Specialization for 3x3 real matrices. 459 * Especially useful for plane fitting. 460 */ 461 template<typename MatrixType> 462 struct tridiagonalization_inplace_selector<MatrixType,3,false> 463 { 464 typedef typename MatrixType::Scalar Scalar; 465 typedef typename MatrixType::RealScalar RealScalar; 466 467 template<typename DiagonalType, typename SubDiagonalType> 468 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 469 { 470 diag[0] = mat(0,0); 471 RealScalar v1norm2 = abs2(mat(2,0)); 472 if(v1norm2 == RealScalar(0)) 473 { 474 diag[1] = mat(1,1); 475 diag[2] = mat(2,2); 476 subdiag[0] = mat(1,0); 477 subdiag[1] = mat(2,1); 478 if (extractQ) 479 mat.setIdentity(); 480 } 481 else 482 { 483 RealScalar beta = sqrt(abs2(mat(1,0)) + v1norm2); 484 RealScalar invBeta = RealScalar(1)/beta; 485 Scalar m01 = mat(1,0) * invBeta; 486 Scalar m02 = mat(2,0) * invBeta; 487 Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); 488 diag[1] = mat(1,1) + m02*q; 489 diag[2] = mat(2,2) - m02*q; 490 subdiag[0] = beta; 491 subdiag[1] = mat(2,1) - m01 * q; 492 if (extractQ) 493 { 494 mat << 1, 0, 0, 495 0, m01, m02, 496 0, m02, -m01; 497 } 498 } 499 } 500 }; 501 502 /** \internal 503 * Trivial specialization for 1x1 matrices 504 */ 505 template<typename MatrixType, bool IsComplex> 506 struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> 507 { 508 typedef typename MatrixType::Scalar Scalar; 509 510 template<typename DiagonalType, typename SubDiagonalType> 511 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) 512 { 513 diag(0,0) = real(mat(0,0)); 514 if(extractQ) 515 mat(0,0) = Scalar(1); 516 } 517 }; 518 519 /** \internal 520 * \eigenvalues_module \ingroup Eigenvalues_Module 521 * 522 * \brief Expression type for return value of Tridiagonalization::matrixT() 523 * 524 * \tparam MatrixType type of underlying dense matrix 525 */ 526 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType 527 : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > 528 { 529 typedef typename MatrixType::Index Index; 530 public: 531 /** \brief Constructor. 532 * 533 * \param[in] mat The underlying dense matrix 534 */ 535 TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } 536 537 template <typename ResultType> 538 inline void evalTo(ResultType& result) const 539 { 540 result.setZero(); 541 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); 542 result.diagonal() = m_matrix.diagonal(); 543 result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); 544 } 545 546 Index rows() const { return m_matrix.rows(); } 547 Index cols() const { return m_matrix.cols(); } 548 549 protected: 550 typename MatrixType::Nested m_matrix; 551 }; 552 553 } // end namespace internal 554 555 } // end namespace Eigen 556 557 #endif // EIGEN_TRIDIAGONALIZATION_H 558