1 #include "precompiled.h" 2 // 3 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style license that can be 5 // found in the LICENSE file. 6 // 7 8 // Context.cpp: Implements the gl::Context class, managing all GL state and performing 9 // rendering operations. It is the GLES2 specific implementation of EGLContext. 10 11 #include "libGLESv2/Context.h" 12 13 #include "libGLESv2/main.h" 14 #include "libGLESv2/utilities.h" 15 #include "libGLESv2/Buffer.h" 16 #include "libGLESv2/Fence.h" 17 #include "libGLESv2/Framebuffer.h" 18 #include "libGLESv2/Renderbuffer.h" 19 #include "libGLESv2/Program.h" 20 #include "libGLESv2/ProgramBinary.h" 21 #include "libGLESv2/Query.h" 22 #include "libGLESv2/Texture.h" 23 #include "libGLESv2/ResourceManager.h" 24 #include "libGLESv2/renderer/IndexDataManager.h" 25 #include "libGLESv2/renderer/RenderTarget.h" 26 #include "libGLESv2/renderer/Renderer.h" 27 28 #include "libEGL/Surface.h" 29 30 #undef near 31 #undef far 32 33 namespace gl 34 { 35 static const char* makeStaticString(const std::string& str) 36 { 37 static std::set<std::string> strings; 38 std::set<std::string>::iterator it = strings.find(str); 39 if (it != strings.end()) 40 return it->c_str(); 41 42 return strings.insert(str).first->c_str(); 43 } 44 45 Context::Context(const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer) 46 { 47 ASSERT(robustAccess == false); // Unimplemented 48 49 mFenceHandleAllocator.setBaseHandle(0); 50 51 setClearColor(0.0f, 0.0f, 0.0f, 0.0f); 52 53 mState.depthClearValue = 1.0f; 54 mState.stencilClearValue = 0; 55 56 mState.rasterizer.cullFace = false; 57 mState.rasterizer.cullMode = GL_BACK; 58 mState.rasterizer.frontFace = GL_CCW; 59 mState.rasterizer.polygonOffsetFill = false; 60 mState.rasterizer.polygonOffsetFactor = 0.0f; 61 mState.rasterizer.polygonOffsetUnits = 0.0f; 62 mState.rasterizer.pointDrawMode = false; 63 mState.rasterizer.multiSample = false; 64 mState.scissorTest = false; 65 mState.scissor.x = 0; 66 mState.scissor.y = 0; 67 mState.scissor.width = 0; 68 mState.scissor.height = 0; 69 70 mState.blend.blend = false; 71 mState.blend.sourceBlendRGB = GL_ONE; 72 mState.blend.sourceBlendAlpha = GL_ONE; 73 mState.blend.destBlendRGB = GL_ZERO; 74 mState.blend.destBlendAlpha = GL_ZERO; 75 mState.blend.blendEquationRGB = GL_FUNC_ADD; 76 mState.blend.blendEquationAlpha = GL_FUNC_ADD; 77 mState.blend.sampleAlphaToCoverage = false; 78 mState.blend.dither = true; 79 80 mState.blendColor.red = 0; 81 mState.blendColor.green = 0; 82 mState.blendColor.blue = 0; 83 mState.blendColor.alpha = 0; 84 85 mState.depthStencil.depthTest = false; 86 mState.depthStencil.depthFunc = GL_LESS; 87 mState.depthStencil.depthMask = true; 88 mState.depthStencil.stencilTest = false; 89 mState.depthStencil.stencilFunc = GL_ALWAYS; 90 mState.depthStencil.stencilMask = -1; 91 mState.depthStencil.stencilWritemask = -1; 92 mState.depthStencil.stencilBackFunc = GL_ALWAYS; 93 mState.depthStencil.stencilBackMask = - 1; 94 mState.depthStencil.stencilBackWritemask = -1; 95 mState.depthStencil.stencilFail = GL_KEEP; 96 mState.depthStencil.stencilPassDepthFail = GL_KEEP; 97 mState.depthStencil.stencilPassDepthPass = GL_KEEP; 98 mState.depthStencil.stencilBackFail = GL_KEEP; 99 mState.depthStencil.stencilBackPassDepthFail = GL_KEEP; 100 mState.depthStencil.stencilBackPassDepthPass = GL_KEEP; 101 102 mState.stencilRef = 0; 103 mState.stencilBackRef = 0; 104 105 mState.sampleCoverage = false; 106 mState.sampleCoverageValue = 1.0f; 107 mState.sampleCoverageInvert = false; 108 mState.generateMipmapHint = GL_DONT_CARE; 109 mState.fragmentShaderDerivativeHint = GL_DONT_CARE; 110 111 mState.lineWidth = 1.0f; 112 113 mState.viewport.x = 0; 114 mState.viewport.y = 0; 115 mState.viewport.width = 0; 116 mState.viewport.height = 0; 117 mState.zNear = 0.0f; 118 mState.zFar = 1.0f; 119 120 mState.blend.colorMaskRed = true; 121 mState.blend.colorMaskGreen = true; 122 mState.blend.colorMaskBlue = true; 123 mState.blend.colorMaskAlpha = true; 124 125 if (shareContext != NULL) 126 { 127 mResourceManager = shareContext->mResourceManager; 128 mResourceManager->addRef(); 129 } 130 else 131 { 132 mResourceManager = new ResourceManager(mRenderer); 133 } 134 135 // [OpenGL ES 2.0.24] section 3.7 page 83: 136 // In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional 137 // and cube map texture state vectors respectively associated with them. 138 // In order that access to these initial textures not be lost, they are treated as texture 139 // objects all of whose names are 0. 140 141 mTexture2DZero.set(new Texture2D(mRenderer, 0)); 142 mTextureCubeMapZero.set(new TextureCubeMap(mRenderer, 0)); 143 144 mState.activeSampler = 0; 145 bindArrayBuffer(0); 146 bindElementArrayBuffer(0); 147 bindTextureCubeMap(0); 148 bindTexture2D(0); 149 bindReadFramebuffer(0); 150 bindDrawFramebuffer(0); 151 bindRenderbuffer(0); 152 153 mState.currentProgram = 0; 154 mCurrentProgramBinary.set(NULL); 155 156 mState.packAlignment = 4; 157 mState.unpackAlignment = 4; 158 mState.packReverseRowOrder = false; 159 160 mExtensionString = NULL; 161 mRendererString = NULL; 162 163 mInvalidEnum = false; 164 mInvalidValue = false; 165 mInvalidOperation = false; 166 mOutOfMemory = false; 167 mInvalidFramebufferOperation = false; 168 169 mHasBeenCurrent = false; 170 mContextLost = false; 171 mResetStatus = GL_NO_ERROR; 172 mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT); 173 mRobustAccess = robustAccess; 174 175 mSupportsBGRATextures = false; 176 mSupportsDXT1Textures = false; 177 mSupportsDXT3Textures = false; 178 mSupportsDXT5Textures = false; 179 mSupportsEventQueries = false; 180 mSupportsOcclusionQueries = false; 181 mNumCompressedTextureFormats = 0; 182 } 183 184 Context::~Context() 185 { 186 if (mState.currentProgram != 0) 187 { 188 Program *programObject = mResourceManager->getProgram(mState.currentProgram); 189 if (programObject) 190 { 191 programObject->release(); 192 } 193 mState.currentProgram = 0; 194 } 195 mCurrentProgramBinary.set(NULL); 196 197 while (!mFramebufferMap.empty()) 198 { 199 deleteFramebuffer(mFramebufferMap.begin()->first); 200 } 201 202 while (!mFenceMap.empty()) 203 { 204 deleteFence(mFenceMap.begin()->first); 205 } 206 207 while (!mQueryMap.empty()) 208 { 209 deleteQuery(mQueryMap.begin()->first); 210 } 211 212 for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) 213 { 214 for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) 215 { 216 mState.samplerTexture[type][sampler].set(NULL); 217 } 218 } 219 220 for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) 221 { 222 mIncompleteTextures[type].set(NULL); 223 } 224 225 for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++) 226 { 227 mState.vertexAttribute[i].mBoundBuffer.set(NULL); 228 } 229 230 for (int i = 0; i < QUERY_TYPE_COUNT; i++) 231 { 232 mState.activeQuery[i].set(NULL); 233 } 234 235 mState.arrayBuffer.set(NULL); 236 mState.elementArrayBuffer.set(NULL); 237 mState.renderbuffer.set(NULL); 238 239 mTexture2DZero.set(NULL); 240 mTextureCubeMapZero.set(NULL); 241 242 mResourceManager->release(); 243 } 244 245 void Context::makeCurrent(egl::Surface *surface) 246 { 247 if (!mHasBeenCurrent) 248 { 249 mMajorShaderModel = mRenderer->getMajorShaderModel(); 250 mMaximumPointSize = mRenderer->getMaxPointSize(); 251 mSupportsVertexTexture = mRenderer->getVertexTextureSupport(); 252 mSupportsNonPower2Texture = mRenderer->getNonPower2TextureSupport(); 253 mSupportsInstancing = mRenderer->getInstancingSupport(); 254 255 mMaxViewportDimension = mRenderer->getMaxViewportDimension(); 256 mMaxTextureDimension = std::min(std::min(mRenderer->getMaxTextureWidth(), mRenderer->getMaxTextureHeight()), 257 (int)gl::IMPLEMENTATION_MAX_TEXTURE_SIZE); 258 mMaxCubeTextureDimension = std::min(mMaxTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE); 259 mMaxRenderbufferDimension = mMaxTextureDimension; 260 mMaxTextureLevel = log2(mMaxTextureDimension) + 1; 261 mMaxTextureAnisotropy = mRenderer->getTextureMaxAnisotropy(); 262 TRACE("MaxTextureDimension=%d, MaxCubeTextureDimension=%d, MaxRenderbufferDimension=%d, MaxTextureLevel=%d, MaxTextureAnisotropy=%f", 263 mMaxTextureDimension, mMaxCubeTextureDimension, mMaxRenderbufferDimension, mMaxTextureLevel, mMaxTextureAnisotropy); 264 265 mSupportsEventQueries = mRenderer->getEventQuerySupport(); 266 mSupportsOcclusionQueries = mRenderer->getOcclusionQuerySupport(); 267 mSupportsBGRATextures = mRenderer->getBGRATextureSupport(); 268 mSupportsDXT1Textures = mRenderer->getDXT1TextureSupport(); 269 mSupportsDXT3Textures = mRenderer->getDXT3TextureSupport(); 270 mSupportsDXT5Textures = mRenderer->getDXT5TextureSupport(); 271 mSupportsFloat32Textures = mRenderer->getFloat32TextureSupport(&mSupportsFloat32LinearFilter, &mSupportsFloat32RenderableTextures); 272 mSupportsFloat16Textures = mRenderer->getFloat16TextureSupport(&mSupportsFloat16LinearFilter, &mSupportsFloat16RenderableTextures); 273 mSupportsLuminanceTextures = mRenderer->getLuminanceTextureSupport(); 274 mSupportsLuminanceAlphaTextures = mRenderer->getLuminanceAlphaTextureSupport(); 275 mSupportsDepthTextures = mRenderer->getDepthTextureSupport(); 276 mSupportsTextureFilterAnisotropy = mRenderer->getTextureFilterAnisotropySupport(); 277 mSupports32bitIndices = mRenderer->get32BitIndexSupport(); 278 279 mNumCompressedTextureFormats = 0; 280 if (supportsDXT1Textures()) 281 { 282 mNumCompressedTextureFormats += 2; 283 } 284 if (supportsDXT3Textures()) 285 { 286 mNumCompressedTextureFormats += 1; 287 } 288 if (supportsDXT5Textures()) 289 { 290 mNumCompressedTextureFormats += 1; 291 } 292 293 initExtensionString(); 294 initRendererString(); 295 296 mState.viewport.x = 0; 297 mState.viewport.y = 0; 298 mState.viewport.width = surface->getWidth(); 299 mState.viewport.height = surface->getHeight(); 300 301 mState.scissor.x = 0; 302 mState.scissor.y = 0; 303 mState.scissor.width = surface->getWidth(); 304 mState.scissor.height = surface->getHeight(); 305 306 mHasBeenCurrent = true; 307 } 308 309 // Wrap the existing swapchain resources into GL objects and assign them to the '0' names 310 rx::SwapChain *swapchain = surface->getSwapChain(); 311 312 Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain); 313 DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain); 314 Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero); 315 316 setFramebufferZero(framebufferZero); 317 } 318 319 // NOTE: this function should not assume that this context is current! 320 void Context::markContextLost() 321 { 322 if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT) 323 mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT; 324 mContextLost = true; 325 } 326 327 bool Context::isContextLost() 328 { 329 return mContextLost; 330 } 331 332 void Context::setClearColor(float red, float green, float blue, float alpha) 333 { 334 mState.colorClearValue.red = red; 335 mState.colorClearValue.green = green; 336 mState.colorClearValue.blue = blue; 337 mState.colorClearValue.alpha = alpha; 338 } 339 340 void Context::setClearDepth(float depth) 341 { 342 mState.depthClearValue = depth; 343 } 344 345 void Context::setClearStencil(int stencil) 346 { 347 mState.stencilClearValue = stencil; 348 } 349 350 void Context::setCullFace(bool enabled) 351 { 352 mState.rasterizer.cullFace = enabled; 353 } 354 355 bool Context::isCullFaceEnabled() const 356 { 357 return mState.rasterizer.cullFace; 358 } 359 360 void Context::setCullMode(GLenum mode) 361 { 362 mState.rasterizer.cullMode = mode; 363 } 364 365 void Context::setFrontFace(GLenum front) 366 { 367 mState.rasterizer.frontFace = front; 368 } 369 370 void Context::setDepthTest(bool enabled) 371 { 372 mState.depthStencil.depthTest = enabled; 373 } 374 375 bool Context::isDepthTestEnabled() const 376 { 377 return mState.depthStencil.depthTest; 378 } 379 380 void Context::setDepthFunc(GLenum depthFunc) 381 { 382 mState.depthStencil.depthFunc = depthFunc; 383 } 384 385 void Context::setDepthRange(float zNear, float zFar) 386 { 387 mState.zNear = zNear; 388 mState.zFar = zFar; 389 } 390 391 void Context::setBlend(bool enabled) 392 { 393 mState.blend.blend = enabled; 394 } 395 396 bool Context::isBlendEnabled() const 397 { 398 return mState.blend.blend; 399 } 400 401 void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) 402 { 403 mState.blend.sourceBlendRGB = sourceRGB; 404 mState.blend.destBlendRGB = destRGB; 405 mState.blend.sourceBlendAlpha = sourceAlpha; 406 mState.blend.destBlendAlpha = destAlpha; 407 } 408 409 void Context::setBlendColor(float red, float green, float blue, float alpha) 410 { 411 mState.blendColor.red = red; 412 mState.blendColor.green = green; 413 mState.blendColor.blue = blue; 414 mState.blendColor.alpha = alpha; 415 } 416 417 void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) 418 { 419 mState.blend.blendEquationRGB = rgbEquation; 420 mState.blend.blendEquationAlpha = alphaEquation; 421 } 422 423 void Context::setStencilTest(bool enabled) 424 { 425 mState.depthStencil.stencilTest = enabled; 426 } 427 428 bool Context::isStencilTestEnabled() const 429 { 430 return mState.depthStencil.stencilTest; 431 } 432 433 void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) 434 { 435 mState.depthStencil.stencilFunc = stencilFunc; 436 mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; 437 mState.depthStencil.stencilMask = stencilMask; 438 } 439 440 void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask) 441 { 442 mState.depthStencil.stencilBackFunc = stencilBackFunc; 443 mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0; 444 mState.depthStencil.stencilBackMask = stencilBackMask; 445 } 446 447 void Context::setStencilWritemask(GLuint stencilWritemask) 448 { 449 mState.depthStencil.stencilWritemask = stencilWritemask; 450 } 451 452 void Context::setStencilBackWritemask(GLuint stencilBackWritemask) 453 { 454 mState.depthStencil.stencilBackWritemask = stencilBackWritemask; 455 } 456 457 void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) 458 { 459 mState.depthStencil.stencilFail = stencilFail; 460 mState.depthStencil.stencilPassDepthFail = stencilPassDepthFail; 461 mState.depthStencil.stencilPassDepthPass = stencilPassDepthPass; 462 } 463 464 void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass) 465 { 466 mState.depthStencil.stencilBackFail = stencilBackFail; 467 mState.depthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail; 468 mState.depthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass; 469 } 470 471 void Context::setPolygonOffsetFill(bool enabled) 472 { 473 mState.rasterizer.polygonOffsetFill = enabled; 474 } 475 476 bool Context::isPolygonOffsetFillEnabled() const 477 { 478 return mState.rasterizer.polygonOffsetFill; 479 } 480 481 void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) 482 { 483 // An application can pass NaN values here, so handle this gracefully 484 mState.rasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor; 485 mState.rasterizer.polygonOffsetUnits = units != units ? 0.0f : units; 486 } 487 488 void Context::setSampleAlphaToCoverage(bool enabled) 489 { 490 mState.blend.sampleAlphaToCoverage = enabled; 491 } 492 493 bool Context::isSampleAlphaToCoverageEnabled() const 494 { 495 return mState.blend.sampleAlphaToCoverage; 496 } 497 498 void Context::setSampleCoverage(bool enabled) 499 { 500 mState.sampleCoverage = enabled; 501 } 502 503 bool Context::isSampleCoverageEnabled() const 504 { 505 return mState.sampleCoverage; 506 } 507 508 void Context::setSampleCoverageParams(GLclampf value, bool invert) 509 { 510 mState.sampleCoverageValue = value; 511 mState.sampleCoverageInvert = invert; 512 } 513 514 void Context::setScissorTest(bool enabled) 515 { 516 mState.scissorTest = enabled; 517 } 518 519 bool Context::isScissorTestEnabled() const 520 { 521 return mState.scissorTest; 522 } 523 524 void Context::setDither(bool enabled) 525 { 526 mState.blend.dither = enabled; 527 } 528 529 bool Context::isDitherEnabled() const 530 { 531 return mState.blend.dither; 532 } 533 534 void Context::setLineWidth(GLfloat width) 535 { 536 mState.lineWidth = width; 537 } 538 539 void Context::setGenerateMipmapHint(GLenum hint) 540 { 541 mState.generateMipmapHint = hint; 542 } 543 544 void Context::setFragmentShaderDerivativeHint(GLenum hint) 545 { 546 mState.fragmentShaderDerivativeHint = hint; 547 // TODO: Propagate the hint to shader translator so we can write 548 // ddx, ddx_coarse, or ddx_fine depending on the hint. 549 // Ignore for now. It is valid for implementations to ignore hint. 550 } 551 552 void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) 553 { 554 mState.viewport.x = x; 555 mState.viewport.y = y; 556 mState.viewport.width = width; 557 mState.viewport.height = height; 558 } 559 560 void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) 561 { 562 mState.scissor.x = x; 563 mState.scissor.y = y; 564 mState.scissor.width = width; 565 mState.scissor.height = height; 566 } 567 568 void Context::setColorMask(bool red, bool green, bool blue, bool alpha) 569 { 570 mState.blend.colorMaskRed = red; 571 mState.blend.colorMaskGreen = green; 572 mState.blend.colorMaskBlue = blue; 573 mState.blend.colorMaskAlpha = alpha; 574 } 575 576 void Context::setDepthMask(bool mask) 577 { 578 mState.depthStencil.depthMask = mask; 579 } 580 581 void Context::setActiveSampler(unsigned int active) 582 { 583 mState.activeSampler = active; 584 } 585 586 GLuint Context::getReadFramebufferHandle() const 587 { 588 return mState.readFramebuffer; 589 } 590 591 GLuint Context::getDrawFramebufferHandle() const 592 { 593 return mState.drawFramebuffer; 594 } 595 596 GLuint Context::getRenderbufferHandle() const 597 { 598 return mState.renderbuffer.id(); 599 } 600 601 GLuint Context::getArrayBufferHandle() const 602 { 603 return mState.arrayBuffer.id(); 604 } 605 606 GLuint Context::getActiveQuery(GLenum target) const 607 { 608 Query *queryObject = NULL; 609 610 switch (target) 611 { 612 case GL_ANY_SAMPLES_PASSED_EXT: 613 queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED].get(); 614 break; 615 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: 616 queryObject = mState.activeQuery[QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE].get(); 617 break; 618 default: 619 ASSERT(false); 620 } 621 622 if (queryObject) 623 { 624 return queryObject->id(); 625 } 626 else 627 { 628 return 0; 629 } 630 } 631 632 void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled) 633 { 634 mState.vertexAttribute[attribNum].mArrayEnabled = enabled; 635 } 636 637 const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) 638 { 639 return mState.vertexAttribute[attribNum]; 640 } 641 642 void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, 643 GLsizei stride, const void *pointer) 644 { 645 mState.vertexAttribute[attribNum].mBoundBuffer.set(boundBuffer); 646 mState.vertexAttribute[attribNum].mSize = size; 647 mState.vertexAttribute[attribNum].mType = type; 648 mState.vertexAttribute[attribNum].mNormalized = normalized; 649 mState.vertexAttribute[attribNum].mStride = stride; 650 mState.vertexAttribute[attribNum].mPointer = pointer; 651 } 652 653 const void *Context::getVertexAttribPointer(unsigned int attribNum) const 654 { 655 return mState.vertexAttribute[attribNum].mPointer; 656 } 657 658 void Context::setPackAlignment(GLint alignment) 659 { 660 mState.packAlignment = alignment; 661 } 662 663 GLint Context::getPackAlignment() const 664 { 665 return mState.packAlignment; 666 } 667 668 void Context::setUnpackAlignment(GLint alignment) 669 { 670 mState.unpackAlignment = alignment; 671 } 672 673 GLint Context::getUnpackAlignment() const 674 { 675 return mState.unpackAlignment; 676 } 677 678 void Context::setPackReverseRowOrder(bool reverseRowOrder) 679 { 680 mState.packReverseRowOrder = reverseRowOrder; 681 } 682 683 bool Context::getPackReverseRowOrder() const 684 { 685 return mState.packReverseRowOrder; 686 } 687 688 GLuint Context::createBuffer() 689 { 690 return mResourceManager->createBuffer(); 691 } 692 693 GLuint Context::createProgram() 694 { 695 return mResourceManager->createProgram(); 696 } 697 698 GLuint Context::createShader(GLenum type) 699 { 700 return mResourceManager->createShader(type); 701 } 702 703 GLuint Context::createTexture() 704 { 705 return mResourceManager->createTexture(); 706 } 707 708 GLuint Context::createRenderbuffer() 709 { 710 return mResourceManager->createRenderbuffer(); 711 } 712 713 // Returns an unused framebuffer name 714 GLuint Context::createFramebuffer() 715 { 716 GLuint handle = mFramebufferHandleAllocator.allocate(); 717 718 mFramebufferMap[handle] = NULL; 719 720 return handle; 721 } 722 723 GLuint Context::createFence() 724 { 725 GLuint handle = mFenceHandleAllocator.allocate(); 726 727 mFenceMap[handle] = new Fence(mRenderer); 728 729 return handle; 730 } 731 732 // Returns an unused query name 733 GLuint Context::createQuery() 734 { 735 GLuint handle = mQueryHandleAllocator.allocate(); 736 737 mQueryMap[handle] = NULL; 738 739 return handle; 740 } 741 742 void Context::deleteBuffer(GLuint buffer) 743 { 744 if (mResourceManager->getBuffer(buffer)) 745 { 746 detachBuffer(buffer); 747 } 748 749 mResourceManager->deleteBuffer(buffer); 750 } 751 752 void Context::deleteShader(GLuint shader) 753 { 754 mResourceManager->deleteShader(shader); 755 } 756 757 void Context::deleteProgram(GLuint program) 758 { 759 mResourceManager->deleteProgram(program); 760 } 761 762 void Context::deleteTexture(GLuint texture) 763 { 764 if (mResourceManager->getTexture(texture)) 765 { 766 detachTexture(texture); 767 } 768 769 mResourceManager->deleteTexture(texture); 770 } 771 772 void Context::deleteRenderbuffer(GLuint renderbuffer) 773 { 774 if (mResourceManager->getRenderbuffer(renderbuffer)) 775 { 776 detachRenderbuffer(renderbuffer); 777 } 778 779 mResourceManager->deleteRenderbuffer(renderbuffer); 780 } 781 782 void Context::deleteFramebuffer(GLuint framebuffer) 783 { 784 FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); 785 786 if (framebufferObject != mFramebufferMap.end()) 787 { 788 detachFramebuffer(framebuffer); 789 790 mFramebufferHandleAllocator.release(framebufferObject->first); 791 delete framebufferObject->second; 792 mFramebufferMap.erase(framebufferObject); 793 } 794 } 795 796 void Context::deleteFence(GLuint fence) 797 { 798 FenceMap::iterator fenceObject = mFenceMap.find(fence); 799 800 if (fenceObject != mFenceMap.end()) 801 { 802 mFenceHandleAllocator.release(fenceObject->first); 803 delete fenceObject->second; 804 mFenceMap.erase(fenceObject); 805 } 806 } 807 808 void Context::deleteQuery(GLuint query) 809 { 810 QueryMap::iterator queryObject = mQueryMap.find(query); 811 if (queryObject != mQueryMap.end()) 812 { 813 mQueryHandleAllocator.release(queryObject->first); 814 if (queryObject->second) 815 { 816 queryObject->second->release(); 817 } 818 mQueryMap.erase(queryObject); 819 } 820 } 821 822 Buffer *Context::getBuffer(GLuint handle) 823 { 824 return mResourceManager->getBuffer(handle); 825 } 826 827 Shader *Context::getShader(GLuint handle) 828 { 829 return mResourceManager->getShader(handle); 830 } 831 832 Program *Context::getProgram(GLuint handle) 833 { 834 return mResourceManager->getProgram(handle); 835 } 836 837 Texture *Context::getTexture(GLuint handle) 838 { 839 return mResourceManager->getTexture(handle); 840 } 841 842 Renderbuffer *Context::getRenderbuffer(GLuint handle) 843 { 844 return mResourceManager->getRenderbuffer(handle); 845 } 846 847 Framebuffer *Context::getReadFramebuffer() 848 { 849 return getFramebuffer(mState.readFramebuffer); 850 } 851 852 Framebuffer *Context::getDrawFramebuffer() 853 { 854 return mBoundDrawFramebuffer; 855 } 856 857 void Context::bindArrayBuffer(unsigned int buffer) 858 { 859 mResourceManager->checkBufferAllocation(buffer); 860 861 mState.arrayBuffer.set(getBuffer(buffer)); 862 } 863 864 void Context::bindElementArrayBuffer(unsigned int buffer) 865 { 866 mResourceManager->checkBufferAllocation(buffer); 867 868 mState.elementArrayBuffer.set(getBuffer(buffer)); 869 } 870 871 void Context::bindTexture2D(GLuint texture) 872 { 873 mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); 874 875 mState.samplerTexture[TEXTURE_2D][mState.activeSampler].set(getTexture(texture)); 876 } 877 878 void Context::bindTextureCubeMap(GLuint texture) 879 { 880 mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE); 881 882 mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].set(getTexture(texture)); 883 } 884 885 void Context::bindReadFramebuffer(GLuint framebuffer) 886 { 887 if (!getFramebuffer(framebuffer)) 888 { 889 mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); 890 } 891 892 mState.readFramebuffer = framebuffer; 893 } 894 895 void Context::bindDrawFramebuffer(GLuint framebuffer) 896 { 897 if (!getFramebuffer(framebuffer)) 898 { 899 mFramebufferMap[framebuffer] = new Framebuffer(mRenderer); 900 } 901 902 mState.drawFramebuffer = framebuffer; 903 904 mBoundDrawFramebuffer = getFramebuffer(framebuffer); 905 } 906 907 void Context::bindRenderbuffer(GLuint renderbuffer) 908 { 909 mResourceManager->checkRenderbufferAllocation(renderbuffer); 910 911 mState.renderbuffer.set(getRenderbuffer(renderbuffer)); 912 } 913 914 void Context::useProgram(GLuint program) 915 { 916 GLuint priorProgram = mState.currentProgram; 917 mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged. 918 919 if (priorProgram != program) 920 { 921 Program *newProgram = mResourceManager->getProgram(program); 922 Program *oldProgram = mResourceManager->getProgram(priorProgram); 923 mCurrentProgramBinary.set(NULL); 924 925 if (newProgram) 926 { 927 newProgram->addRef(); 928 mCurrentProgramBinary.set(newProgram->getProgramBinary()); 929 } 930 931 if (oldProgram) 932 { 933 oldProgram->release(); 934 } 935 } 936 } 937 938 void Context::linkProgram(GLuint program) 939 { 940 Program *programObject = mResourceManager->getProgram(program); 941 942 bool linked = programObject->link(); 943 944 // if the current program was relinked successfully we 945 // need to install the new executables 946 if (linked && program == mState.currentProgram) 947 { 948 mCurrentProgramBinary.set(programObject->getProgramBinary()); 949 } 950 } 951 952 void Context::setProgramBinary(GLuint program, const void *binary, GLint length) 953 { 954 Program *programObject = mResourceManager->getProgram(program); 955 956 bool loaded = programObject->setProgramBinary(binary, length); 957 958 // if the current program was reloaded successfully we 959 // need to install the new executables 960 if (loaded && program == mState.currentProgram) 961 { 962 mCurrentProgramBinary.set(programObject->getProgramBinary()); 963 } 964 965 } 966 967 void Context::beginQuery(GLenum target, GLuint query) 968 { 969 // From EXT_occlusion_query_boolean: If BeginQueryEXT is called with an <id> 970 // of zero, if the active query object name for <target> is non-zero (for the 971 // targets ANY_SAMPLES_PASSED_EXT and ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, if 972 // the active query for either target is non-zero), if <id> is the name of an 973 // existing query object whose type does not match <target>, or if <id> is the 974 // active query object name for any query type, the error INVALID_OPERATION is 975 // generated. 976 977 // Ensure no other queries are active 978 // NOTE: If other queries than occlusion are supported, we will need to check 979 // separately that: 980 // a) The query ID passed is not the current active query for any target/type 981 // b) There are no active queries for the requested target (and in the case 982 // of GL_ANY_SAMPLES_PASSED_EXT and GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT, 983 // no query may be active for either if glBeginQuery targets either. 984 for (int i = 0; i < QUERY_TYPE_COUNT; i++) 985 { 986 if (mState.activeQuery[i].get() != NULL) 987 { 988 return gl::error(GL_INVALID_OPERATION); 989 } 990 } 991 992 QueryType qType; 993 switch (target) 994 { 995 case GL_ANY_SAMPLES_PASSED_EXT: 996 qType = QUERY_ANY_SAMPLES_PASSED; 997 break; 998 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: 999 qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; 1000 break; 1001 default: 1002 ASSERT(false); 1003 return; 1004 } 1005 1006 Query *queryObject = getQuery(query, true, target); 1007 1008 // check that name was obtained with glGenQueries 1009 if (!queryObject) 1010 { 1011 return gl::error(GL_INVALID_OPERATION); 1012 } 1013 1014 // check for type mismatch 1015 if (queryObject->getType() != target) 1016 { 1017 return gl::error(GL_INVALID_OPERATION); 1018 } 1019 1020 // set query as active for specified target 1021 mState.activeQuery[qType].set(queryObject); 1022 1023 // begin query 1024 queryObject->begin(); 1025 } 1026 1027 void Context::endQuery(GLenum target) 1028 { 1029 QueryType qType; 1030 1031 switch (target) 1032 { 1033 case GL_ANY_SAMPLES_PASSED_EXT: 1034 qType = QUERY_ANY_SAMPLES_PASSED; 1035 break; 1036 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT: 1037 qType = QUERY_ANY_SAMPLES_PASSED_CONSERVATIVE; 1038 break; 1039 default: 1040 ASSERT(false); 1041 return; 1042 } 1043 1044 Query *queryObject = mState.activeQuery[qType].get(); 1045 1046 if (queryObject == NULL) 1047 { 1048 return gl::error(GL_INVALID_OPERATION); 1049 } 1050 1051 queryObject->end(); 1052 1053 mState.activeQuery[qType].set(NULL); 1054 } 1055 1056 void Context::setFramebufferZero(Framebuffer *buffer) 1057 { 1058 delete mFramebufferMap[0]; 1059 mFramebufferMap[0] = buffer; 1060 if (mState.drawFramebuffer == 0) 1061 { 1062 mBoundDrawFramebuffer = buffer; 1063 } 1064 } 1065 1066 void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples) 1067 { 1068 RenderbufferStorage *renderbuffer = NULL; 1069 switch (internalformat) 1070 { 1071 case GL_DEPTH_COMPONENT16: 1072 renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples); 1073 break; 1074 case GL_RGBA4: 1075 case GL_RGB5_A1: 1076 case GL_RGB565: 1077 case GL_RGB8_OES: 1078 case GL_RGBA8_OES: 1079 renderbuffer = new gl::Colorbuffer(mRenderer,width, height, internalformat, samples); 1080 break; 1081 case GL_STENCIL_INDEX8: 1082 renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples); 1083 break; 1084 case GL_DEPTH24_STENCIL8_OES: 1085 renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples); 1086 break; 1087 default: 1088 UNREACHABLE(); return; 1089 } 1090 1091 Renderbuffer *renderbufferObject = mState.renderbuffer.get(); 1092 renderbufferObject->setStorage(renderbuffer); 1093 } 1094 1095 Framebuffer *Context::getFramebuffer(unsigned int handle) 1096 { 1097 FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle); 1098 1099 if (framebuffer == mFramebufferMap.end()) 1100 { 1101 return NULL; 1102 } 1103 else 1104 { 1105 return framebuffer->second; 1106 } 1107 } 1108 1109 Fence *Context::getFence(unsigned int handle) 1110 { 1111 FenceMap::iterator fence = mFenceMap.find(handle); 1112 1113 if (fence == mFenceMap.end()) 1114 { 1115 return NULL; 1116 } 1117 else 1118 { 1119 return fence->second; 1120 } 1121 } 1122 1123 Query *Context::getQuery(unsigned int handle, bool create, GLenum type) 1124 { 1125 QueryMap::iterator query = mQueryMap.find(handle); 1126 1127 if (query == mQueryMap.end()) 1128 { 1129 return NULL; 1130 } 1131 else 1132 { 1133 if (!query->second && create) 1134 { 1135 query->second = new Query(mRenderer, type, handle); 1136 query->second->addRef(); 1137 } 1138 return query->second; 1139 } 1140 } 1141 1142 Buffer *Context::getArrayBuffer() 1143 { 1144 return mState.arrayBuffer.get(); 1145 } 1146 1147 Buffer *Context::getElementArrayBuffer() 1148 { 1149 return mState.elementArrayBuffer.get(); 1150 } 1151 1152 ProgramBinary *Context::getCurrentProgramBinary() 1153 { 1154 return mCurrentProgramBinary.get(); 1155 } 1156 1157 Texture2D *Context::getTexture2D() 1158 { 1159 return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); 1160 } 1161 1162 TextureCubeMap *Context::getTextureCubeMap() 1163 { 1164 return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE)); 1165 } 1166 1167 Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) 1168 { 1169 GLuint texid = mState.samplerTexture[type][sampler].id(); 1170 1171 if (texid == 0) // Special case: 0 refers to different initial textures based on the target 1172 { 1173 switch (type) 1174 { 1175 default: UNREACHABLE(); 1176 case TEXTURE_2D: return mTexture2DZero.get(); 1177 case TEXTURE_CUBE: return mTextureCubeMapZero.get(); 1178 } 1179 } 1180 1181 return mState.samplerTexture[type][sampler].get(); 1182 } 1183 1184 bool Context::getBooleanv(GLenum pname, GLboolean *params) 1185 { 1186 switch (pname) 1187 { 1188 case GL_SHADER_COMPILER: *params = GL_TRUE; break; 1189 case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; 1190 case GL_DEPTH_WRITEMASK: *params = mState.depthStencil.depthMask; break; 1191 case GL_COLOR_WRITEMASK: 1192 params[0] = mState.blend.colorMaskRed; 1193 params[1] = mState.blend.colorMaskGreen; 1194 params[2] = mState.blend.colorMaskBlue; 1195 params[3] = mState.blend.colorMaskAlpha; 1196 break; 1197 case GL_CULL_FACE: *params = mState.rasterizer.cullFace; break; 1198 case GL_POLYGON_OFFSET_FILL: *params = mState.rasterizer.polygonOffsetFill; break; 1199 case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.blend.sampleAlphaToCoverage; break; 1200 case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break; 1201 case GL_SCISSOR_TEST: *params = mState.scissorTest; break; 1202 case GL_STENCIL_TEST: *params = mState.depthStencil.stencilTest; break; 1203 case GL_DEPTH_TEST: *params = mState.depthStencil.depthTest; break; 1204 case GL_BLEND: *params = mState.blend.blend; break; 1205 case GL_DITHER: *params = mState.blend.dither; break; 1206 case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break; 1207 default: 1208 return false; 1209 } 1210 1211 return true; 1212 } 1213 1214 bool Context::getFloatv(GLenum pname, GLfloat *params) 1215 { 1216 // Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation 1217 // because it is stored as a float, despite the fact that the GL ES 2.0 spec names 1218 // GetIntegerv as its native query function. As it would require conversion in any 1219 // case, this should make no difference to the calling application. 1220 switch (pname) 1221 { 1222 case GL_LINE_WIDTH: *params = mState.lineWidth; break; 1223 case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; 1224 case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; 1225 case GL_POLYGON_OFFSET_FACTOR: *params = mState.rasterizer.polygonOffsetFactor; break; 1226 case GL_POLYGON_OFFSET_UNITS: *params = mState.rasterizer.polygonOffsetUnits; break; 1227 case GL_ALIASED_LINE_WIDTH_RANGE: 1228 params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN; 1229 params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX; 1230 break; 1231 case GL_ALIASED_POINT_SIZE_RANGE: 1232 params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN; 1233 params[1] = getMaximumPointSize(); 1234 break; 1235 case GL_DEPTH_RANGE: 1236 params[0] = mState.zNear; 1237 params[1] = mState.zFar; 1238 break; 1239 case GL_COLOR_CLEAR_VALUE: 1240 params[0] = mState.colorClearValue.red; 1241 params[1] = mState.colorClearValue.green; 1242 params[2] = mState.colorClearValue.blue; 1243 params[3] = mState.colorClearValue.alpha; 1244 break; 1245 case GL_BLEND_COLOR: 1246 params[0] = mState.blendColor.red; 1247 params[1] = mState.blendColor.green; 1248 params[2] = mState.blendColor.blue; 1249 params[3] = mState.blendColor.alpha; 1250 break; 1251 case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: 1252 if (!supportsTextureFilterAnisotropy()) 1253 { 1254 return false; 1255 } 1256 *params = mMaxTextureAnisotropy; 1257 break; 1258 default: 1259 return false; 1260 } 1261 1262 return true; 1263 } 1264 1265 bool Context::getIntegerv(GLenum pname, GLint *params) 1266 { 1267 if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) 1268 { 1269 unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0_EXT); 1270 1271 if (colorAttachment >= mRenderer->getMaxRenderTargets()) 1272 { 1273 // return true to stop further operation in the parent call 1274 return gl::error(GL_INVALID_OPERATION, true); 1275 } 1276 1277 Framebuffer *framebuffer = getDrawFramebuffer(); 1278 1279 *params = framebuffer->getDrawBufferState(colorAttachment); 1280 return true; 1281 } 1282 1283 // Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation 1284 // because it is stored as a float, despite the fact that the GL ES 2.0 spec names 1285 // GetIntegerv as its native query function. As it would require conversion in any 1286 // case, this should make no difference to the calling application. You may find it in 1287 // Context::getFloatv. 1288 switch (pname) 1289 { 1290 case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break; 1291 case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mRenderer->getMaxVertexUniformVectors(); break; 1292 case GL_MAX_VARYING_VECTORS: *params = mRenderer->getMaxVaryingVectors(); break; 1293 case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxCombinedTextureImageUnits(); break; 1294 case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxVertexTextureImageUnits(); break; 1295 case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break; 1296 case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mRenderer->getMaxFragmentUniformVectors(); break; 1297 case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break; 1298 case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mRenderer->getMaxRenderTargets(); break; 1299 case GL_MAX_DRAW_BUFFERS_EXT: *params = mRenderer->getMaxRenderTargets(); break; 1300 case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break; 1301 case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break; 1302 case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break; 1303 case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.id(); break; 1304 //case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE 1305 case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break; 1306 case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break; 1307 case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break; 1308 case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break; 1309 case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; 1310 case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mState.packReverseRowOrder; break; 1311 case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; 1312 case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; 1313 case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break; 1314 case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; 1315 case GL_STENCIL_FUNC: *params = mState.depthStencil.stencilFunc; break; 1316 case GL_STENCIL_REF: *params = mState.stencilRef; break; 1317 case GL_STENCIL_VALUE_MASK: *params = mState.depthStencil.stencilMask; break; 1318 case GL_STENCIL_BACK_FUNC: *params = mState.depthStencil.stencilBackFunc; break; 1319 case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break; 1320 case GL_STENCIL_BACK_VALUE_MASK: *params = mState.depthStencil.stencilBackMask; break; 1321 case GL_STENCIL_FAIL: *params = mState.depthStencil.stencilFail; break; 1322 case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilPassDepthFail; break; 1323 case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilPassDepthPass; break; 1324 case GL_STENCIL_BACK_FAIL: *params = mState.depthStencil.stencilBackFail; break; 1325 case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilBackPassDepthFail; break; 1326 case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilBackPassDepthPass; break; 1327 case GL_DEPTH_FUNC: *params = mState.depthStencil.depthFunc; break; 1328 case GL_BLEND_SRC_RGB: *params = mState.blend.sourceBlendRGB; break; 1329 case GL_BLEND_SRC_ALPHA: *params = mState.blend.sourceBlendAlpha; break; 1330 case GL_BLEND_DST_RGB: *params = mState.blend.destBlendRGB; break; 1331 case GL_BLEND_DST_ALPHA: *params = mState.blend.destBlendAlpha; break; 1332 case GL_BLEND_EQUATION_RGB: *params = mState.blend.blendEquationRGB; break; 1333 case GL_BLEND_EQUATION_ALPHA: *params = mState.blend.blendEquationAlpha; break; 1334 case GL_STENCIL_WRITEMASK: *params = mState.depthStencil.stencilWritemask; break; 1335 case GL_STENCIL_BACK_WRITEMASK: *params = mState.depthStencil.stencilBackWritemask; break; 1336 case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; 1337 case GL_SUBPIXEL_BITS: *params = 4; break; 1338 case GL_MAX_TEXTURE_SIZE: *params = getMaximumTextureDimension(); break; 1339 case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break; 1340 case GL_NUM_COMPRESSED_TEXTURE_FORMATS: 1341 params[0] = mNumCompressedTextureFormats; 1342 break; 1343 case GL_MAX_SAMPLES_ANGLE: 1344 { 1345 GLsizei maxSamples = getMaxSupportedSamples(); 1346 if (maxSamples != 0) 1347 { 1348 *params = maxSamples; 1349 } 1350 else 1351 { 1352 return false; 1353 } 1354 1355 break; 1356 } 1357 case GL_SAMPLE_BUFFERS: 1358 case GL_SAMPLES: 1359 { 1360 gl::Framebuffer *framebuffer = getDrawFramebuffer(); 1361 if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE) 1362 { 1363 switch (pname) 1364 { 1365 case GL_SAMPLE_BUFFERS: 1366 if (framebuffer->getSamples() != 0) 1367 { 1368 *params = 1; 1369 } 1370 else 1371 { 1372 *params = 0; 1373 } 1374 break; 1375 case GL_SAMPLES: 1376 *params = framebuffer->getSamples(); 1377 break; 1378 } 1379 } 1380 else 1381 { 1382 *params = 0; 1383 } 1384 } 1385 break; 1386 case GL_IMPLEMENTATION_COLOR_READ_TYPE: 1387 case GL_IMPLEMENTATION_COLOR_READ_FORMAT: 1388 { 1389 GLenum format, type; 1390 if (getCurrentReadFormatType(&format, &type)) 1391 { 1392 if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT) 1393 *params = format; 1394 else 1395 *params = type; 1396 } 1397 } 1398 break; 1399 case GL_MAX_VIEWPORT_DIMS: 1400 { 1401 params[0] = mMaxViewportDimension; 1402 params[1] = mMaxViewportDimension; 1403 } 1404 break; 1405 case GL_COMPRESSED_TEXTURE_FORMATS: 1406 { 1407 if (supportsDXT1Textures()) 1408 { 1409 *params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; 1410 *params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; 1411 } 1412 if (supportsDXT3Textures()) 1413 { 1414 *params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE; 1415 } 1416 if (supportsDXT5Textures()) 1417 { 1418 *params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE; 1419 } 1420 } 1421 break; 1422 case GL_VIEWPORT: 1423 params[0] = mState.viewport.x; 1424 params[1] = mState.viewport.y; 1425 params[2] = mState.viewport.width; 1426 params[3] = mState.viewport.height; 1427 break; 1428 case GL_SCISSOR_BOX: 1429 params[0] = mState.scissor.x; 1430 params[1] = mState.scissor.y; 1431 params[2] = mState.scissor.width; 1432 params[3] = mState.scissor.height; 1433 break; 1434 case GL_CULL_FACE_MODE: *params = mState.rasterizer.cullMode; break; 1435 case GL_FRONT_FACE: *params = mState.rasterizer.frontFace; break; 1436 case GL_RED_BITS: 1437 case GL_GREEN_BITS: 1438 case GL_BLUE_BITS: 1439 case GL_ALPHA_BITS: 1440 { 1441 gl::Framebuffer *framebuffer = getDrawFramebuffer(); 1442 gl::Renderbuffer *colorbuffer = framebuffer->getFirstColorbuffer(); 1443 1444 if (colorbuffer) 1445 { 1446 switch (pname) 1447 { 1448 case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; 1449 case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; 1450 case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; 1451 case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; 1452 } 1453 } 1454 else 1455 { 1456 *params = 0; 1457 } 1458 } 1459 break; 1460 case GL_DEPTH_BITS: 1461 { 1462 gl::Framebuffer *framebuffer = getDrawFramebuffer(); 1463 gl::Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); 1464 1465 if (depthbuffer) 1466 { 1467 *params = depthbuffer->getDepthSize(); 1468 } 1469 else 1470 { 1471 *params = 0; 1472 } 1473 } 1474 break; 1475 case GL_STENCIL_BITS: 1476 { 1477 gl::Framebuffer *framebuffer = getDrawFramebuffer(); 1478 gl::Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); 1479 1480 if (stencilbuffer) 1481 { 1482 *params = stencilbuffer->getStencilSize(); 1483 } 1484 else 1485 { 1486 *params = 0; 1487 } 1488 } 1489 break; 1490 case GL_TEXTURE_BINDING_2D: 1491 { 1492 if (mState.activeSampler > mRenderer->getMaxCombinedTextureImageUnits() - 1) 1493 { 1494 gl::error(GL_INVALID_OPERATION); 1495 return false; 1496 } 1497 1498 *params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].id(); 1499 } 1500 break; 1501 case GL_TEXTURE_BINDING_CUBE_MAP: 1502 { 1503 if (mState.activeSampler > mRenderer->getMaxCombinedTextureImageUnits() - 1) 1504 { 1505 gl::error(GL_INVALID_OPERATION); 1506 return false; 1507 } 1508 1509 *params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].id(); 1510 } 1511 break; 1512 case GL_RESET_NOTIFICATION_STRATEGY_EXT: 1513 *params = mResetStrategy; 1514 break; 1515 case GL_NUM_PROGRAM_BINARY_FORMATS_OES: 1516 *params = 1; 1517 break; 1518 case GL_PROGRAM_BINARY_FORMATS_OES: 1519 *params = GL_PROGRAM_BINARY_ANGLE; 1520 break; 1521 default: 1522 return false; 1523 } 1524 1525 return true; 1526 } 1527 1528 bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams) 1529 { 1530 if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT) 1531 { 1532 *type = GL_INT; 1533 *numParams = 1; 1534 return true; 1535 } 1536 1537 // Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation 1538 // is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due 1539 // to the fact that it is stored internally as a float, and so would require conversion 1540 // if returned from Context::getIntegerv. Since this conversion is already implemented 1541 // in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we 1542 // place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling 1543 // application. 1544 switch (pname) 1545 { 1546 case GL_COMPRESSED_TEXTURE_FORMATS: 1547 { 1548 *type = GL_INT; 1549 *numParams = mNumCompressedTextureFormats; 1550 } 1551 break; 1552 case GL_SHADER_BINARY_FORMATS: 1553 { 1554 *type = GL_INT; 1555 *numParams = 0; 1556 } 1557 break; 1558 case GL_MAX_VERTEX_ATTRIBS: 1559 case GL_MAX_VERTEX_UNIFORM_VECTORS: 1560 case GL_MAX_VARYING_VECTORS: 1561 case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: 1562 case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: 1563 case GL_MAX_TEXTURE_IMAGE_UNITS: 1564 case GL_MAX_FRAGMENT_UNIFORM_VECTORS: 1565 case GL_MAX_RENDERBUFFER_SIZE: 1566 case GL_MAX_COLOR_ATTACHMENTS_EXT: 1567 case GL_MAX_DRAW_BUFFERS_EXT: 1568 case GL_NUM_SHADER_BINARY_FORMATS: 1569 case GL_NUM_COMPRESSED_TEXTURE_FORMATS: 1570 case GL_ARRAY_BUFFER_BINDING: 1571 case GL_FRAMEBUFFER_BINDING: 1572 case GL_RENDERBUFFER_BINDING: 1573 case GL_CURRENT_PROGRAM: 1574 case GL_PACK_ALIGNMENT: 1575 case GL_PACK_REVERSE_ROW_ORDER_ANGLE: 1576 case GL_UNPACK_ALIGNMENT: 1577 case GL_GENERATE_MIPMAP_HINT: 1578 case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: 1579 case GL_RED_BITS: 1580 case GL_GREEN_BITS: 1581 case GL_BLUE_BITS: 1582 case GL_ALPHA_BITS: 1583 case GL_DEPTH_BITS: 1584 case GL_STENCIL_BITS: 1585 case GL_ELEMENT_ARRAY_BUFFER_BINDING: 1586 case GL_CULL_FACE_MODE: 1587 case GL_FRONT_FACE: 1588 case GL_ACTIVE_TEXTURE: 1589 case GL_STENCIL_FUNC: 1590 case GL_STENCIL_VALUE_MASK: 1591 case GL_STENCIL_REF: 1592 case GL_STENCIL_FAIL: 1593 case GL_STENCIL_PASS_DEPTH_FAIL: 1594 case GL_STENCIL_PASS_DEPTH_PASS: 1595 case GL_STENCIL_BACK_FUNC: 1596 case GL_STENCIL_BACK_VALUE_MASK: 1597 case GL_STENCIL_BACK_REF: 1598 case GL_STENCIL_BACK_FAIL: 1599 case GL_STENCIL_BACK_PASS_DEPTH_FAIL: 1600 case GL_STENCIL_BACK_PASS_DEPTH_PASS: 1601 case GL_DEPTH_FUNC: 1602 case GL_BLEND_SRC_RGB: 1603 case GL_BLEND_SRC_ALPHA: 1604 case GL_BLEND_DST_RGB: 1605 case GL_BLEND_DST_ALPHA: 1606 case GL_BLEND_EQUATION_RGB: 1607 case GL_BLEND_EQUATION_ALPHA: 1608 case GL_STENCIL_WRITEMASK: 1609 case GL_STENCIL_BACK_WRITEMASK: 1610 case GL_STENCIL_CLEAR_VALUE: 1611 case GL_SUBPIXEL_BITS: 1612 case GL_MAX_TEXTURE_SIZE: 1613 case GL_MAX_CUBE_MAP_TEXTURE_SIZE: 1614 case GL_SAMPLE_BUFFERS: 1615 case GL_SAMPLES: 1616 case GL_IMPLEMENTATION_COLOR_READ_TYPE: 1617 case GL_IMPLEMENTATION_COLOR_READ_FORMAT: 1618 case GL_TEXTURE_BINDING_2D: 1619 case GL_TEXTURE_BINDING_CUBE_MAP: 1620 case GL_RESET_NOTIFICATION_STRATEGY_EXT: 1621 case GL_NUM_PROGRAM_BINARY_FORMATS_OES: 1622 case GL_PROGRAM_BINARY_FORMATS_OES: 1623 { 1624 *type = GL_INT; 1625 *numParams = 1; 1626 } 1627 break; 1628 case GL_MAX_SAMPLES_ANGLE: 1629 { 1630 if (getMaxSupportedSamples() != 0) 1631 { 1632 *type = GL_INT; 1633 *numParams = 1; 1634 } 1635 else 1636 { 1637 return false; 1638 } 1639 } 1640 break; 1641 case GL_MAX_VIEWPORT_DIMS: 1642 { 1643 *type = GL_INT; 1644 *numParams = 2; 1645 } 1646 break; 1647 case GL_VIEWPORT: 1648 case GL_SCISSOR_BOX: 1649 { 1650 *type = GL_INT; 1651 *numParams = 4; 1652 } 1653 break; 1654 case GL_SHADER_COMPILER: 1655 case GL_SAMPLE_COVERAGE_INVERT: 1656 case GL_DEPTH_WRITEMASK: 1657 case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, 1658 case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. 1659 case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural 1660 case GL_SAMPLE_COVERAGE: 1661 case GL_SCISSOR_TEST: 1662 case GL_STENCIL_TEST: 1663 case GL_DEPTH_TEST: 1664 case GL_BLEND: 1665 case GL_DITHER: 1666 case GL_CONTEXT_ROBUST_ACCESS_EXT: 1667 { 1668 *type = GL_BOOL; 1669 *numParams = 1; 1670 } 1671 break; 1672 case GL_COLOR_WRITEMASK: 1673 { 1674 *type = GL_BOOL; 1675 *numParams = 4; 1676 } 1677 break; 1678 case GL_POLYGON_OFFSET_FACTOR: 1679 case GL_POLYGON_OFFSET_UNITS: 1680 case GL_SAMPLE_COVERAGE_VALUE: 1681 case GL_DEPTH_CLEAR_VALUE: 1682 case GL_LINE_WIDTH: 1683 { 1684 *type = GL_FLOAT; 1685 *numParams = 1; 1686 } 1687 break; 1688 case GL_ALIASED_LINE_WIDTH_RANGE: 1689 case GL_ALIASED_POINT_SIZE_RANGE: 1690 case GL_DEPTH_RANGE: 1691 { 1692 *type = GL_FLOAT; 1693 *numParams = 2; 1694 } 1695 break; 1696 case GL_COLOR_CLEAR_VALUE: 1697 case GL_BLEND_COLOR: 1698 { 1699 *type = GL_FLOAT; 1700 *numParams = 4; 1701 } 1702 break; 1703 case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: 1704 if (!supportsTextureFilterAnisotropy()) 1705 { 1706 return false; 1707 } 1708 *type = GL_FLOAT; 1709 *numParams = 1; 1710 break; 1711 default: 1712 return false; 1713 } 1714 1715 return true; 1716 } 1717 1718 // Applies the render target surface, depth stencil surface, viewport rectangle and 1719 // scissor rectangle to the renderer 1720 bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport) 1721 { 1722 Framebuffer *framebufferObject = getDrawFramebuffer(); 1723 1724 if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE) 1725 { 1726 return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION, false); 1727 } 1728 1729 mRenderer->applyRenderTarget(framebufferObject); 1730 1731 if (!mRenderer->setViewport(mState.viewport, mState.zNear, mState.zFar, drawMode, mState.rasterizer.frontFace, 1732 ignoreViewport)) 1733 { 1734 return false; 1735 } 1736 1737 mRenderer->setScissorRectangle(mState.scissor, mState.scissorTest); 1738 1739 return true; 1740 } 1741 1742 // Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device 1743 void Context::applyState(GLenum drawMode) 1744 { 1745 Framebuffer *framebufferObject = getDrawFramebuffer(); 1746 int samples = framebufferObject->getSamples(); 1747 1748 mState.rasterizer.pointDrawMode = (drawMode == GL_POINTS); 1749 mState.rasterizer.multiSample = (samples != 0); 1750 mRenderer->setRasterizerState(mState.rasterizer); 1751 1752 unsigned int mask = 0; 1753 if (mState.sampleCoverage) 1754 { 1755 if (mState.sampleCoverageValue != 0) 1756 { 1757 1758 float threshold = 0.5f; 1759 1760 for (int i = 0; i < samples; ++i) 1761 { 1762 mask <<= 1; 1763 1764 if ((i + 1) * mState.sampleCoverageValue >= threshold) 1765 { 1766 threshold += 1.0f; 1767 mask |= 1; 1768 } 1769 } 1770 } 1771 1772 if (mState.sampleCoverageInvert) 1773 { 1774 mask = ~mask; 1775 } 1776 } 1777 else 1778 { 1779 mask = 0xFFFFFFFF; 1780 } 1781 mRenderer->setBlendState(mState.blend, mState.blendColor, mask); 1782 1783 mRenderer->setDepthStencilState(mState.depthStencil, mState.stencilRef, mState.stencilBackRef, 1784 mState.rasterizer.frontFace == GL_CCW); 1785 } 1786 1787 // Applies the shaders and shader constants to the Direct3D 9 device 1788 void Context::applyShaders() 1789 { 1790 ProgramBinary *programBinary = getCurrentProgramBinary(); 1791 1792 mRenderer->applyShaders(programBinary); 1793 1794 programBinary->applyUniforms(); 1795 } 1796 1797 // Applies the textures and sampler states to the Direct3D 9 device 1798 void Context::applyTextures() 1799 { 1800 applyTextures(SAMPLER_PIXEL); 1801 1802 if (mSupportsVertexTexture) 1803 { 1804 applyTextures(SAMPLER_VERTEX); 1805 } 1806 } 1807 1808 // For each Direct3D 9 sampler of either the pixel or vertex stage, 1809 // looks up the corresponding OpenGL texture image unit and texture type, 1810 // and sets the texture and its addressing/filtering state (or NULL when inactive). 1811 void Context::applyTextures(SamplerType type) 1812 { 1813 ProgramBinary *programBinary = getCurrentProgramBinary(); 1814 1815 FramebufferTextureSerialSet boundFramebufferTextures = getBoundFramebufferTextureSerials(); 1816 1817 // Range of Direct3D samplers of given sampler type 1818 int samplerCount = (type == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS : mRenderer->getMaxVertexTextureImageUnits(); 1819 int samplerRange = programBinary->getUsedSamplerRange(type); 1820 1821 for (int samplerIndex = 0; samplerIndex < samplerRange; samplerIndex++) 1822 { 1823 int textureUnit = programBinary->getSamplerMapping(type, samplerIndex); // OpenGL texture image unit index 1824 1825 if (textureUnit != -1) 1826 { 1827 TextureType textureType = programBinary->getSamplerTextureType(type, samplerIndex); 1828 Texture *texture = getSamplerTexture(textureUnit, textureType); 1829 1830 if (texture->isSamplerComplete() && 1831 boundFramebufferTextures.find(texture->getTextureSerial()) == boundFramebufferTextures.end()) 1832 { 1833 SamplerState samplerState; 1834 texture->getSamplerState(&samplerState); 1835 mRenderer->setSamplerState(type, samplerIndex, samplerState); 1836 1837 mRenderer->setTexture(type, samplerIndex, texture); 1838 1839 texture->resetDirty(); 1840 } 1841 else 1842 { 1843 mRenderer->setTexture(type, samplerIndex, getIncompleteTexture(textureType)); 1844 } 1845 } 1846 else 1847 { 1848 mRenderer->setTexture(type, samplerIndex, NULL); 1849 } 1850 } 1851 1852 for (int samplerIndex = samplerRange; samplerIndex < samplerCount; samplerIndex++) 1853 { 1854 mRenderer->setTexture(type, samplerIndex, NULL); 1855 } 1856 } 1857 1858 void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, 1859 GLenum format, GLenum type, GLsizei *bufSize, void* pixels) 1860 { 1861 Framebuffer *framebuffer = getReadFramebuffer(); 1862 1863 if (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) 1864 { 1865 return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); 1866 } 1867 1868 if (getReadFramebufferHandle() != 0 && framebuffer->getSamples() != 0) 1869 { 1870 return gl::error(GL_INVALID_OPERATION); 1871 } 1872 1873 GLsizei outputPitch = ComputePitch(width, ConvertSizedInternalFormat(format, type), getPackAlignment()); 1874 // sized query sanity check 1875 if (bufSize) 1876 { 1877 int requiredSize = outputPitch * height; 1878 if (requiredSize > *bufSize) 1879 { 1880 return gl::error(GL_INVALID_OPERATION); 1881 } 1882 } 1883 1884 mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, getPackReverseRowOrder(), getPackAlignment(), pixels); 1885 } 1886 1887 void Context::clear(GLbitfield mask) 1888 { 1889 Framebuffer *framebufferObject = getDrawFramebuffer(); 1890 1891 if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE) 1892 { 1893 return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); 1894 } 1895 1896 DWORD flags = 0; 1897 GLbitfield finalMask = 0; 1898 1899 if (mask & GL_COLOR_BUFFER_BIT) 1900 { 1901 mask &= ~GL_COLOR_BUFFER_BIT; 1902 1903 if (framebufferObject->hasEnabledColorAttachment()) 1904 { 1905 finalMask |= GL_COLOR_BUFFER_BIT; 1906 } 1907 } 1908 1909 if (mask & GL_DEPTH_BUFFER_BIT) 1910 { 1911 mask &= ~GL_DEPTH_BUFFER_BIT; 1912 if (mState.depthStencil.depthMask && framebufferObject->getDepthbufferType() != GL_NONE) 1913 { 1914 finalMask |= GL_DEPTH_BUFFER_BIT; 1915 } 1916 } 1917 1918 if (mask & GL_STENCIL_BUFFER_BIT) 1919 { 1920 mask &= ~GL_STENCIL_BUFFER_BIT; 1921 if (framebufferObject->getStencilbufferType() != GL_NONE) 1922 { 1923 rx::RenderTarget *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil(); 1924 if (!depthStencil) 1925 { 1926 ERR("Depth stencil pointer unexpectedly null."); 1927 return; 1928 } 1929 1930 if (GetStencilSize(depthStencil->getActualFormat()) > 0) 1931 { 1932 finalMask |= GL_STENCIL_BUFFER_BIT; 1933 } 1934 } 1935 } 1936 1937 if (mask != 0) 1938 { 1939 return gl::error(GL_INVALID_VALUE); 1940 } 1941 1942 if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport 1943 { 1944 return; 1945 } 1946 1947 ClearParameters clearParams; 1948 clearParams.mask = finalMask; 1949 clearParams.colorClearValue = mState.colorClearValue; 1950 clearParams.colorMaskRed = mState.blend.colorMaskRed; 1951 clearParams.colorMaskGreen = mState.blend.colorMaskGreen; 1952 clearParams.colorMaskBlue = mState.blend.colorMaskBlue; 1953 clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha; 1954 clearParams.depthClearValue = mState.depthClearValue; 1955 clearParams.stencilClearValue = mState.stencilClearValue; 1956 clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask; 1957 1958 mRenderer->clear(clearParams, framebufferObject); 1959 } 1960 1961 void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances) 1962 { 1963 if (!mState.currentProgram) 1964 { 1965 return gl::error(GL_INVALID_OPERATION); 1966 } 1967 1968 if (!mRenderer->applyPrimitiveType(mode, count)) 1969 { 1970 return; 1971 } 1972 1973 if (!applyRenderTarget(mode, false)) 1974 { 1975 return; 1976 } 1977 1978 applyState(mode); 1979 1980 ProgramBinary *programBinary = getCurrentProgramBinary(); 1981 1982 GLenum err = mRenderer->applyVertexBuffer(programBinary, mState.vertexAttribute, first, count, instances); 1983 if (err != GL_NO_ERROR) 1984 { 1985 return gl::error(err); 1986 } 1987 1988 applyShaders(); 1989 applyTextures(); 1990 1991 if (!programBinary->validateSamplers(NULL)) 1992 { 1993 return gl::error(GL_INVALID_OPERATION); 1994 } 1995 1996 if (!skipDraw(mode)) 1997 { 1998 mRenderer->drawArrays(mode, count, instances); 1999 } 2000 } 2001 2002 void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances) 2003 { 2004 if (!mState.currentProgram) 2005 { 2006 return gl::error(GL_INVALID_OPERATION); 2007 } 2008 2009 if (!indices && !mState.elementArrayBuffer) 2010 { 2011 return gl::error(GL_INVALID_OPERATION); 2012 } 2013 2014 if (!mRenderer->applyPrimitiveType(mode, count)) 2015 { 2016 return; 2017 } 2018 2019 if (!applyRenderTarget(mode, false)) 2020 { 2021 return; 2022 } 2023 2024 applyState(mode); 2025 2026 rx::TranslatedIndexData indexInfo; 2027 GLenum err = mRenderer->applyIndexBuffer(indices, mState.elementArrayBuffer.get(), count, mode, type, &indexInfo); 2028 if (err != GL_NO_ERROR) 2029 { 2030 return gl::error(err); 2031 } 2032 2033 ProgramBinary *programBinary = getCurrentProgramBinary(); 2034 2035 GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; 2036 err = mRenderer->applyVertexBuffer(programBinary, mState.vertexAttribute, indexInfo.minIndex, vertexCount, instances); 2037 if (err != GL_NO_ERROR) 2038 { 2039 return gl::error(err); 2040 } 2041 2042 applyShaders(); 2043 applyTextures(); 2044 2045 if (!programBinary->validateSamplers(NULL)) 2046 { 2047 return gl::error(GL_INVALID_OPERATION); 2048 } 2049 2050 if (!skipDraw(mode)) 2051 { 2052 mRenderer->drawElements(mode, count, type, indices, mState.elementArrayBuffer.get(), indexInfo, instances); 2053 } 2054 } 2055 2056 // Implements glFlush when block is false, glFinish when block is true 2057 void Context::sync(bool block) 2058 { 2059 mRenderer->sync(block); 2060 } 2061 2062 void Context::recordInvalidEnum() 2063 { 2064 mInvalidEnum = true; 2065 } 2066 2067 void Context::recordInvalidValue() 2068 { 2069 mInvalidValue = true; 2070 } 2071 2072 void Context::recordInvalidOperation() 2073 { 2074 mInvalidOperation = true; 2075 } 2076 2077 void Context::recordOutOfMemory() 2078 { 2079 mOutOfMemory = true; 2080 } 2081 2082 void Context::recordInvalidFramebufferOperation() 2083 { 2084 mInvalidFramebufferOperation = true; 2085 } 2086 2087 // Get one of the recorded errors and clear its flag, if any. 2088 // [OpenGL ES 2.0.24] section 2.5 page 13. 2089 GLenum Context::getError() 2090 { 2091 if (mInvalidEnum) 2092 { 2093 mInvalidEnum = false; 2094 2095 return GL_INVALID_ENUM; 2096 } 2097 2098 if (mInvalidValue) 2099 { 2100 mInvalidValue = false; 2101 2102 return GL_INVALID_VALUE; 2103 } 2104 2105 if (mInvalidOperation) 2106 { 2107 mInvalidOperation = false; 2108 2109 return GL_INVALID_OPERATION; 2110 } 2111 2112 if (mOutOfMemory) 2113 { 2114 mOutOfMemory = false; 2115 2116 return GL_OUT_OF_MEMORY; 2117 } 2118 2119 if (mInvalidFramebufferOperation) 2120 { 2121 mInvalidFramebufferOperation = false; 2122 2123 return GL_INVALID_FRAMEBUFFER_OPERATION; 2124 } 2125 2126 return GL_NO_ERROR; 2127 } 2128 2129 GLenum Context::getResetStatus() 2130 { 2131 if (mResetStatus == GL_NO_ERROR && !mContextLost) 2132 { 2133 // mResetStatus will be set by the markContextLost callback 2134 // in the case a notification is sent 2135 mRenderer->testDeviceLost(true); 2136 } 2137 2138 GLenum status = mResetStatus; 2139 2140 if (mResetStatus != GL_NO_ERROR) 2141 { 2142 ASSERT(mContextLost); 2143 2144 if (mRenderer->testDeviceResettable()) 2145 { 2146 mResetStatus = GL_NO_ERROR; 2147 } 2148 } 2149 2150 return status; 2151 } 2152 2153 bool Context::isResetNotificationEnabled() 2154 { 2155 return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT); 2156 } 2157 2158 int Context::getMajorShaderModel() const 2159 { 2160 return mMajorShaderModel; 2161 } 2162 2163 float Context::getMaximumPointSize() const 2164 { 2165 return mMaximumPointSize; 2166 } 2167 2168 unsigned int Context::getMaximumCombinedTextureImageUnits() const 2169 { 2170 return mRenderer->getMaxCombinedTextureImageUnits(); 2171 } 2172 2173 int Context::getMaxSupportedSamples() const 2174 { 2175 return mRenderer->getMaxSupportedSamples(); 2176 } 2177 2178 unsigned int Context::getMaximumRenderTargets() const 2179 { 2180 return mRenderer->getMaxRenderTargets(); 2181 } 2182 2183 bool Context::supportsEventQueries() const 2184 { 2185 return mSupportsEventQueries; 2186 } 2187 2188 bool Context::supportsOcclusionQueries() const 2189 { 2190 return mSupportsOcclusionQueries; 2191 } 2192 2193 bool Context::supportsBGRATextures() const 2194 { 2195 return mSupportsBGRATextures; 2196 } 2197 2198 bool Context::supportsDXT1Textures() const 2199 { 2200 return mSupportsDXT1Textures; 2201 } 2202 2203 bool Context::supportsDXT3Textures() const 2204 { 2205 return mSupportsDXT3Textures; 2206 } 2207 2208 bool Context::supportsDXT5Textures() const 2209 { 2210 return mSupportsDXT5Textures; 2211 } 2212 2213 bool Context::supportsFloat32Textures() const 2214 { 2215 return mSupportsFloat32Textures; 2216 } 2217 2218 bool Context::supportsFloat32LinearFilter() const 2219 { 2220 return mSupportsFloat32LinearFilter; 2221 } 2222 2223 bool Context::supportsFloat32RenderableTextures() const 2224 { 2225 return mSupportsFloat32RenderableTextures; 2226 } 2227 2228 bool Context::supportsFloat16Textures() const 2229 { 2230 return mSupportsFloat16Textures; 2231 } 2232 2233 bool Context::supportsFloat16LinearFilter() const 2234 { 2235 return mSupportsFloat16LinearFilter; 2236 } 2237 2238 bool Context::supportsFloat16RenderableTextures() const 2239 { 2240 return mSupportsFloat16RenderableTextures; 2241 } 2242 2243 int Context::getMaximumRenderbufferDimension() const 2244 { 2245 return mMaxRenderbufferDimension; 2246 } 2247 2248 int Context::getMaximumTextureDimension() const 2249 { 2250 return mMaxTextureDimension; 2251 } 2252 2253 int Context::getMaximumCubeTextureDimension() const 2254 { 2255 return mMaxCubeTextureDimension; 2256 } 2257 2258 int Context::getMaximumTextureLevel() const 2259 { 2260 return mMaxTextureLevel; 2261 } 2262 2263 bool Context::supportsLuminanceTextures() const 2264 { 2265 return mSupportsLuminanceTextures; 2266 } 2267 2268 bool Context::supportsLuminanceAlphaTextures() const 2269 { 2270 return mSupportsLuminanceAlphaTextures; 2271 } 2272 2273 bool Context::supportsDepthTextures() const 2274 { 2275 return mSupportsDepthTextures; 2276 } 2277 2278 bool Context::supports32bitIndices() const 2279 { 2280 return mSupports32bitIndices; 2281 } 2282 2283 bool Context::supportsNonPower2Texture() const 2284 { 2285 return mSupportsNonPower2Texture; 2286 } 2287 2288 bool Context::supportsInstancing() const 2289 { 2290 return mSupportsInstancing; 2291 } 2292 2293 bool Context::supportsTextureFilterAnisotropy() const 2294 { 2295 return mSupportsTextureFilterAnisotropy; 2296 } 2297 2298 float Context::getTextureMaxAnisotropy() const 2299 { 2300 return mMaxTextureAnisotropy; 2301 } 2302 2303 bool Context::getCurrentReadFormatType(GLenum *format, GLenum *type) 2304 { 2305 Framebuffer *framebuffer = getReadFramebuffer(); 2306 if (!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) 2307 { 2308 return gl::error(GL_INVALID_OPERATION, false); 2309 } 2310 2311 Renderbuffer *renderbuffer = framebuffer->getReadColorbuffer(); 2312 if (!renderbuffer) 2313 { 2314 return gl::error(GL_INVALID_OPERATION, false); 2315 } 2316 2317 *format = gl::ExtractFormat(renderbuffer->getActualFormat()); 2318 *type = gl::ExtractType(renderbuffer->getActualFormat()); 2319 2320 return true; 2321 } 2322 2323 void Context::detachBuffer(GLuint buffer) 2324 { 2325 // [OpenGL ES 2.0.24] section 2.9 page 22: 2326 // If a buffer object is deleted while it is bound, all bindings to that object in the current context 2327 // (i.e. in the thread that called Delete-Buffers) are reset to zero. 2328 2329 if (mState.arrayBuffer.id() == buffer) 2330 { 2331 mState.arrayBuffer.set(NULL); 2332 } 2333 2334 if (mState.elementArrayBuffer.id() == buffer) 2335 { 2336 mState.elementArrayBuffer.set(NULL); 2337 } 2338 2339 for (int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) 2340 { 2341 if (mState.vertexAttribute[attribute].mBoundBuffer.id() == buffer) 2342 { 2343 mState.vertexAttribute[attribute].mBoundBuffer.set(NULL); 2344 } 2345 } 2346 } 2347 2348 void Context::detachTexture(GLuint texture) 2349 { 2350 // [OpenGL ES 2.0.24] section 3.8 page 84: 2351 // If a texture object is deleted, it is as if all texture units which are bound to that texture object are 2352 // rebound to texture object zero 2353 2354 for (int type = 0; type < TEXTURE_TYPE_COUNT; type++) 2355 { 2356 for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++) 2357 { 2358 if (mState.samplerTexture[type][sampler].id() == texture) 2359 { 2360 mState.samplerTexture[type][sampler].set(NULL); 2361 } 2362 } 2363 } 2364 2365 // [OpenGL ES 2.0.24] section 4.4 page 112: 2366 // If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is 2367 // as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this 2368 // image was attached in the currently bound framebuffer. 2369 2370 Framebuffer *readFramebuffer = getReadFramebuffer(); 2371 Framebuffer *drawFramebuffer = getDrawFramebuffer(); 2372 2373 if (readFramebuffer) 2374 { 2375 readFramebuffer->detachTexture(texture); 2376 } 2377 2378 if (drawFramebuffer && drawFramebuffer != readFramebuffer) 2379 { 2380 drawFramebuffer->detachTexture(texture); 2381 } 2382 } 2383 2384 void Context::detachFramebuffer(GLuint framebuffer) 2385 { 2386 // [OpenGL ES 2.0.24] section 4.4 page 107: 2387 // If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though 2388 // BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. 2389 2390 if (mState.readFramebuffer == framebuffer) 2391 { 2392 bindReadFramebuffer(0); 2393 } 2394 2395 if (mState.drawFramebuffer == framebuffer) 2396 { 2397 bindDrawFramebuffer(0); 2398 } 2399 } 2400 2401 void Context::detachRenderbuffer(GLuint renderbuffer) 2402 { 2403 // [OpenGL ES 2.0.24] section 4.4 page 109: 2404 // If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer 2405 // had been executed with the target RENDERBUFFER and name of zero. 2406 2407 if (mState.renderbuffer.id() == renderbuffer) 2408 { 2409 bindRenderbuffer(0); 2410 } 2411 2412 // [OpenGL ES 2.0.24] section 4.4 page 111: 2413 // If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, 2414 // then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment 2415 // point to which this image was attached in the currently bound framebuffer. 2416 2417 Framebuffer *readFramebuffer = getReadFramebuffer(); 2418 Framebuffer *drawFramebuffer = getDrawFramebuffer(); 2419 2420 if (readFramebuffer) 2421 { 2422 readFramebuffer->detachRenderbuffer(renderbuffer); 2423 } 2424 2425 if (drawFramebuffer && drawFramebuffer != readFramebuffer) 2426 { 2427 drawFramebuffer->detachRenderbuffer(renderbuffer); 2428 } 2429 } 2430 2431 Texture *Context::getIncompleteTexture(TextureType type) 2432 { 2433 Texture *t = mIncompleteTextures[type].get(); 2434 2435 if (t == NULL) 2436 { 2437 static const GLubyte color[] = { 0, 0, 0, 255 }; 2438 2439 switch (type) 2440 { 2441 default: 2442 UNREACHABLE(); 2443 // default falls through to TEXTURE_2D 2444 2445 case TEXTURE_2D: 2446 { 2447 Texture2D *incomplete2d = new Texture2D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); 2448 incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2449 t = incomplete2d; 2450 } 2451 break; 2452 2453 case TEXTURE_CUBE: 2454 { 2455 TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer, Texture::INCOMPLETE_TEXTURE_ID); 2456 2457 incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2458 incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2459 incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2460 incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2461 incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2462 incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color); 2463 2464 t = incompleteCube; 2465 } 2466 break; 2467 } 2468 2469 mIncompleteTextures[type].set(t); 2470 } 2471 2472 return t; 2473 } 2474 2475 bool Context::skipDraw(GLenum drawMode) 2476 { 2477 if (drawMode == GL_POINTS) 2478 { 2479 // ProgramBinary assumes non-point rendering if gl_PointSize isn't written, 2480 // which affects varying interpolation. Since the value of gl_PointSize is 2481 // undefined when not written, just skip drawing to avoid unexpected results. 2482 if (!getCurrentProgramBinary()->usesPointSize()) 2483 { 2484 // This is stictly speaking not an error, but developers should be 2485 // notified of risking undefined behavior. 2486 ERR("Point rendering without writing to gl_PointSize."); 2487 2488 return true; 2489 } 2490 } 2491 else if (IsTriangleMode(drawMode)) 2492 { 2493 if (mState.rasterizer.cullFace && mState.rasterizer.cullMode == GL_FRONT_AND_BACK) 2494 { 2495 return true; 2496 } 2497 } 2498 2499 return false; 2500 } 2501 2502 void Context::setVertexAttrib(GLuint index, const GLfloat *values) 2503 { 2504 ASSERT(index < gl::MAX_VERTEX_ATTRIBS); 2505 2506 mState.vertexAttribute[index].mCurrentValue[0] = values[0]; 2507 mState.vertexAttribute[index].mCurrentValue[1] = values[1]; 2508 mState.vertexAttribute[index].mCurrentValue[2] = values[2]; 2509 mState.vertexAttribute[index].mCurrentValue[3] = values[3]; 2510 } 2511 2512 void Context::setVertexAttribDivisor(GLuint index, GLuint divisor) 2513 { 2514 ASSERT(index < gl::MAX_VERTEX_ATTRIBS); 2515 2516 mState.vertexAttribute[index].mDivisor = divisor; 2517 } 2518 2519 // keep list sorted in following order 2520 // OES extensions 2521 // EXT extensions 2522 // Vendor extensions 2523 void Context::initExtensionString() 2524 { 2525 std::string extensionString = ""; 2526 2527 // OES extensions 2528 if (supports32bitIndices()) 2529 { 2530 extensionString += "GL_OES_element_index_uint "; 2531 } 2532 2533 extensionString += "GL_OES_packed_depth_stencil "; 2534 extensionString += "GL_OES_get_program_binary "; 2535 extensionString += "GL_OES_rgb8_rgba8 "; 2536 if (mRenderer->getDerivativeInstructionSupport()) 2537 { 2538 extensionString += "GL_OES_standard_derivatives "; 2539 } 2540 2541 if (supportsFloat16Textures()) 2542 { 2543 extensionString += "GL_OES_texture_half_float "; 2544 } 2545 if (supportsFloat16LinearFilter()) 2546 { 2547 extensionString += "GL_OES_texture_half_float_linear "; 2548 } 2549 if (supportsFloat32Textures()) 2550 { 2551 extensionString += "GL_OES_texture_float "; 2552 } 2553 if (supportsFloat32LinearFilter()) 2554 { 2555 extensionString += "GL_OES_texture_float_linear "; 2556 } 2557 2558 if (supportsNonPower2Texture()) 2559 { 2560 extensionString += "GL_OES_texture_npot "; 2561 } 2562 2563 // Multi-vendor (EXT) extensions 2564 if (supportsOcclusionQueries()) 2565 { 2566 extensionString += "GL_EXT_occlusion_query_boolean "; 2567 } 2568 2569 extensionString += "GL_EXT_read_format_bgra "; 2570 extensionString += "GL_EXT_robustness "; 2571 2572 if (supportsDXT1Textures()) 2573 { 2574 extensionString += "GL_EXT_texture_compression_dxt1 "; 2575 } 2576 2577 if (supportsTextureFilterAnisotropy()) 2578 { 2579 extensionString += "GL_EXT_texture_filter_anisotropic "; 2580 } 2581 2582 if (supportsBGRATextures()) 2583 { 2584 extensionString += "GL_EXT_texture_format_BGRA8888 "; 2585 } 2586 2587 if (mRenderer->getMaxRenderTargets() > 1) 2588 { 2589 extensionString += "GL_EXT_draw_buffers "; 2590 } 2591 2592 extensionString += "GL_EXT_texture_storage "; 2593 extensionString += "GL_EXT_frag_depth "; 2594 2595 // ANGLE-specific extensions 2596 if (supportsDepthTextures()) 2597 { 2598 extensionString += "GL_ANGLE_depth_texture "; 2599 } 2600 2601 extensionString += "GL_ANGLE_framebuffer_blit "; 2602 if (getMaxSupportedSamples() != 0) 2603 { 2604 extensionString += "GL_ANGLE_framebuffer_multisample "; 2605 } 2606 2607 if (supportsInstancing()) 2608 { 2609 extensionString += "GL_ANGLE_instanced_arrays "; 2610 } 2611 2612 extensionString += "GL_ANGLE_pack_reverse_row_order "; 2613 2614 if (supportsDXT3Textures()) 2615 { 2616 extensionString += "GL_ANGLE_texture_compression_dxt3 "; 2617 } 2618 if (supportsDXT5Textures()) 2619 { 2620 extensionString += "GL_ANGLE_texture_compression_dxt5 "; 2621 } 2622 2623 extensionString += "GL_ANGLE_texture_usage "; 2624 extensionString += "GL_ANGLE_translated_shader_source "; 2625 2626 // Other vendor-specific extensions 2627 if (supportsEventQueries()) 2628 { 2629 extensionString += "GL_NV_fence "; 2630 } 2631 2632 std::string::size_type end = extensionString.find_last_not_of(' '); 2633 if (end != std::string::npos) 2634 { 2635 extensionString.resize(end+1); 2636 } 2637 2638 mExtensionString = makeStaticString(extensionString); 2639 } 2640 2641 const char *Context::getExtensionString() const 2642 { 2643 return mExtensionString; 2644 } 2645 2646 void Context::initRendererString() 2647 { 2648 std::ostringstream rendererString; 2649 rendererString << "ANGLE ("; 2650 rendererString << mRenderer->getRendererDescription(); 2651 rendererString << ")"; 2652 2653 mRendererString = makeStaticString(rendererString.str()); 2654 } 2655 2656 const char *Context::getRendererString() const 2657 { 2658 return mRendererString; 2659 } 2660 2661 Context::FramebufferTextureSerialSet Context::getBoundFramebufferTextureSerials() 2662 { 2663 FramebufferTextureSerialSet set; 2664 2665 Framebuffer *drawFramebuffer = getDrawFramebuffer(); 2666 for (unsigned int i = 0; i < IMPLEMENTATION_MAX_DRAW_BUFFERS; i++) 2667 { 2668 Renderbuffer *renderBuffer = drawFramebuffer->getColorbuffer(i); 2669 if (renderBuffer && renderBuffer->getTextureSerial() != 0) 2670 { 2671 set.insert(renderBuffer->getTextureSerial()); 2672 } 2673 } 2674 2675 Renderbuffer *depthStencilBuffer = drawFramebuffer->getDepthOrStencilbuffer(); 2676 if (depthStencilBuffer && depthStencilBuffer->getTextureSerial() != 0) 2677 { 2678 set.insert(depthStencilBuffer->getTextureSerial()); 2679 } 2680 2681 return set; 2682 } 2683 2684 void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, 2685 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, 2686 GLbitfield mask) 2687 { 2688 Framebuffer *readFramebuffer = getReadFramebuffer(); 2689 Framebuffer *drawFramebuffer = getDrawFramebuffer(); 2690 2691 if (!readFramebuffer || readFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE || 2692 !drawFramebuffer || drawFramebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE) 2693 { 2694 return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION); 2695 } 2696 2697 if (drawFramebuffer->getSamples() != 0) 2698 { 2699 return gl::error(GL_INVALID_OPERATION); 2700 } 2701 2702 Renderbuffer *readColorBuffer = readFramebuffer->getReadColorbuffer(); 2703 Renderbuffer *drawColorBuffer = drawFramebuffer->getFirstColorbuffer(); 2704 2705 if (drawColorBuffer == NULL) 2706 { 2707 ERR("Draw buffers formats don't match, which is not supported in this implementation of BlitFramebufferANGLE"); 2708 return gl::error(GL_INVALID_OPERATION); 2709 } 2710 2711 int readBufferWidth = readColorBuffer->getWidth(); 2712 int readBufferHeight = readColorBuffer->getHeight(); 2713 int drawBufferWidth = drawColorBuffer->getWidth(); 2714 int drawBufferHeight = drawColorBuffer->getHeight(); 2715 2716 Rectangle sourceRect; 2717 Rectangle destRect; 2718 2719 if (srcX0 < srcX1) 2720 { 2721 sourceRect.x = srcX0; 2722 destRect.x = dstX0; 2723 sourceRect.width = srcX1 - srcX0; 2724 destRect.width = dstX1 - dstX0; 2725 } 2726 else 2727 { 2728 sourceRect.x = srcX1; 2729 destRect.x = dstX1; 2730 sourceRect.width = srcX0 - srcX1; 2731 destRect.width = dstX0 - dstX1; 2732 } 2733 2734 if (srcY0 < srcY1) 2735 { 2736 sourceRect.height = srcY1 - srcY0; 2737 destRect.height = dstY1 - dstY0; 2738 sourceRect.y = srcY0; 2739 destRect.y = dstY0; 2740 } 2741 else 2742 { 2743 sourceRect.height = srcY0 - srcY1; 2744 destRect.height = dstY0 - srcY1; 2745 sourceRect.y = srcY1; 2746 destRect.y = dstY1; 2747 } 2748 2749 Rectangle sourceScissoredRect = sourceRect; 2750 Rectangle destScissoredRect = destRect; 2751 2752 if (mState.scissorTest) 2753 { 2754 // Only write to parts of the destination framebuffer which pass the scissor test. 2755 if (destRect.x < mState.scissor.x) 2756 { 2757 int xDiff = mState.scissor.x - destRect.x; 2758 destScissoredRect.x = mState.scissor.x; 2759 destScissoredRect.width -= xDiff; 2760 sourceScissoredRect.x += xDiff; 2761 sourceScissoredRect.width -= xDiff; 2762 2763 } 2764 2765 if (destRect.x + destRect.width > mState.scissor.x + mState.scissor.width) 2766 { 2767 int xDiff = (destRect.x + destRect.width) - (mState.scissor.x + mState.scissor.width); 2768 destScissoredRect.width -= xDiff; 2769 sourceScissoredRect.width -= xDiff; 2770 } 2771 2772 if (destRect.y < mState.scissor.y) 2773 { 2774 int yDiff = mState.scissor.y - destRect.y; 2775 destScissoredRect.y = mState.scissor.y; 2776 destScissoredRect.height -= yDiff; 2777 sourceScissoredRect.y += yDiff; 2778 sourceScissoredRect.height -= yDiff; 2779 } 2780 2781 if (destRect.y + destRect.height > mState.scissor.y + mState.scissor.height) 2782 { 2783 int yDiff = (destRect.y + destRect.height) - (mState.scissor.y + mState.scissor.height); 2784 destScissoredRect.height -= yDiff; 2785 sourceScissoredRect.height -= yDiff; 2786 } 2787 } 2788 2789 bool blitRenderTarget = false; 2790 bool blitDepthStencil = false; 2791 2792 Rectangle sourceTrimmedRect = sourceScissoredRect; 2793 Rectangle destTrimmedRect = destScissoredRect; 2794 2795 // The source & destination rectangles also may need to be trimmed if they fall out of the bounds of 2796 // the actual draw and read surfaces. 2797 if (sourceTrimmedRect.x < 0) 2798 { 2799 int xDiff = 0 - sourceTrimmedRect.x; 2800 sourceTrimmedRect.x = 0; 2801 sourceTrimmedRect.width -= xDiff; 2802 destTrimmedRect.x += xDiff; 2803 destTrimmedRect.width -= xDiff; 2804 } 2805 2806 if (sourceTrimmedRect.x + sourceTrimmedRect.width > readBufferWidth) 2807 { 2808 int xDiff = (sourceTrimmedRect.x + sourceTrimmedRect.width) - readBufferWidth; 2809 sourceTrimmedRect.width -= xDiff; 2810 destTrimmedRect.width -= xDiff; 2811 } 2812 2813 if (sourceTrimmedRect.y < 0) 2814 { 2815 int yDiff = 0 - sourceTrimmedRect.y; 2816 sourceTrimmedRect.y = 0; 2817 sourceTrimmedRect.height -= yDiff; 2818 destTrimmedRect.y += yDiff; 2819 destTrimmedRect.height -= yDiff; 2820 } 2821 2822 if (sourceTrimmedRect.y + sourceTrimmedRect.height > readBufferHeight) 2823 { 2824 int yDiff = (sourceTrimmedRect.y + sourceTrimmedRect.height) - readBufferHeight; 2825 sourceTrimmedRect.height -= yDiff; 2826 destTrimmedRect.height -= yDiff; 2827 } 2828 2829 if (destTrimmedRect.x < 0) 2830 { 2831 int xDiff = 0 - destTrimmedRect.x; 2832 destTrimmedRect.x = 0; 2833 destTrimmedRect.width -= xDiff; 2834 sourceTrimmedRect.x += xDiff; 2835 sourceTrimmedRect.width -= xDiff; 2836 } 2837 2838 if (destTrimmedRect.x + destTrimmedRect.width > drawBufferWidth) 2839 { 2840 int xDiff = (destTrimmedRect.x + destTrimmedRect.width) - drawBufferWidth; 2841 destTrimmedRect.width -= xDiff; 2842 sourceTrimmedRect.width -= xDiff; 2843 } 2844 2845 if (destTrimmedRect.y < 0) 2846 { 2847 int yDiff = 0 - destTrimmedRect.y; 2848 destTrimmedRect.y = 0; 2849 destTrimmedRect.height -= yDiff; 2850 sourceTrimmedRect.y += yDiff; 2851 sourceTrimmedRect.height -= yDiff; 2852 } 2853 2854 if (destTrimmedRect.y + destTrimmedRect.height > drawBufferHeight) 2855 { 2856 int yDiff = (destTrimmedRect.y + destTrimmedRect.height) - drawBufferHeight; 2857 destTrimmedRect.height -= yDiff; 2858 sourceTrimmedRect.height -= yDiff; 2859 } 2860 2861 bool partialBufferCopy = false; 2862 if (sourceTrimmedRect.height < readBufferHeight || 2863 sourceTrimmedRect.width < readBufferWidth || 2864 destTrimmedRect.height < drawBufferHeight || 2865 destTrimmedRect.width < drawBufferWidth || 2866 sourceTrimmedRect.y != 0 || destTrimmedRect.y != 0 || sourceTrimmedRect.x != 0 || destTrimmedRect.x != 0) 2867 { 2868 partialBufferCopy = true; 2869 } 2870 2871 if (mask & GL_COLOR_BUFFER_BIT) 2872 { 2873 const GLenum readColorbufferType = readFramebuffer->getReadColorbufferType(); 2874 const bool validReadType = (readColorbufferType == GL_TEXTURE_2D) || (readColorbufferType == GL_RENDERBUFFER); 2875 bool validDrawType = true; 2876 bool validDrawFormat = true; 2877 2878 for (unsigned int colorAttachment = 0; colorAttachment < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; colorAttachment++) 2879 { 2880 if (drawFramebuffer->isEnabledColorAttachment(colorAttachment)) 2881 { 2882 if (drawFramebuffer->getColorbufferType(colorAttachment) != GL_TEXTURE_2D && 2883 drawFramebuffer->getColorbufferType(colorAttachment) != GL_RENDERBUFFER) 2884 { 2885 validDrawType = false; 2886 } 2887 2888 if (drawFramebuffer->getColorbuffer(colorAttachment)->getActualFormat() != readColorBuffer->getActualFormat()) 2889 { 2890 validDrawFormat = false; 2891 } 2892 } 2893 } 2894 2895 if (!validReadType || !validDrawType || !validDrawFormat) 2896 { 2897 ERR("Color buffer format conversion in BlitFramebufferANGLE not supported by this implementation"); 2898 return gl::error(GL_INVALID_OPERATION); 2899 } 2900 2901 if (partialBufferCopy && readFramebuffer->getSamples() != 0) 2902 { 2903 return gl::error(GL_INVALID_OPERATION); 2904 } 2905 2906 blitRenderTarget = true; 2907 2908 } 2909 2910 if (mask & (GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) 2911 { 2912 Renderbuffer *readDSBuffer = NULL; 2913 Renderbuffer *drawDSBuffer = NULL; 2914 2915 // We support OES_packed_depth_stencil, and do not support a separately attached depth and stencil buffer, so if we have 2916 // both a depth and stencil buffer, it will be the same buffer. 2917 2918 if (mask & GL_DEPTH_BUFFER_BIT) 2919 { 2920 if (readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer()) 2921 { 2922 if (readFramebuffer->getDepthbufferType() != drawFramebuffer->getDepthbufferType() || 2923 readFramebuffer->getDepthbuffer()->getActualFormat() != drawFramebuffer->getDepthbuffer()->getActualFormat()) 2924 { 2925 return gl::error(GL_INVALID_OPERATION); 2926 } 2927 2928 blitDepthStencil = true; 2929 readDSBuffer = readFramebuffer->getDepthbuffer(); 2930 drawDSBuffer = drawFramebuffer->getDepthbuffer(); 2931 } 2932 } 2933 2934 if (mask & GL_STENCIL_BUFFER_BIT) 2935 { 2936 if (readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer()) 2937 { 2938 if (readFramebuffer->getStencilbufferType() != drawFramebuffer->getStencilbufferType() || 2939 readFramebuffer->getStencilbuffer()->getActualFormat() != drawFramebuffer->getStencilbuffer()->getActualFormat()) 2940 { 2941 return gl::error(GL_INVALID_OPERATION); 2942 } 2943 2944 blitDepthStencil = true; 2945 readDSBuffer = readFramebuffer->getStencilbuffer(); 2946 drawDSBuffer = drawFramebuffer->getStencilbuffer(); 2947 } 2948 } 2949 2950 if (partialBufferCopy) 2951 { 2952 ERR("Only whole-buffer depth and stencil blits are supported by this implementation."); 2953 return gl::error(GL_INVALID_OPERATION); // only whole-buffer copies are permitted 2954 } 2955 2956 if ((drawDSBuffer && drawDSBuffer->getSamples() != 0) || 2957 (readDSBuffer && readDSBuffer->getSamples() != 0)) 2958 { 2959 return gl::error(GL_INVALID_OPERATION); 2960 } 2961 } 2962 2963 if (blitRenderTarget || blitDepthStencil) 2964 { 2965 mRenderer->blitRect(readFramebuffer, sourceTrimmedRect, drawFramebuffer, destTrimmedRect, blitRenderTarget, blitDepthStencil); 2966 } 2967 } 2968 2969 } 2970 2971 extern "C" 2972 { 2973 gl::Context *glCreateContext(const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) 2974 { 2975 return new gl::Context(shareContext, renderer, notifyResets, robustAccess); 2976 } 2977 2978 void glDestroyContext(gl::Context *context) 2979 { 2980 delete context; 2981 2982 if (context == gl::getContext()) 2983 { 2984 gl::makeCurrent(NULL, NULL, NULL); 2985 } 2986 } 2987 2988 void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface) 2989 { 2990 gl::makeCurrent(context, display, surface); 2991 } 2992 2993 gl::Context *glGetCurrentContext() 2994 { 2995 return gl::getContext(); 2996 } 2997 2998 } 2999