1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilties. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Target/TargetLowering.h" 27 using namespace llvm; 28 29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 30 /// of insertvalue or extractvalue indices that identify a member, return 31 /// the linearized index of the start of the member. 32 /// 33 unsigned llvm::ComputeLinearIndex(Type *Ty, 34 const unsigned *Indices, 35 const unsigned *IndicesEnd, 36 unsigned CurIndex) { 37 // Base case: We're done. 38 if (Indices && Indices == IndicesEnd) 39 return CurIndex; 40 41 // Given a struct type, recursively traverse the elements. 42 if (StructType *STy = dyn_cast<StructType>(Ty)) { 43 for (StructType::element_iterator EB = STy->element_begin(), 44 EI = EB, 45 EE = STy->element_end(); 46 EI != EE; ++EI) { 47 if (Indices && *Indices == unsigned(EI - EB)) 48 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 49 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 50 } 51 return CurIndex; 52 } 53 // Given an array type, recursively traverse the elements. 54 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 55 Type *EltTy = ATy->getElementType(); 56 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 57 if (Indices && *Indices == i) 58 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 59 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 60 } 61 return CurIndex; 62 } 63 // We haven't found the type we're looking for, so keep searching. 64 return CurIndex + 1; 65 } 66 67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 68 /// EVTs that represent all the individual underlying 69 /// non-aggregate types that comprise it. 70 /// 71 /// If Offsets is non-null, it points to a vector to be filled in 72 /// with the in-memory offsets of each of the individual values. 73 /// 74 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 75 SmallVectorImpl<EVT> &ValueVTs, 76 SmallVectorImpl<uint64_t> *Offsets, 77 uint64_t StartingOffset) { 78 // Given a struct type, recursively traverse the elements. 79 if (StructType *STy = dyn_cast<StructType>(Ty)) { 80 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 81 for (StructType::element_iterator EB = STy->element_begin(), 82 EI = EB, 83 EE = STy->element_end(); 84 EI != EE; ++EI) 85 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 86 StartingOffset + SL->getElementOffset(EI - EB)); 87 return; 88 } 89 // Given an array type, recursively traverse the elements. 90 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 91 Type *EltTy = ATy->getElementType(); 92 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 93 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 94 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 95 StartingOffset + i * EltSize); 96 return; 97 } 98 // Interpret void as zero return values. 99 if (Ty->isVoidTy()) 100 return; 101 // Base case: we can get an EVT for this LLVM IR type. 102 ValueVTs.push_back(TLI.getValueType(Ty)); 103 if (Offsets) 104 Offsets->push_back(StartingOffset); 105 } 106 107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 108 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 109 V = V->stripPointerCasts(); 110 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 111 112 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 113 assert(GV->hasInitializer() && 114 "The EH catch-all value must have an initializer"); 115 Value *Init = GV->getInitializer(); 116 GV = dyn_cast<GlobalVariable>(Init); 117 if (!GV) V = cast<ConstantPointerNull>(Init); 118 } 119 120 assert((GV || isa<ConstantPointerNull>(V)) && 121 "TypeInfo must be a global variable or NULL"); 122 return GV; 123 } 124 125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 126 /// processed uses a memory 'm' constraint. 127 bool 128 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 129 const TargetLowering &TLI) { 130 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 131 InlineAsm::ConstraintInfo &CI = CInfos[i]; 132 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 133 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 134 if (CType == TargetLowering::C_Memory) 135 return true; 136 } 137 138 // Indirect operand accesses access memory. 139 if (CI.isIndirect) 140 return true; 141 } 142 143 return false; 144 } 145 146 /// getFCmpCondCode - Return the ISD condition code corresponding to 147 /// the given LLVM IR floating-point condition code. This includes 148 /// consideration of global floating-point math flags. 149 /// 150 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 151 switch (Pred) { 152 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 153 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 154 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 155 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 156 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 157 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 158 case FCmpInst::FCMP_ONE: return ISD::SETONE; 159 case FCmpInst::FCMP_ORD: return ISD::SETO; 160 case FCmpInst::FCMP_UNO: return ISD::SETUO; 161 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 162 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 163 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 164 case FCmpInst::FCMP_ULT: return ISD::SETULT; 165 case FCmpInst::FCMP_ULE: return ISD::SETULE; 166 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 167 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 168 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 169 } 170 } 171 172 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 173 switch (CC) { 174 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 175 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 176 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 177 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 178 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 179 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 180 default: return CC; 181 } 182 } 183 184 /// getICmpCondCode - Return the ISD condition code corresponding to 185 /// the given LLVM IR integer condition code. 186 /// 187 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 188 switch (Pred) { 189 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 190 case ICmpInst::ICMP_NE: return ISD::SETNE; 191 case ICmpInst::ICMP_SLE: return ISD::SETLE; 192 case ICmpInst::ICMP_ULE: return ISD::SETULE; 193 case ICmpInst::ICMP_SGE: return ISD::SETGE; 194 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 195 case ICmpInst::ICMP_SLT: return ISD::SETLT; 196 case ICmpInst::ICMP_ULT: return ISD::SETULT; 197 case ICmpInst::ICMP_SGT: return ISD::SETGT; 198 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 199 default: 200 llvm_unreachable("Invalid ICmp predicate opcode!"); 201 } 202 } 203 204 static bool isNoopBitcast(Type *T1, Type *T2, 205 const TargetLoweringBase& TLI) { 206 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 207 (isa<VectorType>(T1) && isa<VectorType>(T2) && 208 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 209 } 210 211 /// Look through operations that will be free to find the earliest source of 212 /// this value. 213 /// 214 /// @param ValLoc If V has aggegate type, we will be interested in a particular 215 /// scalar component. This records its address; the reverse of this list gives a 216 /// sequence of indices appropriate for an extractvalue to locate the important 217 /// value. This value is updated during the function and on exit will indicate 218 /// similar information for the Value returned. 219 /// 220 /// @param DataBits If this function looks through truncate instructions, this 221 /// will record the smallest size attained. 222 static const Value *getNoopInput(const Value *V, 223 SmallVectorImpl<unsigned> &ValLoc, 224 unsigned &DataBits, 225 const TargetLoweringBase &TLI) { 226 while (true) { 227 // Try to look through V1; if V1 is not an instruction, it can't be looked 228 // through. 229 const Instruction *I = dyn_cast<Instruction>(V); 230 if (!I || I->getNumOperands() == 0) return V; 231 const Value *NoopInput = 0; 232 233 Value *Op = I->getOperand(0); 234 if (isa<BitCastInst>(I)) { 235 // Look through truly no-op bitcasts. 236 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 237 NoopInput = Op; 238 } else if (isa<GetElementPtrInst>(I)) { 239 // Look through getelementptr 240 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 241 NoopInput = Op; 242 } else if (isa<IntToPtrInst>(I)) { 243 // Look through inttoptr. 244 // Make sure this isn't a truncating or extending cast. We could 245 // support this eventually, but don't bother for now. 246 if (!isa<VectorType>(I->getType()) && 247 TLI.getPointerTy().getSizeInBits() == 248 cast<IntegerType>(Op->getType())->getBitWidth()) 249 NoopInput = Op; 250 } else if (isa<PtrToIntInst>(I)) { 251 // Look through ptrtoint. 252 // Make sure this isn't a truncating or extending cast. We could 253 // support this eventually, but don't bother for now. 254 if (!isa<VectorType>(I->getType()) && 255 TLI.getPointerTy().getSizeInBits() == 256 cast<IntegerType>(I->getType())->getBitWidth()) 257 NoopInput = Op; 258 } else if (isa<TruncInst>(I) && 259 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 260 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 261 NoopInput = Op; 262 } else if (isa<CallInst>(I)) { 263 // Look through call (skipping callee) 264 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 265 i != e; ++i) { 266 unsigned attrInd = i - I->op_begin() + 1; 267 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 268 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 269 NoopInput = *i; 270 break; 271 } 272 } 273 } else if (isa<InvokeInst>(I)) { 274 // Look through invoke (skipping BB, BB, Callee) 275 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 276 i != e; ++i) { 277 unsigned attrInd = i - I->op_begin() + 1; 278 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 279 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 280 NoopInput = *i; 281 break; 282 } 283 } 284 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 285 // Value may come from either the aggregate or the scalar 286 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 287 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(), 288 ValLoc.rbegin())) { 289 // The type being inserted is a nested sub-type of the aggregate; we 290 // have to remove those initial indices to get the location we're 291 // interested in for the operand. 292 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 293 NoopInput = IVI->getInsertedValueOperand(); 294 } else { 295 // The struct we're inserting into has the value we're interested in, no 296 // change of address. 297 NoopInput = Op; 298 } 299 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 300 // The part we're interested in will inevitably be some sub-section of the 301 // previous aggregate. Combine the two paths to obtain the true address of 302 // our element. 303 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 304 std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(), 305 std::back_inserter(ValLoc)); 306 NoopInput = Op; 307 } 308 // Terminate if we couldn't find anything to look through. 309 if (!NoopInput) 310 return V; 311 312 V = NoopInput; 313 } 314 } 315 316 /// Return true if this scalar return value only has bits discarded on its path 317 /// from the "tail call" to the "ret". This includes the obvious noop 318 /// instructions handled by getNoopInput above as well as free truncations (or 319 /// extensions prior to the call). 320 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 321 SmallVectorImpl<unsigned> &RetIndices, 322 SmallVectorImpl<unsigned> &CallIndices, 323 const TargetLoweringBase &TLI) { 324 325 // Trace the sub-value needed by the return value as far back up the graph as 326 // possible, in the hope that it will intersect with the value produced by the 327 // call. In the simple case with no "returned" attribute, the hope is actually 328 // that we end up back at the tail call instruction itself. 329 unsigned BitsRequired = UINT_MAX; 330 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI); 331 332 // If this slot in the value returned is undef, it doesn't matter what the 333 // call puts there, it'll be fine. 334 if (isa<UndefValue>(RetVal)) 335 return true; 336 337 // Now do a similar search up through the graph to find where the value 338 // actually returned by the "tail call" comes from. In the simple case without 339 // a "returned" attribute, the search will be blocked immediately and the loop 340 // a Noop. 341 unsigned BitsProvided = UINT_MAX; 342 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI); 343 344 // There's no hope if we can't actually trace them to (the same part of!) the 345 // same value. 346 if (CallVal != RetVal || CallIndices != RetIndices) 347 return false; 348 349 // However, intervening truncates may have made the call non-tail. Make sure 350 // all the bits that are needed by the "ret" have been provided by the "tail 351 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 352 // extensions too. 353 if (BitsProvided < BitsRequired) 354 return false; 355 356 return true; 357 } 358 359 /// For an aggregate type, determine whether a given index is within bounds or 360 /// not. 361 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 362 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 363 return Idx < AT->getNumElements(); 364 365 return Idx < cast<StructType>(T)->getNumElements(); 366 } 367 368 /// Move the given iterators to the next leaf type in depth first traversal. 369 /// 370 /// Performs a depth-first traversal of the type as specified by its arguments, 371 /// stopping at the next leaf node (which may be a legitimate scalar type or an 372 /// empty struct or array). 373 /// 374 /// @param SubTypes List of the partial components making up the type from 375 /// outermost to innermost non-empty aggregate. The element currently 376 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 377 /// 378 /// @param Path Set of extractvalue indices leading from the outermost type 379 /// (SubTypes[0]) to the leaf node currently represented. 380 /// 381 /// @returns true if a new type was found, false otherwise. Calling this 382 /// function again on a finished iterator will repeatedly return 383 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 384 /// aggregate or a non-aggregate 385 static bool 386 advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 387 SmallVectorImpl<unsigned> &Path) { 388 // First march back up the tree until we can successfully increment one of the 389 // coordinates in Path. 390 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 391 Path.pop_back(); 392 SubTypes.pop_back(); 393 } 394 395 // If we reached the top, then the iterator is done. 396 if (Path.empty()) 397 return false; 398 399 // We know there's *some* valid leaf now, so march back down the tree picking 400 // out the left-most element at each node. 401 ++Path.back(); 402 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 403 while (DeeperType->isAggregateType()) { 404 CompositeType *CT = cast<CompositeType>(DeeperType); 405 if (!indexReallyValid(CT, 0)) 406 return true; 407 408 SubTypes.push_back(CT); 409 Path.push_back(0); 410 411 DeeperType = CT->getTypeAtIndex(0U); 412 } 413 414 return true; 415 } 416 417 /// Find the first non-empty, scalar-like type in Next and setup the iterator 418 /// components. 419 /// 420 /// Assuming Next is an aggregate of some kind, this function will traverse the 421 /// tree from left to right (i.e. depth-first) looking for the first 422 /// non-aggregate type which will play a role in function return. 423 /// 424 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 425 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 426 /// i32 in that type. 427 static bool firstRealType(Type *Next, 428 SmallVectorImpl<CompositeType *> &SubTypes, 429 SmallVectorImpl<unsigned> &Path) { 430 // First initialise the iterator components to the first "leaf" node 431 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 432 // despite nominally being an aggregate). 433 while (Next->isAggregateType() && 434 indexReallyValid(cast<CompositeType>(Next), 0)) { 435 SubTypes.push_back(cast<CompositeType>(Next)); 436 Path.push_back(0); 437 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 438 } 439 440 // If there's no Path now, Next was originally scalar already (or empty 441 // leaf). We're done. 442 if (Path.empty()) 443 return true; 444 445 // Otherwise, use normal iteration to keep looking through the tree until we 446 // find a non-aggregate type. 447 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 448 if (!advanceToNextLeafType(SubTypes, Path)) 449 return false; 450 } 451 452 return true; 453 } 454 455 /// Set the iterator data-structures to the next non-empty, non-aggregate 456 /// subtype. 457 bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 458 SmallVectorImpl<unsigned> &Path) { 459 do { 460 if (!advanceToNextLeafType(SubTypes, Path)) 461 return false; 462 463 assert(!Path.empty() && "found a leaf but didn't set the path?"); 464 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 465 466 return true; 467 } 468 469 470 /// Test if the given instruction is in a position to be optimized 471 /// with a tail-call. This roughly means that it's in a block with 472 /// a return and there's nothing that needs to be scheduled 473 /// between it and the return. 474 /// 475 /// This function only tests target-independent requirements. 476 bool llvm::isInTailCallPosition(ImmutableCallSite CS, 477 const TargetLowering &TLI) { 478 const Instruction *I = CS.getInstruction(); 479 const BasicBlock *ExitBB = I->getParent(); 480 const TerminatorInst *Term = ExitBB->getTerminator(); 481 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 482 483 // The block must end in a return statement or unreachable. 484 // 485 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 486 // an unreachable, for now. The way tailcall optimization is currently 487 // implemented means it will add an epilogue followed by a jump. That is 488 // not profitable. Also, if the callee is a special function (e.g. 489 // longjmp on x86), it can end up causing miscompilation that has not 490 // been fully understood. 491 if (!Ret && 492 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || 493 !isa<UnreachableInst>(Term))) 494 return false; 495 496 // If I will have a chain, make sure no other instruction that will have a 497 // chain interposes between I and the return. 498 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 499 !isSafeToSpeculativelyExecute(I)) 500 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 501 --BBI) { 502 if (&*BBI == I) 503 break; 504 // Debug info intrinsics do not get in the way of tail call optimization. 505 if (isa<DbgInfoIntrinsic>(BBI)) 506 continue; 507 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 508 !isSafeToSpeculativelyExecute(BBI)) 509 return false; 510 } 511 512 // If the block ends with a void return or unreachable, it doesn't matter 513 // what the call's return type is. 514 if (!Ret || Ret->getNumOperands() == 0) return true; 515 516 // If the return value is undef, it doesn't matter what the call's 517 // return type is. 518 if (isa<UndefValue>(Ret->getOperand(0))) return true; 519 520 // Conservatively require the attributes of the call to match those of 521 // the return. Ignore noalias because it doesn't affect the call sequence. 522 const Function *F = ExitBB->getParent(); 523 AttributeSet CallerAttrs = F->getAttributes(); 524 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 525 removeAttribute(Attribute::NoAlias) != 526 AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 527 removeAttribute(Attribute::NoAlias)) 528 return false; 529 530 // It's not safe to eliminate the sign / zero extension of the return value. 531 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 532 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 533 return false; 534 535 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 536 SmallVector<unsigned, 4> RetPath, CallPath; 537 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 538 539 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 540 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 541 542 // Nothing's actually returned, it doesn't matter what the callee put there 543 // it's a valid tail call. 544 if (RetEmpty) 545 return true; 546 547 // Iterate pairwise through each of the value types making up the tail call 548 // and the corresponding return. For each one we want to know whether it's 549 // essentially going directly from the tail call to the ret, via operations 550 // that end up not generating any code. 551 // 552 // We allow a certain amount of covariance here. For example it's permitted 553 // for the tail call to define more bits than the ret actually cares about 554 // (e.g. via a truncate). 555 do { 556 if (CallEmpty) { 557 // We've exhausted the values produced by the tail call instruction, the 558 // rest are essentially undef. The type doesn't really matter, but we need 559 // *something*. 560 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 561 CallVal = UndefValue::get(SlotType); 562 } 563 564 // The manipulations performed when we're looking through an insertvalue or 565 // an extractvalue would happen at the front of the RetPath list, so since 566 // we have to copy it anyway it's more efficient to create a reversed copy. 567 using std::copy; 568 SmallVector<unsigned, 4> TmpRetPath, TmpCallPath; 569 copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath)); 570 copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath)); 571 572 // Finally, we can check whether the value produced by the tail call at this 573 // index is compatible with the value we return. 574 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, TLI)) 575 return false; 576 577 CallEmpty = !nextRealType(CallSubTypes, CallPath); 578 } while(nextRealType(RetSubTypes, RetPath)); 579 580 return true; 581 } 582