Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCXXABI.h"
     16 #include "CGCall.h"
     17 #include "CGOpenCLRuntime.h"
     18 #include "CGRecordLayout.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/DeclObjC.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/RecordLayout.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Module.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
     32   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
     33     TheDataLayout(cgm.getDataLayout()),
     34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
     35     CodeGenOpts(cgm.getCodeGenOpts()),
     36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
     37   SkippedLayout = false;
     38 }
     39 
     40 CodeGenTypes::~CodeGenTypes() {
     41   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
     42          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
     43       I != E; ++I)
     44     delete I->second;
     45 
     46   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     47        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     48     delete &*I++;
     49 }
     50 
     51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     52                                      llvm::StructType *Ty,
     53                                      StringRef suffix) {
     54   SmallString<256> TypeName;
     55   llvm::raw_svector_ostream OS(TypeName);
     56   OS << RD->getKindName() << '.';
     57 
     58   // Name the codegen type after the typedef name
     59   // if there is no tag type name available
     60   if (RD->getIdentifier()) {
     61     // FIXME: We should not have to check for a null decl context here.
     62     // Right now we do it because the implicit Obj-C decls don't have one.
     63     if (RD->getDeclContext())
     64       RD->printQualifiedName(OS);
     65     else
     66       RD->printName(OS);
     67   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     68     // FIXME: We should not have to check for a null decl context here.
     69     // Right now we do it because the implicit Obj-C decls don't have one.
     70     if (TDD->getDeclContext())
     71       TDD->printQualifiedName(OS);
     72     else
     73       TDD->printName(OS);
     74   } else
     75     OS << "anon";
     76 
     77   if (!suffix.empty())
     78     OS << suffix;
     79 
     80   Ty->setName(OS.str());
     81 }
     82 
     83 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     84 /// ConvertType in that it is used to convert to the memory representation for
     85 /// a type.  For example, the scalar representation for _Bool is i1, but the
     86 /// memory representation is usually i8 or i32, depending on the target.
     87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
     88   llvm::Type *R = ConvertType(T);
     89 
     90   // If this is a non-bool type, don't map it.
     91   if (!R->isIntegerTy(1))
     92     return R;
     93 
     94   // Otherwise, return an integer of the target-specified size.
     95   return llvm::IntegerType::get(getLLVMContext(),
     96                                 (unsigned)Context.getTypeSize(T));
     97 }
     98 
     99 
    100 /// isRecordLayoutComplete - Return true if the specified type is already
    101 /// completely laid out.
    102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    103   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    104   RecordDeclTypes.find(Ty);
    105   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    106 }
    107 
    108 static bool
    109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    110                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    111 
    112 
    113 /// isSafeToConvert - Return true if it is safe to convert the specified record
    114 /// decl to IR and lay it out, false if doing so would cause us to get into a
    115 /// recursive compilation mess.
    116 static bool
    117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    118                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    119   // If we have already checked this type (maybe the same type is used by-value
    120   // multiple times in multiple structure fields, don't check again.
    121   if (!AlreadyChecked.insert(RD)) return true;
    122 
    123   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    124 
    125   // If this type is already laid out, converting it is a noop.
    126   if (CGT.isRecordLayoutComplete(Key)) return true;
    127 
    128   // If this type is currently being laid out, we can't recursively compile it.
    129   if (CGT.isRecordBeingLaidOut(Key))
    130     return false;
    131 
    132   // If this type would require laying out bases that are currently being laid
    133   // out, don't do it.  This includes virtual base classes which get laid out
    134   // when a class is translated, even though they aren't embedded by-value into
    135   // the class.
    136   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    137     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
    138          E = CRD->bases_end(); I != E; ++I)
    139       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
    140                            CGT, AlreadyChecked))
    141         return false;
    142   }
    143 
    144   // If this type would require laying out members that are currently being laid
    145   // out, don't do it.
    146   for (RecordDecl::field_iterator I = RD->field_begin(),
    147        E = RD->field_end(); I != E; ++I)
    148     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    149       return false;
    150 
    151   // If there are no problems, lets do it.
    152   return true;
    153 }
    154 
    155 /// isSafeToConvert - Return true if it is safe to convert this field type,
    156 /// which requires the structure elements contained by-value to all be
    157 /// recursively safe to convert.
    158 static bool
    159 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    160                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    161   T = T.getCanonicalType();
    162 
    163   // If this is a record, check it.
    164   if (const RecordType *RT = dyn_cast<RecordType>(T))
    165     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    166 
    167   // If this is an array, check the elements, which are embedded inline.
    168   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    169     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    170 
    171   // Otherwise, there is no concern about transforming this.  We only care about
    172   // things that are contained by-value in a structure that can have another
    173   // structure as a member.
    174   return true;
    175 }
    176 
    177 
    178 /// isSafeToConvert - Return true if it is safe to convert the specified record
    179 /// decl to IR and lay it out, false if doing so would cause us to get into a
    180 /// recursive compilation mess.
    181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    182   // If no structs are being laid out, we can certainly do this one.
    183   if (CGT.noRecordsBeingLaidOut()) return true;
    184 
    185   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    186   return isSafeToConvert(RD, CGT, AlreadyChecked);
    187 }
    188 
    189 
    190 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
    191 /// function argument or result position can be converted to an IR type at this
    192 /// point.  This boils down to being whether it is complete, as well as whether
    193 /// we've temporarily deferred expanding the type because we're in a recursive
    194 /// context.
    195 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
    196   // If this isn't a tagged type, we can convert it!
    197   const TagType *TT = Ty->getAs<TagType>();
    198   if (TT == 0) return true;
    199 
    200   // Incomplete types cannot be converted.
    201   if (TT->isIncompleteType())
    202     return false;
    203 
    204   // If this is an enum, then it is always safe to convert.
    205   const RecordType *RT = dyn_cast<RecordType>(TT);
    206   if (RT == 0) return true;
    207 
    208   // Otherwise, we have to be careful.  If it is a struct that we're in the
    209   // process of expanding, then we can't convert the function type.  That's ok
    210   // though because we must be in a pointer context under the struct, so we can
    211   // just convert it to a dummy type.
    212   //
    213   // We decide this by checking whether ConvertRecordDeclType returns us an
    214   // opaque type for a struct that we know is defined.
    215   return isSafeToConvert(RT->getDecl(), *this);
    216 }
    217 
    218 
    219 /// Code to verify a given function type is complete, i.e. the return type
    220 /// and all of the argument types are complete.  Also check to see if we are in
    221 /// a RS_StructPointer context, and if so whether any struct types have been
    222 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    223 /// that cannot be converted to an IR type.
    224 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    225   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    226     return false;
    227 
    228   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    229     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    230       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
    231         return false;
    232 
    233   return true;
    234 }
    235 
    236 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    237 /// replace the 'opaque' type we previously made for it if applicable.
    238 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    239   // If this is an enum being completed, then we flush all non-struct types from
    240   // the cache.  This allows function types and other things that may be derived
    241   // from the enum to be recomputed.
    242   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    243     // Only flush the cache if we've actually already converted this type.
    244     if (TypeCache.count(ED->getTypeForDecl())) {
    245       // Okay, we formed some types based on this.  We speculated that the enum
    246       // would be lowered to i32, so we only need to flush the cache if this
    247       // didn't happen.
    248       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    249         TypeCache.clear();
    250     }
    251     return;
    252   }
    253 
    254   // If we completed a RecordDecl that we previously used and converted to an
    255   // anonymous type, then go ahead and complete it now.
    256   const RecordDecl *RD = cast<RecordDecl>(TD);
    257   if (RD->isDependentType()) return;
    258 
    259   // Only complete it if we converted it already.  If we haven't converted it
    260   // yet, we'll just do it lazily.
    261   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    262     ConvertRecordDeclType(RD);
    263 
    264   // If necessary, provide the full definition of a type only used with a
    265   // declaration so far.
    266   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
    267     DI->completeFwdDecl(*RD);
    268 }
    269 
    270 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    271                                     const llvm::fltSemantics &format,
    272                                     bool UseNativeHalf = false) {
    273   if (&format == &llvm::APFloat::IEEEhalf) {
    274     if (UseNativeHalf)
    275       return llvm::Type::getHalfTy(VMContext);
    276     else
    277       return llvm::Type::getInt16Ty(VMContext);
    278   }
    279   if (&format == &llvm::APFloat::IEEEsingle)
    280     return llvm::Type::getFloatTy(VMContext);
    281   if (&format == &llvm::APFloat::IEEEdouble)
    282     return llvm::Type::getDoubleTy(VMContext);
    283   if (&format == &llvm::APFloat::IEEEquad)
    284     return llvm::Type::getFP128Ty(VMContext);
    285   if (&format == &llvm::APFloat::PPCDoubleDouble)
    286     return llvm::Type::getPPC_FP128Ty(VMContext);
    287   if (&format == &llvm::APFloat::x87DoubleExtended)
    288     return llvm::Type::getX86_FP80Ty(VMContext);
    289   llvm_unreachable("Unknown float format!");
    290 }
    291 
    292 /// ConvertType - Convert the specified type to its LLVM form.
    293 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    294   T = Context.getCanonicalType(T);
    295 
    296   const Type *Ty = T.getTypePtr();
    297 
    298   // RecordTypes are cached and processed specially.
    299   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    300     return ConvertRecordDeclType(RT->getDecl());
    301 
    302   // See if type is already cached.
    303   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    304   // If type is found in map then use it. Otherwise, convert type T.
    305   if (TCI != TypeCache.end())
    306     return TCI->second;
    307 
    308   // If we don't have it in the cache, convert it now.
    309   llvm::Type *ResultType = 0;
    310   switch (Ty->getTypeClass()) {
    311   case Type::Record: // Handled above.
    312 #define TYPE(Class, Base)
    313 #define ABSTRACT_TYPE(Class, Base)
    314 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    315 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    316 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    317 #include "clang/AST/TypeNodes.def"
    318     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    319 
    320   case Type::Builtin: {
    321     switch (cast<BuiltinType>(Ty)->getKind()) {
    322     case BuiltinType::Void:
    323     case BuiltinType::ObjCId:
    324     case BuiltinType::ObjCClass:
    325     case BuiltinType::ObjCSel:
    326       // LLVM void type can only be used as the result of a function call.  Just
    327       // map to the same as char.
    328       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    329       break;
    330 
    331     case BuiltinType::Bool:
    332       // Note that we always return bool as i1 for use as a scalar type.
    333       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    334       break;
    335 
    336     case BuiltinType::Char_S:
    337     case BuiltinType::Char_U:
    338     case BuiltinType::SChar:
    339     case BuiltinType::UChar:
    340     case BuiltinType::Short:
    341     case BuiltinType::UShort:
    342     case BuiltinType::Int:
    343     case BuiltinType::UInt:
    344     case BuiltinType::Long:
    345     case BuiltinType::ULong:
    346     case BuiltinType::LongLong:
    347     case BuiltinType::ULongLong:
    348     case BuiltinType::WChar_S:
    349     case BuiltinType::WChar_U:
    350     case BuiltinType::Char16:
    351     case BuiltinType::Char32:
    352       ResultType = llvm::IntegerType::get(getLLVMContext(),
    353                                  static_cast<unsigned>(Context.getTypeSize(T)));
    354       break;
    355 
    356     case BuiltinType::Half:
    357       // Half FP can either be storage-only (lowered to i16) or native.
    358       ResultType = getTypeForFormat(getLLVMContext(),
    359           Context.getFloatTypeSemantics(T),
    360           Context.getLangOpts().NativeHalfType);
    361       break;
    362     case BuiltinType::Float:
    363     case BuiltinType::Double:
    364     case BuiltinType::LongDouble:
    365       ResultType = getTypeForFormat(getLLVMContext(),
    366                                     Context.getFloatTypeSemantics(T),
    367                                     /* UseNativeHalf = */ false);
    368       break;
    369 
    370     case BuiltinType::NullPtr:
    371       // Model std::nullptr_t as i8*
    372       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    373       break;
    374 
    375     case BuiltinType::UInt128:
    376     case BuiltinType::Int128:
    377       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    378       break;
    379 
    380     case BuiltinType::OCLImage1d:
    381     case BuiltinType::OCLImage1dArray:
    382     case BuiltinType::OCLImage1dBuffer:
    383     case BuiltinType::OCLImage2d:
    384     case BuiltinType::OCLImage2dArray:
    385     case BuiltinType::OCLImage3d:
    386     case BuiltinType::OCLSampler:
    387     case BuiltinType::OCLEvent:
    388       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
    389       break;
    390 
    391     case BuiltinType::Dependent:
    392 #define BUILTIN_TYPE(Id, SingletonId)
    393 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    394     case BuiltinType::Id:
    395 #include "clang/AST/BuiltinTypes.def"
    396       llvm_unreachable("Unexpected placeholder builtin type!");
    397     }
    398     break;
    399   }
    400   case Type::Auto:
    401     llvm_unreachable("Unexpected undeduced auto type!");
    402   case Type::Complex: {
    403     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    404     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    405     break;
    406   }
    407   case Type::LValueReference:
    408   case Type::RValueReference: {
    409     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    410     QualType ETy = RTy->getPointeeType();
    411     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    412     unsigned AS = Context.getTargetAddressSpace(ETy);
    413     ResultType = llvm::PointerType::get(PointeeType, AS);
    414     break;
    415   }
    416   case Type::Pointer: {
    417     const PointerType *PTy = cast<PointerType>(Ty);
    418     QualType ETy = PTy->getPointeeType();
    419     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    420     if (PointeeType->isVoidTy())
    421       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    422     unsigned AS = Context.getTargetAddressSpace(ETy);
    423     ResultType = llvm::PointerType::get(PointeeType, AS);
    424     break;
    425   }
    426 
    427   case Type::VariableArray: {
    428     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    429     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    430            "FIXME: We only handle trivial array types so far!");
    431     // VLAs resolve to the innermost element type; this matches
    432     // the return of alloca, and there isn't any obviously better choice.
    433     ResultType = ConvertTypeForMem(A->getElementType());
    434     break;
    435   }
    436   case Type::IncompleteArray: {
    437     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    438     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    439            "FIXME: We only handle trivial array types so far!");
    440     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    441     // unsized (e.g. an incomplete struct) just use [0 x i8].
    442     ResultType = ConvertTypeForMem(A->getElementType());
    443     if (!ResultType->isSized()) {
    444       SkippedLayout = true;
    445       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    446     }
    447     ResultType = llvm::ArrayType::get(ResultType, 0);
    448     break;
    449   }
    450   case Type::ConstantArray: {
    451     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    452     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    453 
    454     // Lower arrays of undefined struct type to arrays of i8 just to have a
    455     // concrete type.
    456     if (!EltTy->isSized()) {
    457       SkippedLayout = true;
    458       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    459     }
    460 
    461     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    462     break;
    463   }
    464   case Type::ExtVector:
    465   case Type::Vector: {
    466     const VectorType *VT = cast<VectorType>(Ty);
    467     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    468                                        VT->getNumElements());
    469     break;
    470   }
    471   case Type::FunctionNoProto:
    472   case Type::FunctionProto: {
    473     const FunctionType *FT = cast<FunctionType>(Ty);
    474     // First, check whether we can build the full function type.  If the
    475     // function type depends on an incomplete type (e.g. a struct or enum), we
    476     // cannot lower the function type.
    477     if (!isFuncTypeConvertible(FT)) {
    478       // This function's type depends on an incomplete tag type.
    479 
    480       // Force conversion of all the relevant record types, to make sure
    481       // we re-convert the FunctionType when appropriate.
    482       if (const RecordType *RT = FT->getResultType()->getAs<RecordType>())
    483         ConvertRecordDeclType(RT->getDecl());
    484       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    485         for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    486           if (const RecordType *RT = FPT->getArgType(i)->getAs<RecordType>())
    487             ConvertRecordDeclType(RT->getDecl());
    488 
    489       // Return a placeholder type.
    490       ResultType = llvm::StructType::get(getLLVMContext());
    491 
    492       SkippedLayout = true;
    493       break;
    494     }
    495 
    496     // While we're converting the argument types for a function, we don't want
    497     // to recursively convert any pointed-to structs.  Converting directly-used
    498     // structs is ok though.
    499     if (!RecordsBeingLaidOut.insert(Ty)) {
    500       ResultType = llvm::StructType::get(getLLVMContext());
    501 
    502       SkippedLayout = true;
    503       break;
    504     }
    505 
    506     // The function type can be built; call the appropriate routines to
    507     // build it.
    508     const CGFunctionInfo *FI;
    509     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    510       FI = &arrangeFreeFunctionType(
    511                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    512     } else {
    513       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    514       FI = &arrangeFreeFunctionType(
    515                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    516     }
    517 
    518     // If there is something higher level prodding our CGFunctionInfo, then
    519     // don't recurse into it again.
    520     if (FunctionsBeingProcessed.count(FI)) {
    521 
    522       ResultType = llvm::StructType::get(getLLVMContext());
    523       SkippedLayout = true;
    524     } else {
    525 
    526       // Otherwise, we're good to go, go ahead and convert it.
    527       ResultType = GetFunctionType(*FI);
    528     }
    529 
    530     RecordsBeingLaidOut.erase(Ty);
    531 
    532     if (SkippedLayout)
    533       TypeCache.clear();
    534 
    535     if (RecordsBeingLaidOut.empty())
    536       while (!DeferredRecords.empty())
    537         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    538     break;
    539   }
    540 
    541   case Type::ObjCObject:
    542     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    543     break;
    544 
    545   case Type::ObjCInterface: {
    546     // Objective-C interfaces are always opaque (outside of the
    547     // runtime, which can do whatever it likes); we never refine
    548     // these.
    549     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    550     if (!T)
    551       T = llvm::StructType::create(getLLVMContext());
    552     ResultType = T;
    553     break;
    554   }
    555 
    556   case Type::ObjCObjectPointer: {
    557     // Protocol qualifications do not influence the LLVM type, we just return a
    558     // pointer to the underlying interface type. We don't need to worry about
    559     // recursive conversion.
    560     llvm::Type *T =
    561       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    562     ResultType = T->getPointerTo();
    563     break;
    564   }
    565 
    566   case Type::Enum: {
    567     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    568     if (ED->isCompleteDefinition() || ED->isFixed())
    569       return ConvertType(ED->getIntegerType());
    570     // Return a placeholder 'i32' type.  This can be changed later when the
    571     // type is defined (see UpdateCompletedType), but is likely to be the
    572     // "right" answer.
    573     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    574     break;
    575   }
    576 
    577   case Type::BlockPointer: {
    578     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    579     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    580     unsigned AS = Context.getTargetAddressSpace(FTy);
    581     ResultType = llvm::PointerType::get(PointeeType, AS);
    582     break;
    583   }
    584 
    585   case Type::MemberPointer: {
    586     ResultType =
    587       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    588     break;
    589   }
    590 
    591   case Type::Atomic: {
    592     QualType valueType = cast<AtomicType>(Ty)->getValueType();
    593     ResultType = ConvertTypeForMem(valueType);
    594 
    595     // Pad out to the inflated size if necessary.
    596     uint64_t valueSize = Context.getTypeSize(valueType);
    597     uint64_t atomicSize = Context.getTypeSize(Ty);
    598     if (valueSize != atomicSize) {
    599       assert(valueSize < atomicSize);
    600       llvm::Type *elts[] = {
    601         ResultType,
    602         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
    603       };
    604       ResultType = llvm::StructType::get(getLLVMContext(),
    605                                          llvm::makeArrayRef(elts));
    606     }
    607     break;
    608   }
    609   }
    610 
    611   assert(ResultType && "Didn't convert a type?");
    612 
    613   TypeCache[Ty] = ResultType;
    614   return ResultType;
    615 }
    616 
    617 bool CodeGenModule::isPaddedAtomicType(QualType type) {
    618   return isPaddedAtomicType(type->castAs<AtomicType>());
    619 }
    620 
    621 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
    622   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
    623 }
    624 
    625 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    626 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    627   // TagDecl's are not necessarily unique, instead use the (clang)
    628   // type connected to the decl.
    629   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    630 
    631   llvm::StructType *&Entry = RecordDeclTypes[Key];
    632 
    633   // If we don't have a StructType at all yet, create the forward declaration.
    634   if (Entry == 0) {
    635     Entry = llvm::StructType::create(getLLVMContext());
    636     addRecordTypeName(RD, Entry, "");
    637   }
    638   llvm::StructType *Ty = Entry;
    639 
    640   // If this is still a forward declaration, or the LLVM type is already
    641   // complete, there's nothing more to do.
    642   RD = RD->getDefinition();
    643   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
    644     return Ty;
    645 
    646   // If converting this type would cause us to infinitely loop, don't do it!
    647   if (!isSafeToConvert(RD, *this)) {
    648     DeferredRecords.push_back(RD);
    649     return Ty;
    650   }
    651 
    652   // Okay, this is a definition of a type.  Compile the implementation now.
    653   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
    654   assert(InsertResult && "Recursively compiling a struct?");
    655 
    656   // Force conversion of non-virtual base classes recursively.
    657   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    658     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
    659          e = CRD->bases_end(); i != e; ++i) {
    660       if (i->isVirtual()) continue;
    661 
    662       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    663     }
    664   }
    665 
    666   // Layout fields.
    667   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    668   CGRecordLayouts[Key] = Layout;
    669 
    670   // We're done laying out this struct.
    671   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    672   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    673 
    674   // If this struct blocked a FunctionType conversion, then recompute whatever
    675   // was derived from that.
    676   // FIXME: This is hugely overconservative.
    677   if (SkippedLayout)
    678     TypeCache.clear();
    679 
    680   // If we're done converting the outer-most record, then convert any deferred
    681   // structs as well.
    682   if (RecordsBeingLaidOut.empty())
    683     while (!DeferredRecords.empty())
    684       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    685 
    686   return Ty;
    687 }
    688 
    689 /// getCGRecordLayout - Return record layout info for the given record decl.
    690 const CGRecordLayout &
    691 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    692   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    693 
    694   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    695   if (!Layout) {
    696     // Compute the type information.
    697     ConvertRecordDeclType(RD);
    698 
    699     // Now try again.
    700     Layout = CGRecordLayouts.lookup(Key);
    701   }
    702 
    703   assert(Layout && "Unable to find record layout information for type");
    704   return *Layout;
    705 }
    706 
    707 bool CodeGenTypes::isZeroInitializable(QualType T) {
    708   // No need to check for member pointers when not compiling C++.
    709   if (!Context.getLangOpts().CPlusPlus)
    710     return true;
    711 
    712   T = Context.getBaseElementType(T);
    713 
    714   // Records are non-zero-initializable if they contain any
    715   // non-zero-initializable subobjects.
    716   if (const RecordType *RT = T->getAs<RecordType>()) {
    717     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    718     return isZeroInitializable(RD);
    719   }
    720 
    721   // We have to ask the ABI about member pointers.
    722   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    723     return getCXXABI().isZeroInitializable(MPT);
    724 
    725   // Everything else is okay.
    726   return true;
    727 }
    728 
    729 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    730   return getCGRecordLayout(RD).isZeroInitializable();
    731 }
    732