1 /* 2 * Copyright (C) 1999 Lars Knoll (knoll (at) kde.org) 3 * (C) 1999 Antti Koivisto (koivisto (at) kde.org) 4 * (C) 2001 Dirk Mueller (mueller (at) kde.org) 5 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved. 6 * Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies) 7 * Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/) 8 * 9 * This library is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Library General Public 11 * License as published by the Free Software Foundation; either 12 * version 2 of the License, or (at your option) any later version. 13 * 14 * This library is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Library General Public License for more details. 18 * 19 * You should have received a copy of the GNU Library General Public License 20 * along with this library; see the file COPYING.LIB. If not, write to 21 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, 22 * Boston, MA 02110-1301, USA. 23 */ 24 25 #include "config.h" 26 #include "core/dom/Node.h" 27 28 #include "HTMLNames.h" 29 #include "XMLNames.h" 30 #include "bindings/v8/ExceptionState.h" 31 #include "bindings/v8/ScriptCallStackFactory.h" 32 #include "core/accessibility/AXObjectCache.h" 33 #include "core/dom/Attr.h" 34 #include "core/dom/Attribute.h" 35 #include "core/dom/ChildListMutationScope.h" 36 #include "core/dom/ChildNodeList.h" 37 #include "core/dom/ClassNodeList.h" 38 #include "core/dom/DOMImplementation.h" 39 #include "core/dom/Document.h" 40 #include "core/dom/DocumentFragment.h" 41 #include "core/dom/DocumentMarkerController.h" 42 #include "core/dom/DocumentType.h" 43 #include "core/dom/Element.h" 44 #include "core/dom/ElementRareData.h" 45 #include "core/dom/ExceptionCode.h" 46 #include "core/dom/LiveNodeList.h" 47 #include "core/dom/NameNodeList.h" 48 #include "core/dom/NodeRareData.h" 49 #include "core/dom/NodeTraversal.h" 50 #include "core/dom/ProcessingInstruction.h" 51 #include "core/dom/Range.h" 52 #include "core/dom/SelectorQuery.h" 53 #include "core/dom/TagNodeList.h" 54 #include "core/dom/TemplateContentDocumentFragment.h" 55 #include "core/dom/Text.h" 56 #include "core/dom/TreeScopeAdopter.h" 57 #include "core/dom/UserActionElementSet.h" 58 #include "core/dom/WheelController.h" 59 #include "core/dom/shadow/ElementShadow.h" 60 #include "core/dom/shadow/InsertionPoint.h" 61 #include "core/dom/shadow/ShadowRoot.h" 62 #include "core/editing/htmlediting.h" 63 #include "core/events/BeforeLoadEvent.h" 64 #include "core/events/Event.h" 65 #include "core/events/EventDispatchMediator.h" 66 #include "core/events/EventDispatcher.h" 67 #include "core/events/EventListener.h" 68 #include "core/events/GestureEvent.h" 69 #include "core/events/KeyboardEvent.h" 70 #include "core/events/MouseEvent.h" 71 #include "core/events/MutationEvent.h" 72 #include "core/events/TextEvent.h" 73 #include "core/events/ThreadLocalEventNames.h" 74 #include "core/events/TouchEvent.h" 75 #include "core/events/UIEvent.h" 76 #include "core/events/WheelEvent.h" 77 #include "core/html/HTMLAnchorElement.h" 78 #include "core/html/HTMLDialogElement.h" 79 #include "core/html/HTMLFrameOwnerElement.h" 80 #include "core/html/HTMLStyleElement.h" 81 #include "core/html/RadioNodeList.h" 82 #include "core/page/ContextMenuController.h" 83 #include "core/page/EventHandler.h" 84 #include "core/frame/Frame.h" 85 #include "core/page/Page.h" 86 #include "core/frame/Settings.h" 87 #include "core/rendering/FlowThreadController.h" 88 #include "core/rendering/RenderBox.h" 89 #include "core/svg/graphics/SVGImage.h" 90 #include "platform/Partitions.h" 91 #include "wtf/HashSet.h" 92 #include "wtf/PassOwnPtr.h" 93 #include "wtf/RefCountedLeakCounter.h" 94 #include "wtf/Vector.h" 95 #include "wtf/text/CString.h" 96 #include "wtf/text/StringBuilder.h" 97 98 using namespace std; 99 100 namespace WebCore { 101 102 using namespace HTMLNames; 103 104 void* Node::operator new(size_t size) 105 { 106 ASSERT(isMainThread()); 107 return partitionAlloc(Partitions::getObjectModelPartition(), size); 108 } 109 110 void Node::operator delete(void* ptr) 111 { 112 ASSERT(isMainThread()); 113 partitionFree(ptr); 114 } 115 116 bool Node::isSupported(const String& feature, const String& version) 117 { 118 return DOMImplementation::hasFeature(feature, version); 119 } 120 121 #if DUMP_NODE_STATISTICS 122 static HashSet<Node*> liveNodeSet; 123 #endif 124 125 void Node::dumpStatistics() 126 { 127 #if DUMP_NODE_STATISTICS 128 size_t nodesWithRareData = 0; 129 130 size_t elementNodes = 0; 131 size_t attrNodes = 0; 132 size_t textNodes = 0; 133 size_t cdataNodes = 0; 134 size_t commentNodes = 0; 135 size_t entityNodes = 0; 136 size_t piNodes = 0; 137 size_t documentNodes = 0; 138 size_t docTypeNodes = 0; 139 size_t fragmentNodes = 0; 140 size_t notationNodes = 0; 141 size_t xpathNSNodes = 0; 142 size_t shadowRootNodes = 0; 143 144 HashMap<String, size_t> perTagCount; 145 146 size_t attributes = 0; 147 size_t attributesWithAttr = 0; 148 size_t elementsWithAttributeStorage = 0; 149 size_t elementsWithRareData = 0; 150 size_t elementsWithNamedNodeMap = 0; 151 152 for (HashSet<Node*>::iterator it = liveNodeSet.begin(); it != liveNodeSet.end(); ++it) { 153 Node* node = *it; 154 155 if (node->hasRareData()) { 156 ++nodesWithRareData; 157 if (node->isElementNode()) { 158 ++elementsWithRareData; 159 if (toElement(node)->hasNamedNodeMap()) 160 ++elementsWithNamedNodeMap; 161 } 162 } 163 164 switch (node->nodeType()) { 165 case ELEMENT_NODE: { 166 ++elementNodes; 167 168 // Tag stats 169 Element* element = toElement(node); 170 HashMap<String, size_t>::AddResult result = perTagCount.add(element->tagName(), 1); 171 if (!result.isNewEntry) 172 result.iterator->value++; 173 174 if (ElementData* elementData = element->elementData()) { 175 attributes += elementData->length(); 176 ++elementsWithAttributeStorage; 177 for (unsigned i = 0; i < elementData->length(); ++i) { 178 Attribute* attr = elementData->attributeItem(i); 179 if (attr->attr()) 180 ++attributesWithAttr; 181 } 182 } 183 break; 184 } 185 case ATTRIBUTE_NODE: { 186 ++attrNodes; 187 break; 188 } 189 case TEXT_NODE: { 190 ++textNodes; 191 break; 192 } 193 case CDATA_SECTION_NODE: { 194 ++cdataNodes; 195 break; 196 } 197 case COMMENT_NODE: { 198 ++commentNodes; 199 break; 200 } 201 case ENTITY_NODE: { 202 ++entityNodes; 203 break; 204 } 205 case PROCESSING_INSTRUCTION_NODE: { 206 ++piNodes; 207 break; 208 } 209 case DOCUMENT_NODE: { 210 ++documentNodes; 211 break; 212 } 213 case DOCUMENT_TYPE_NODE: { 214 ++docTypeNodes; 215 break; 216 } 217 case DOCUMENT_FRAGMENT_NODE: { 218 if (node->isShadowRoot()) 219 ++shadowRootNodes; 220 else 221 ++fragmentNodes; 222 break; 223 } 224 case NOTATION_NODE: { 225 ++notationNodes; 226 break; 227 } 228 case XPATH_NAMESPACE_NODE: { 229 ++xpathNSNodes; 230 break; 231 } 232 } 233 } 234 235 printf("Number of Nodes: %d\n\n", liveNodeSet.size()); 236 printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData); 237 238 printf("NodeType distribution:\n"); 239 printf(" Number of Element nodes: %zu\n", elementNodes); 240 printf(" Number of Attribute nodes: %zu\n", attrNodes); 241 printf(" Number of Text nodes: %zu\n", textNodes); 242 printf(" Number of CDATASection nodes: %zu\n", cdataNodes); 243 printf(" Number of Comment nodes: %zu\n", commentNodes); 244 printf(" Number of Entity nodes: %zu\n", entityNodes); 245 printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes); 246 printf(" Number of Document nodes: %zu\n", documentNodes); 247 printf(" Number of DocumentType nodes: %zu\n", docTypeNodes); 248 printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes); 249 printf(" Number of Notation nodes: %zu\n", notationNodes); 250 printf(" Number of XPathNS nodes: %zu\n", xpathNSNodes); 251 printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes); 252 253 printf("Element tag name distibution:\n"); 254 for (HashMap<String, size_t>::iterator it = perTagCount.begin(); it != perTagCount.end(); ++it) 255 printf(" Number of <%s> tags: %zu\n", it->key.utf8().data(), it->value); 256 257 printf("Attributes:\n"); 258 printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute)); 259 printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr); 260 printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData)); 261 printf(" Number of Elements with RareData: %zu\n", elementsWithRareData); 262 printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap)); 263 #endif 264 } 265 266 DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode")); 267 268 void Node::trackForDebugging() 269 { 270 #ifndef NDEBUG 271 nodeCounter.increment(); 272 #endif 273 274 #if DUMP_NODE_STATISTICS 275 liveNodeSet.add(this); 276 #endif 277 } 278 279 Node::~Node() 280 { 281 #ifndef NDEBUG 282 nodeCounter.decrement(); 283 #endif 284 285 #if DUMP_NODE_STATISTICS 286 liveNodeSet.remove(this); 287 #endif 288 289 if (hasRareData()) 290 clearRareData(); 291 292 RELEASE_ASSERT(!renderer()); 293 294 if (!isContainerNode()) 295 willBeDeletedFromDocument(); 296 297 if (m_previous) 298 m_previous->setNextSibling(0); 299 if (m_next) 300 m_next->setPreviousSibling(0); 301 302 if (m_treeScope) 303 m_treeScope->guardDeref(); 304 305 InspectorCounters::decrementCounter(InspectorCounters::NodeCounter); 306 } 307 308 void Node::willBeDeletedFromDocument() 309 { 310 if (!isTreeScopeInitialized()) 311 return; 312 313 Document& document = this->document(); 314 315 if (hasEventTargetData()) { 316 document.didRemoveEventTargetNode(this); 317 clearEventTargetData(); 318 } 319 320 if (AXObjectCache* cache = document.existingAXObjectCache()) 321 cache->remove(this); 322 323 document.markers()->removeMarkers(this); 324 } 325 326 NodeRareData* Node::rareData() const 327 { 328 ASSERT_WITH_SECURITY_IMPLICATION(hasRareData()); 329 return static_cast<NodeRareData*>(m_data.m_rareData); 330 } 331 332 NodeRareData& Node::ensureRareData() 333 { 334 if (hasRareData()) 335 return *rareData(); 336 337 NodeRareData* data; 338 if (isElementNode()) 339 data = ElementRareData::create(m_data.m_renderer).leakPtr(); 340 else 341 data = NodeRareData::create(m_data.m_renderer).leakPtr(); 342 ASSERT(data); 343 344 m_data.m_rareData = data; 345 setFlag(HasRareDataFlag); 346 return *data; 347 } 348 349 void Node::clearRareData() 350 { 351 ASSERT(hasRareData()); 352 ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty()); 353 354 RenderObject* renderer = m_data.m_rareData->renderer(); 355 if (isElementNode()) 356 delete static_cast<ElementRareData*>(m_data.m_rareData); 357 else 358 delete static_cast<NodeRareData*>(m_data.m_rareData); 359 m_data.m_renderer = renderer; 360 clearFlag(HasRareDataFlag); 361 } 362 363 Node* Node::toNode() 364 { 365 return this; 366 } 367 368 short Node::tabIndex() const 369 { 370 return 0; 371 } 372 373 String Node::nodeValue() const 374 { 375 return String(); 376 } 377 378 void Node::setNodeValue(const String&) 379 { 380 // By default, setting nodeValue has no effect. 381 } 382 383 PassRefPtr<NodeList> Node::childNodes() 384 { 385 return ensureRareData().ensureNodeLists().ensureChildNodeList(this); 386 } 387 388 Node& Node::lastDescendant() const 389 { 390 Node* n = const_cast<Node*>(this); 391 while (n && n->lastChild()) 392 n = n->lastChild(); 393 ASSERT(n); 394 return *n; 395 } 396 397 Node* Node::pseudoAwarePreviousSibling() const 398 { 399 if (parentElement() && !previousSibling()) { 400 Element* parent = parentElement(); 401 if (isAfterPseudoElement() && parent->lastChild()) 402 return parent->lastChild(); 403 if (!isBeforePseudoElement()) 404 return parent->pseudoElement(BEFORE); 405 } 406 return previousSibling(); 407 } 408 409 Node* Node::pseudoAwareNextSibling() const 410 { 411 if (parentElement() && !nextSibling()) { 412 Element* parent = parentElement(); 413 if (isBeforePseudoElement() && parent->firstChild()) 414 return parent->firstChild(); 415 if (!isAfterPseudoElement()) 416 return parent->pseudoElement(AFTER); 417 } 418 return nextSibling(); 419 } 420 421 Node* Node::pseudoAwareFirstChild() const 422 { 423 if (isElementNode()) { 424 const Element* currentElement = toElement(this); 425 Node* first = currentElement->pseudoElement(BEFORE); 426 if (first) 427 return first; 428 first = currentElement->firstChild(); 429 if (!first) 430 first = currentElement->pseudoElement(AFTER); 431 return first; 432 } 433 434 return firstChild(); 435 } 436 437 Node* Node::pseudoAwareLastChild() const 438 { 439 if (isElementNode()) { 440 const Element* currentElement = toElement(this); 441 Node* last = currentElement->pseudoElement(AFTER); 442 if (last) 443 return last; 444 last = currentElement->lastChild(); 445 if (!last) 446 last = currentElement->pseudoElement(BEFORE); 447 return last; 448 } 449 450 return lastChild(); 451 } 452 453 void Node::insertBefore(PassRefPtr<Node> newChild, Node* refChild, ExceptionState& exceptionState) 454 { 455 if (isContainerNode()) 456 toContainerNode(this)->insertBefore(newChild, refChild, exceptionState); 457 else 458 exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method."); 459 } 460 461 void Node::replaceChild(PassRefPtr<Node> newChild, Node* oldChild, ExceptionState& exceptionState) 462 { 463 if (isContainerNode()) 464 toContainerNode(this)->replaceChild(newChild, oldChild, exceptionState); 465 else 466 exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method."); 467 } 468 469 void Node::removeChild(Node* oldChild, ExceptionState& exceptionState) 470 { 471 if (isContainerNode()) 472 toContainerNode(this)->removeChild(oldChild, exceptionState); 473 else 474 exceptionState.throwDOMException(NotFoundError, "This node type does not support this method."); 475 } 476 477 void Node::appendChild(PassRefPtr<Node> newChild, ExceptionState& exceptionState) 478 { 479 if (isContainerNode()) 480 toContainerNode(this)->appendChild(newChild, exceptionState); 481 else 482 exceptionState.throwDOMException(HierarchyRequestError, "This node type does not support this method."); 483 } 484 485 void Node::remove(ExceptionState& exceptionState) 486 { 487 if (ContainerNode* parent = parentNode()) 488 parent->removeChild(this, exceptionState); 489 } 490 491 void Node::normalize() 492 { 493 // Go through the subtree beneath us, normalizing all nodes. This means that 494 // any two adjacent text nodes are merged and any empty text nodes are removed. 495 496 RefPtr<Node> node = this; 497 while (Node* firstChild = node->firstChild()) 498 node = firstChild; 499 while (node) { 500 NodeType type = node->nodeType(); 501 if (type == ELEMENT_NODE) 502 toElement(node)->normalizeAttributes(); 503 504 if (node == this) 505 break; 506 507 if (type == TEXT_NODE) 508 node = toText(node)->mergeNextSiblingNodesIfPossible(); 509 else 510 node = NodeTraversal::nextPostOrder(*node); 511 } 512 } 513 514 const AtomicString& Node::prefix() const 515 { 516 // For nodes other than elements and attributes, the prefix is always null 517 return nullAtom; 518 } 519 520 void Node::setPrefix(const AtomicString& /*prefix*/, ExceptionState& exceptionState) 521 { 522 // The spec says that for nodes other than elements and attributes, prefix is always null. 523 // It does not say what to do when the user tries to set the prefix on another type of 524 // node, however Mozilla throws a NamespaceError exception. 525 exceptionState.throwDOMException(NamespaceError, "Prefixes are only supported on element and attribute nodes."); 526 } 527 528 const AtomicString& Node::localName() const 529 { 530 return nullAtom; 531 } 532 533 const AtomicString& Node::namespaceURI() const 534 { 535 return nullAtom; 536 } 537 538 bool Node::isContentEditable(UserSelectAllTreatment treatment) 539 { 540 document().updateStyleIfNeeded(); 541 return rendererIsEditable(Editable, treatment); 542 } 543 544 bool Node::isContentRichlyEditable() 545 { 546 document().updateStyleIfNeeded(); 547 return rendererIsEditable(RichlyEditable, UserSelectAllIsAlwaysNonEditable); 548 } 549 550 bool Node::rendererIsEditable(EditableLevel editableLevel, UserSelectAllTreatment treatment) const 551 { 552 if (isPseudoElement()) 553 return false; 554 555 // Ideally we'd call ASSERT(!needsStyleRecalc()) here, but 556 // ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion 557 // would fire in the middle of Document::setFocusedNode(). 558 559 for (const Node* node = this; node; node = node->parentNode()) { 560 if ((node->isHTMLElement() || node->isDocumentNode()) && node->renderer()) { 561 // Elements with user-select: all style are considered atomic 562 // therefore non editable. 563 if (Position::nodeIsUserSelectAll(node) && treatment == UserSelectAllIsAlwaysNonEditable) 564 return false; 565 switch (node->renderer()->style()->userModify()) { 566 case READ_ONLY: 567 return false; 568 case READ_WRITE: 569 return true; 570 case READ_WRITE_PLAINTEXT_ONLY: 571 return editableLevel != RichlyEditable; 572 } 573 ASSERT_NOT_REACHED(); 574 return false; 575 } 576 } 577 578 return false; 579 } 580 581 bool Node::isEditableToAccessibility(EditableLevel editableLevel) const 582 { 583 if (rendererIsEditable(editableLevel)) 584 return true; 585 586 // FIXME: Respect editableLevel for ARIA editable elements. 587 if (editableLevel == RichlyEditable) 588 return false; 589 590 ASSERT(AXObjectCache::accessibilityEnabled()); 591 ASSERT(document().existingAXObjectCache()); 592 593 if (AXObjectCache* cache = document().existingAXObjectCache()) 594 return cache->rootAXEditableElement(this); 595 596 return false; 597 } 598 599 bool Node::shouldUseInputMethod() 600 { 601 return isContentEditable(UserSelectAllIsAlwaysNonEditable); 602 } 603 604 RenderBox* Node::renderBox() const 605 { 606 RenderObject* renderer = this->renderer(); 607 return renderer && renderer->isBox() ? toRenderBox(renderer) : 0; 608 } 609 610 RenderBoxModelObject* Node::renderBoxModelObject() const 611 { 612 RenderObject* renderer = this->renderer(); 613 return renderer && renderer->isBoxModelObject() ? toRenderBoxModelObject(renderer) : 0; 614 } 615 616 LayoutRect Node::boundingBox() const 617 { 618 if (renderer()) 619 return renderer()->absoluteBoundingBoxRect(); 620 return LayoutRect(); 621 } 622 623 bool Node::hasNonEmptyBoundingBox() const 624 { 625 // Before calling absoluteRects, check for the common case where the renderer 626 // is non-empty, since this is a faster check and almost always returns true. 627 RenderBoxModelObject* box = renderBoxModelObject(); 628 if (!box) 629 return false; 630 if (!box->borderBoundingBox().isEmpty()) 631 return true; 632 633 Vector<IntRect> rects; 634 FloatPoint absPos = renderer()->localToAbsolute(); 635 renderer()->absoluteRects(rects, flooredLayoutPoint(absPos)); 636 size_t n = rects.size(); 637 for (size_t i = 0; i < n; ++i) 638 if (!rects[i].isEmpty()) 639 return true; 640 641 return false; 642 } 643 644 #ifndef NDEBUG 645 inline static ShadowRoot* oldestShadowRootFor(const Node* node) 646 { 647 if (!node->isElementNode()) 648 return 0; 649 if (ElementShadow* shadow = toElement(node)->shadow()) 650 return shadow->oldestShadowRoot(); 651 return 0; 652 } 653 #endif 654 655 void Node::recalcDistribution() 656 { 657 if (isElementNode()) { 658 if (ElementShadow* shadow = toElement(this)->shadow()) 659 shadow->distributeIfNeeded(); 660 } 661 662 for (Node* child = firstChild(); child; child = child->nextSibling()) { 663 if (child->childNeedsDistributionRecalc()) 664 child->recalcDistribution(); 665 } 666 667 for (ShadowRoot* root = youngestShadowRoot(); root; root = root->olderShadowRoot()) { 668 if (root->childNeedsDistributionRecalc()) 669 root->recalcDistribution(); 670 } 671 672 clearChildNeedsDistributionRecalc(); 673 } 674 675 void Node::setIsLink(bool isLink) 676 { 677 setFlag(isLink && !SVGImage::isInSVGImage(toElement(this)), IsLinkFlag); 678 } 679 680 void Node::markAncestorsWithChildNeedsDistributionRecalc() 681 { 682 for (Node* node = this; node && !node->childNeedsDistributionRecalc(); node = node->parentOrShadowHostNode()) 683 node->setChildNeedsDistributionRecalc(); 684 if (document().childNeedsDistributionRecalc()) 685 document().scheduleStyleRecalc(); 686 } 687 688 namespace { 689 690 unsigned styledSubtreeSize(const Node*); 691 692 unsigned styledSubtreeSizeIgnoringSelfAndShadowRoots(const Node* rootNode) 693 { 694 unsigned nodeCount = 0; 695 for (Node* child = rootNode->firstChild(); child; child = child->nextSibling()) 696 nodeCount += styledSubtreeSize(child); 697 return nodeCount; 698 } 699 700 unsigned styledSubtreeSize(const Node* rootNode) 701 { 702 if (rootNode->isTextNode()) 703 return 1; 704 if (!rootNode->isElementNode()) 705 return 0; 706 707 // FIXME: We should use a shadow-tree aware node-iterator when such exists. 708 unsigned nodeCount = 1 + styledSubtreeSizeIgnoringSelfAndShadowRoots(rootNode); 709 710 // ShadowRoots don't have style (so don't count them), but their children might. 711 for (ShadowRoot* shadowRoot = rootNode->youngestShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot()) 712 nodeCount += styledSubtreeSizeIgnoringSelfAndShadowRoots(shadowRoot); 713 714 return nodeCount; 715 } 716 717 PassRefPtr<JSONArray> jsStackAsJSONArray() 718 { 719 RefPtr<JSONArray> jsonArray = JSONArray::create(); 720 RefPtr<ScriptCallStack> stack = createScriptCallStack(10); 721 if (!stack) 722 return jsonArray.release(); 723 for (size_t i = 0; i < stack->size(); i++) 724 jsonArray->pushString(stack->at(i).functionName()); 725 return jsonArray.release(); 726 } 727 728 PassRefPtr<JSONObject> jsonObjectForStyleInvalidation(unsigned nodeCount, const Node* rootNode) 729 { 730 RefPtr<JSONObject> jsonObject = JSONObject::create(); 731 jsonObject->setNumber("node_count", nodeCount); 732 jsonObject->setString("root_node", rootNode->debugName()); 733 jsonObject->setArray("js_stack", jsStackAsJSONArray()); 734 return jsonObject.release(); 735 } 736 737 } // anonymous namespace'd functions supporting traceStyleChange 738 739 void Node::traceStyleChange(StyleChangeType changeType) 740 { 741 static const unsigned kMinLoggedSize = 100; 742 unsigned nodeCount = styledSubtreeSize(this); 743 if (nodeCount < kMinLoggedSize) 744 return; 745 746 TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("style.debug"), 747 "Node::setNeedsStyleRecalc", 748 "data", jsonObjectForStyleInvalidation(nodeCount, this)->toJSONString().ascii() 749 ); 750 } 751 752 void Node::traceStyleChangeIfNeeded(StyleChangeType changeType) 753 { 754 // TRACE_EVENT_CATEGORY_GROUP_ENABLED macro loads a global static bool into our local bool. 755 bool styleTracingEnabled; 756 TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("style.debug"), &styleTracingEnabled); 757 if (UNLIKELY(styleTracingEnabled)) 758 traceStyleChange(changeType); 759 } 760 761 inline void Node::setStyleChange(StyleChangeType changeType) 762 { 763 m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType; 764 } 765 766 void Node::markAncestorsWithChildNeedsStyleRecalc() 767 { 768 for (ContainerNode* p = parentOrShadowHostNode(); p && !p->childNeedsStyleRecalc(); p = p->parentOrShadowHostNode()) 769 p->setChildNeedsStyleRecalc(); 770 771 if (document().needsStyleRecalc() || document().childNeedsStyleRecalc()) 772 document().scheduleStyleRecalc(); 773 } 774 775 void Node::setNeedsStyleRecalc(StyleChangeType changeType, StyleChangeSource source) 776 { 777 ASSERT(changeType != NoStyleChange); 778 if (!inActiveDocument()) 779 return; 780 781 if (source == StyleChangeFromRenderer) 782 setFlag(NotifyRendererWithIdenticalStyles); 783 784 StyleChangeType existingChangeType = styleChangeType(); 785 if (changeType > existingChangeType) { 786 setStyleChange(changeType); 787 if (changeType >= SubtreeStyleChange) 788 traceStyleChangeIfNeeded(changeType); 789 } 790 791 if (existingChangeType == NoStyleChange) 792 markAncestorsWithChildNeedsStyleRecalc(); 793 794 if (isElementNode() && hasRareData()) 795 toElement(*this).setAnimationStyleChange(false); 796 } 797 798 void Node::clearNeedsStyleRecalc() 799 { 800 m_nodeFlags &= ~StyleChangeMask; 801 clearFlag(NotifyRendererWithIdenticalStyles); 802 803 if (isElementNode() && hasRareData()) 804 toElement(*this).setAnimationStyleChange(false); 805 } 806 807 bool Node::inActiveDocument() const 808 { 809 return inDocument() && document().isActive(); 810 } 811 812 Node* Node::focusDelegate() 813 { 814 return this; 815 } 816 817 bool Node::shouldHaveFocusAppearance() const 818 { 819 ASSERT(focused()); 820 return true; 821 } 822 823 bool Node::isInert() const 824 { 825 const HTMLDialogElement* dialog = document().activeModalDialog(); 826 if (dialog && !containsIncludingShadowDOM(dialog) && !dialog->containsIncludingShadowDOM(this)) 827 return true; 828 return document().ownerElement() && document().ownerElement()->isInert(); 829 } 830 831 unsigned Node::nodeIndex() const 832 { 833 Node *_tempNode = previousSibling(); 834 unsigned count=0; 835 for ( count=0; _tempNode; count++ ) 836 _tempNode = _tempNode->previousSibling(); 837 return count; 838 } 839 840 template<unsigned type> 841 bool shouldInvalidateNodeListCachesForAttr(const unsigned nodeListCounts[], const QualifiedName& attrName) 842 { 843 if (nodeListCounts[type] && LiveNodeListBase::shouldInvalidateTypeOnAttributeChange(static_cast<NodeListInvalidationType>(type), attrName)) 844 return true; 845 return shouldInvalidateNodeListCachesForAttr<type + 1>(nodeListCounts, attrName); 846 } 847 848 template<> 849 bool shouldInvalidateNodeListCachesForAttr<numNodeListInvalidationTypes>(const unsigned[], const QualifiedName&) 850 { 851 return false; 852 } 853 854 bool Document::shouldInvalidateNodeListCaches(const QualifiedName* attrName) const 855 { 856 if (attrName) 857 return shouldInvalidateNodeListCachesForAttr<DoNotInvalidateOnAttributeChanges + 1>(m_nodeListCounts, *attrName); 858 859 for (int type = 0; type < numNodeListInvalidationTypes; type++) { 860 if (m_nodeListCounts[type]) 861 return true; 862 } 863 864 return false; 865 } 866 867 void Document::invalidateNodeListCaches(const QualifiedName* attrName) 868 { 869 HashSet<LiveNodeListBase*>::iterator end = m_listsInvalidatedAtDocument.end(); 870 for (HashSet<LiveNodeListBase*>::iterator it = m_listsInvalidatedAtDocument.begin(); it != end; ++it) 871 (*it)->invalidateCache(attrName); 872 } 873 874 void Node::invalidateNodeListCachesInAncestors(const QualifiedName* attrName, Element* attributeOwnerElement) 875 { 876 if (hasRareData() && (!attrName || isAttributeNode())) { 877 if (NodeListsNodeData* lists = rareData()->nodeLists()) 878 lists->clearChildNodeListCache(); 879 } 880 881 // Modifications to attributes that are not associated with an Element can't invalidate NodeList caches. 882 if (attrName && !attributeOwnerElement) 883 return; 884 885 if (!document().shouldInvalidateNodeListCaches(attrName)) 886 return; 887 888 document().invalidateNodeListCaches(attrName); 889 890 for (Node* node = this; node; node = node->parentNode()) { 891 if (!node->hasRareData()) 892 continue; 893 NodeRareData* data = node->rareData(); 894 if (data->nodeLists()) 895 data->nodeLists()->invalidateCaches(attrName); 896 } 897 } 898 899 NodeListsNodeData* Node::nodeLists() 900 { 901 return hasRareData() ? rareData()->nodeLists() : 0; 902 } 903 904 void Node::clearNodeLists() 905 { 906 rareData()->clearNodeLists(); 907 } 908 909 void Node::checkSetPrefix(const AtomicString& prefix, ExceptionState& exceptionState) 910 { 911 // Perform error checking as required by spec for setting Node.prefix. Used by 912 // Element::setPrefix() and Attr::setPrefix() 913 914 if (!prefix.isEmpty() && !Document::isValidName(prefix)) { 915 exceptionState.throwDOMException(InvalidCharacterError, "The prefix '" + prefix + "' is not a valid name."); 916 return; 917 } 918 919 // FIXME: Raise NamespaceError if prefix is malformed per the Namespaces in XML specification. 920 921 const AtomicString& nodeNamespaceURI = namespaceURI(); 922 if (nodeNamespaceURI.isEmpty() && !prefix.isEmpty()) { 923 exceptionState.throwDOMException(NamespaceError, "No namespace is set, so a namespace prefix may not be set."); 924 return; 925 } 926 927 if (prefix == xmlAtom && nodeNamespaceURI != XMLNames::xmlNamespaceURI) { 928 exceptionState.throwDOMException(NamespaceError, "The prefix '" + xmlAtom + "' may not be set on namespace '" + nodeNamespaceURI + "'."); 929 return; 930 } 931 // Attribute-specific checks are in Attr::setPrefix(). 932 } 933 934 bool Node::isDescendantOf(const Node *other) const 935 { 936 // Return true if other is an ancestor of this, otherwise false 937 if (!other || !other->hasChildNodes() || inDocument() != other->inDocument()) 938 return false; 939 if (other->treeScope() != treeScope()) 940 return false; 941 if (other->isTreeScope()) 942 return !isTreeScope(); 943 for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) { 944 if (n == other) 945 return true; 946 } 947 return false; 948 } 949 950 bool Node::contains(const Node* node) const 951 { 952 if (!node) 953 return false; 954 return this == node || node->isDescendantOf(this); 955 } 956 957 bool Node::containsIncludingShadowDOM(const Node* node) const 958 { 959 if (!node) 960 return false; 961 962 if (this == node) 963 return true; 964 965 if (document() != node->document()) 966 return false; 967 968 if (inDocument() != node->inDocument()) 969 return false; 970 971 bool hasChildren = isContainerNode() && toContainerNode(this)->hasChildNodes(); 972 bool hasShadow = isElementNode() && toElement(this)->shadow(); 973 if (!hasChildren && !hasShadow) 974 return false; 975 976 for (; node; node = node->shadowHost()) { 977 if (treeScope() == node->treeScope()) 978 return contains(node); 979 } 980 981 return false; 982 } 983 984 bool Node::containsIncludingHostElements(const Node& node) const 985 { 986 const Node* current = &node; 987 do { 988 if (current == this) 989 return true; 990 if (current->isDocumentFragment() && toDocumentFragment(current)->isTemplateContent()) 991 current = static_cast<const TemplateContentDocumentFragment*>(current)->host(); 992 else 993 current = current->parentOrShadowHostNode(); 994 } while (current); 995 return false; 996 } 997 998 Node* Node::commonAncestor(const Node& other, Node* (*parent)(const Node&)) 999 { 1000 if (this == other) 1001 return this; 1002 if (document() != other.document()) 1003 return 0; 1004 int thisDepth = 0; 1005 for (Node* node = this; node; node = parent(*node)) { 1006 if (node == &other) 1007 return node; 1008 thisDepth++; 1009 } 1010 int otherDepth = 0; 1011 for (const Node* node = &other; node; node = parent(*node)) { 1012 if (node == this) 1013 return this; 1014 otherDepth++; 1015 } 1016 Node* thisIterator = this; 1017 const Node* otherIterator = &other; 1018 if (thisDepth > otherDepth) { 1019 for (int i = thisDepth; i > otherDepth; --i) 1020 thisIterator = parent(*thisIterator); 1021 } else if (otherDepth > thisDepth) { 1022 for (int i = otherDepth; i > thisDepth; --i) 1023 otherIterator = parent(*otherIterator); 1024 } 1025 while (thisIterator) { 1026 if (thisIterator == otherIterator) 1027 return thisIterator; 1028 thisIterator = parent(*thisIterator); 1029 otherIterator = parent(*otherIterator); 1030 } 1031 ASSERT(!otherIterator); 1032 return 0; 1033 } 1034 1035 void Node::reattach(const AttachContext& context) 1036 { 1037 AttachContext reattachContext(context); 1038 reattachContext.performingReattach = true; 1039 1040 // We only need to detach if the node has already been through attach(). 1041 if (styleChangeType() < NeedsReattachStyleChange) 1042 detach(reattachContext); 1043 attach(reattachContext); 1044 } 1045 1046 void Node::attach(const AttachContext&) 1047 { 1048 ASSERT(document().inStyleRecalc() || isDocumentNode()); 1049 ASSERT(needsAttach()); 1050 ASSERT(!renderer() || (renderer()->style() && (renderer()->parent() || renderer()->isRenderView()))); 1051 1052 clearNeedsStyleRecalc(); 1053 1054 if (Document* doc = documentInternal()) { 1055 if (AXObjectCache* cache = doc->axObjectCache()) 1056 cache->updateCacheAfterNodeIsAttached(this); 1057 } 1058 } 1059 1060 #ifndef NDEBUG 1061 static Node* detachingNode; 1062 1063 bool Node::inDetach() const 1064 { 1065 return detachingNode == this; 1066 } 1067 #endif 1068 1069 void Node::detach(const AttachContext& context) 1070 { 1071 #ifndef NDEBUG 1072 ASSERT(!detachingNode); 1073 detachingNode = this; 1074 #endif 1075 1076 if (renderer()) 1077 renderer()->destroyAndCleanupAnonymousWrappers(); 1078 setRenderer(0); 1079 1080 // Do not remove the element's hovered and active status 1081 // if performing a reattach. 1082 if (!context.performingReattach) { 1083 Document& doc = document(); 1084 if (isUserActionElement()) { 1085 if (hovered()) 1086 doc.hoveredNodeDetached(this); 1087 if (inActiveChain()) 1088 doc.activeChainNodeDetached(this); 1089 doc.userActionElements().didDetach(this); 1090 } 1091 } 1092 1093 setStyleChange(NeedsReattachStyleChange); 1094 setChildNeedsStyleRecalc(); 1095 1096 #ifndef NDEBUG 1097 detachingNode = 0; 1098 #endif 1099 } 1100 1101 void Node::reattachWhitespaceSiblings(Text* start) 1102 { 1103 for (Node* sibling = start; sibling; sibling = sibling->nextSibling()) { 1104 if (sibling->isTextNode() && toText(sibling)->containsOnlyWhitespace()) { 1105 bool hadRenderer = sibling->hasRenderer(); 1106 sibling->reattach(); 1107 // If the reattach didn't toggle the visibility of the whitespace we don't 1108 // need to continue reattaching siblings since they won't toggle visibility 1109 // either. 1110 if (hadRenderer == sibling->hasRenderer()) 1111 return; 1112 } else if (sibling->renderer()) { 1113 return; 1114 } 1115 } 1116 } 1117 1118 // FIXME: This code is used by editing. Seems like it could move over there and not pollute Node. 1119 Node *Node::previousNodeConsideringAtomicNodes() const 1120 { 1121 if (previousSibling()) { 1122 Node *n = previousSibling(); 1123 while (!isAtomicNode(n) && n->lastChild()) 1124 n = n->lastChild(); 1125 return n; 1126 } 1127 else if (parentNode()) { 1128 return parentNode(); 1129 } 1130 else { 1131 return 0; 1132 } 1133 } 1134 1135 Node *Node::nextNodeConsideringAtomicNodes() const 1136 { 1137 if (!isAtomicNode(this) && firstChild()) 1138 return firstChild(); 1139 if (nextSibling()) 1140 return nextSibling(); 1141 const Node *n = this; 1142 while (n && !n->nextSibling()) 1143 n = n->parentNode(); 1144 if (n) 1145 return n->nextSibling(); 1146 return 0; 1147 } 1148 1149 Node *Node::previousLeafNode() const 1150 { 1151 Node *node = previousNodeConsideringAtomicNodes(); 1152 while (node) { 1153 if (isAtomicNode(node)) 1154 return node; 1155 node = node->previousNodeConsideringAtomicNodes(); 1156 } 1157 return 0; 1158 } 1159 1160 Node *Node::nextLeafNode() const 1161 { 1162 Node *node = nextNodeConsideringAtomicNodes(); 1163 while (node) { 1164 if (isAtomicNode(node)) 1165 return node; 1166 node = node->nextNodeConsideringAtomicNodes(); 1167 } 1168 return 0; 1169 } 1170 1171 RenderStyle* Node::virtualComputedStyle(PseudoId pseudoElementSpecifier) 1172 { 1173 return parentOrShadowHostNode() ? parentOrShadowHostNode()->computedStyle(pseudoElementSpecifier) : 0; 1174 } 1175 1176 int Node::maxCharacterOffset() const 1177 { 1178 ASSERT_NOT_REACHED(); 1179 return 0; 1180 } 1181 1182 // FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class 1183 // is obviously misplaced. 1184 bool Node::canStartSelection() const 1185 { 1186 if (rendererIsEditable()) 1187 return true; 1188 1189 if (renderer()) { 1190 RenderStyle* style = renderer()->style(); 1191 // We allow selections to begin within an element that has -webkit-user-select: none set, 1192 // but if the element is draggable then dragging should take priority over selection. 1193 if (style->userDrag() == DRAG_ELEMENT && style->userSelect() == SELECT_NONE) 1194 return false; 1195 } 1196 return parentOrShadowHostNode() ? parentOrShadowHostNode()->canStartSelection() : true; 1197 } 1198 1199 bool Node::isRegisteredWithNamedFlow() const 1200 { 1201 return document().renderView()->flowThreadController()->isContentNodeRegisteredWithAnyNamedFlow(this); 1202 } 1203 1204 Element* Node::shadowHost() const 1205 { 1206 if (ShadowRoot* root = containingShadowRoot()) 1207 return root->host(); 1208 return 0; 1209 } 1210 1211 Node* Node::deprecatedShadowAncestorNode() const 1212 { 1213 if (ShadowRoot* root = containingShadowRoot()) 1214 return root->host(); 1215 1216 return const_cast<Node*>(this); 1217 } 1218 1219 ShadowRoot* Node::containingShadowRoot() const 1220 { 1221 Node* root = treeScope().rootNode(); 1222 return root && root->isShadowRoot() ? toShadowRoot(root) : 0; 1223 } 1224 1225 Node* Node::nonBoundaryShadowTreeRootNode() 1226 { 1227 ASSERT(!isShadowRoot()); 1228 Node* root = this; 1229 while (root) { 1230 if (root->isShadowRoot()) 1231 return root; 1232 Node* parent = root->parentOrShadowHostNode(); 1233 if (parent && parent->isShadowRoot()) 1234 return root; 1235 root = parent; 1236 } 1237 return 0; 1238 } 1239 1240 ContainerNode* Node::nonShadowBoundaryParentNode() const 1241 { 1242 ContainerNode* parent = parentNode(); 1243 return parent && !parent->isShadowRoot() ? parent : 0; 1244 } 1245 1246 Element* Node::parentOrShadowHostElement() const 1247 { 1248 ContainerNode* parent = parentOrShadowHostNode(); 1249 if (!parent) 1250 return 0; 1251 1252 if (parent->isShadowRoot()) 1253 return toShadowRoot(parent)->host(); 1254 1255 if (!parent->isElementNode()) 1256 return 0; 1257 1258 return toElement(parent); 1259 } 1260 1261 ContainerNode* Node::parentOrShadowHostOrTemplateHostNode() const 1262 { 1263 if (isDocumentFragment() && toDocumentFragment(this)->isTemplateContent()) 1264 return static_cast<const TemplateContentDocumentFragment*>(this)->host(); 1265 return parentOrShadowHostNode(); 1266 } 1267 1268 bool Node::isBlockFlowElement() const 1269 { 1270 return isElementNode() && renderer() && renderer()->isRenderBlockFlow(); 1271 } 1272 1273 Element *Node::enclosingBlockFlowElement() const 1274 { 1275 Node *n = const_cast<Node *>(this); 1276 if (isBlockFlowElement()) 1277 return toElement(n); 1278 1279 while (1) { 1280 n = n->parentNode(); 1281 if (!n) 1282 break; 1283 if (n->isBlockFlowElement() || n->hasTagName(bodyTag)) 1284 return toElement(n); 1285 } 1286 return 0; 1287 } 1288 1289 bool Node::isRootEditableElement() const 1290 { 1291 return rendererIsEditable() && isElementNode() && (!parentNode() || !parentNode()->rendererIsEditable() 1292 || !parentNode()->isElementNode() || hasTagName(bodyTag)); 1293 } 1294 1295 Element* Node::rootEditableElement(EditableType editableType) const 1296 { 1297 if (editableType == HasEditableAXRole) { 1298 if (AXObjectCache* cache = document().existingAXObjectCache()) 1299 return const_cast<Element*>(cache->rootAXEditableElement(this)); 1300 } 1301 1302 return rootEditableElement(); 1303 } 1304 1305 Element* Node::rootEditableElement() const 1306 { 1307 Element* result = 0; 1308 for (Node* n = const_cast<Node*>(this); n && n->rendererIsEditable(); n = n->parentNode()) { 1309 if (n->isElementNode()) 1310 result = toElement(n); 1311 if (n->hasTagName(bodyTag)) 1312 break; 1313 } 1314 return result; 1315 } 1316 1317 bool Node::inSameContainingBlockFlowElement(Node *n) 1318 { 1319 return n ? enclosingBlockFlowElement() == n->enclosingBlockFlowElement() : false; 1320 } 1321 1322 // FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node. 1323 1324 PassRefPtr<NodeList> Node::getElementsByTagName(const AtomicString& localName) 1325 { 1326 if (localName.isNull()) 1327 return 0; 1328 1329 if (document().isHTMLDocument()) 1330 return ensureRareData().ensureNodeLists().addCacheWithAtomicName<HTMLTagNodeList>(this, HTMLTagNodeListType, localName); 1331 return ensureRareData().ensureNodeLists().addCacheWithAtomicName<TagNodeList>(this, TagNodeListType, localName); 1332 } 1333 1334 PassRefPtr<NodeList> Node::getElementsByTagNameNS(const AtomicString& namespaceURI, const AtomicString& localName) 1335 { 1336 if (localName.isNull()) 1337 return 0; 1338 1339 if (namespaceURI == starAtom) 1340 return getElementsByTagName(localName); 1341 1342 return ensureRareData().ensureNodeLists().addCacheWithQualifiedName(this, namespaceURI.isEmpty() ? nullAtom : namespaceURI, localName); 1343 } 1344 1345 PassRefPtr<NodeList> Node::getElementsByName(const String& elementName) 1346 { 1347 return ensureRareData().ensureNodeLists().addCacheWithAtomicName<NameNodeList>(this, NameNodeListType, elementName); 1348 } 1349 1350 PassRefPtr<NodeList> Node::getElementsByClassName(const String& classNames) 1351 { 1352 return ensureRareData().ensureNodeLists().addCacheWithName<ClassNodeList>(this, ClassNodeListType, classNames); 1353 } 1354 1355 PassRefPtr<RadioNodeList> Node::radioNodeList(const AtomicString& name) 1356 { 1357 ASSERT(hasTagName(formTag) || hasTagName(fieldsetTag)); 1358 return ensureRareData().ensureNodeLists().addCacheWithAtomicName<RadioNodeList>(this, RadioNodeListType, name); 1359 } 1360 1361 PassRefPtr<Element> Node::querySelector(const AtomicString& selectors, ExceptionState& exceptionState) 1362 { 1363 if (selectors.isEmpty()) { 1364 exceptionState.throwDOMException(SyntaxError, "The provided selector is empty."); 1365 return 0; 1366 } 1367 1368 SelectorQuery* selectorQuery = document().selectorQueryCache().add(selectors, document(), exceptionState); 1369 if (!selectorQuery) 1370 return 0; 1371 return selectorQuery->queryFirst(*this); 1372 } 1373 1374 PassRefPtr<NodeList> Node::querySelectorAll(const AtomicString& selectors, ExceptionState& exceptionState) 1375 { 1376 if (selectors.isEmpty()) { 1377 exceptionState.throwDOMException(SyntaxError, "The provided selector is empty."); 1378 return 0; 1379 } 1380 1381 SelectorQuery* selectorQuery = document().selectorQueryCache().add(selectors, document(), exceptionState); 1382 if (!selectorQuery) 1383 return 0; 1384 return selectorQuery->queryAll(*this); 1385 } 1386 1387 Document* Node::ownerDocument() const 1388 { 1389 Document* doc = &document(); 1390 return doc == this ? 0 : doc; 1391 } 1392 1393 KURL Node::baseURI() const 1394 { 1395 return parentNode() ? parentNode()->baseURI() : KURL(); 1396 } 1397 1398 bool Node::isEqualNode(Node* other) const 1399 { 1400 if (!other) 1401 return false; 1402 1403 NodeType nodeType = this->nodeType(); 1404 if (nodeType != other->nodeType()) 1405 return false; 1406 1407 if (nodeName() != other->nodeName()) 1408 return false; 1409 1410 if (localName() != other->localName()) 1411 return false; 1412 1413 if (namespaceURI() != other->namespaceURI()) 1414 return false; 1415 1416 if (prefix() != other->prefix()) 1417 return false; 1418 1419 if (nodeValue() != other->nodeValue()) 1420 return false; 1421 1422 if (isElementNode() && !toElement(this)->hasEquivalentAttributes(toElement(other))) 1423 return false; 1424 1425 Node* child = firstChild(); 1426 Node* otherChild = other->firstChild(); 1427 1428 while (child) { 1429 if (!child->isEqualNode(otherChild)) 1430 return false; 1431 1432 child = child->nextSibling(); 1433 otherChild = otherChild->nextSibling(); 1434 } 1435 1436 if (otherChild) 1437 return false; 1438 1439 if (nodeType == DOCUMENT_TYPE_NODE) { 1440 const DocumentType* documentTypeThis = toDocumentType(this); 1441 const DocumentType* documentTypeOther = toDocumentType(other); 1442 1443 if (documentTypeThis->publicId() != documentTypeOther->publicId()) 1444 return false; 1445 1446 if (documentTypeThis->systemId() != documentTypeOther->systemId()) 1447 return false; 1448 1449 if (documentTypeThis->internalSubset() != documentTypeOther->internalSubset()) 1450 return false; 1451 1452 // FIXME: We don't compare entities or notations because currently both are always empty. 1453 } 1454 1455 return true; 1456 } 1457 1458 bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const 1459 { 1460 const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty; 1461 1462 switch (nodeType()) { 1463 case ELEMENT_NODE: { 1464 const Element* elem = toElement(this); 1465 1466 if (elem->prefix().isNull()) 1467 return elem->namespaceURI() == namespaceURI; 1468 1469 if (elem->hasAttributes()) { 1470 for (unsigned i = 0; i < elem->attributeCount(); i++) { 1471 const Attribute* attr = elem->attributeItem(i); 1472 1473 if (attr->localName() == xmlnsAtom) 1474 return attr->value() == namespaceURI; 1475 } 1476 } 1477 1478 if (Element* ancestor = ancestorElement()) 1479 return ancestor->isDefaultNamespace(namespaceURI); 1480 1481 return false; 1482 } 1483 case DOCUMENT_NODE: 1484 if (Element* de = toDocument(this)->documentElement()) 1485 return de->isDefaultNamespace(namespaceURI); 1486 return false; 1487 case ENTITY_NODE: 1488 case NOTATION_NODE: 1489 case DOCUMENT_TYPE_NODE: 1490 case DOCUMENT_FRAGMENT_NODE: 1491 return false; 1492 case ATTRIBUTE_NODE: { 1493 const Attr* attr = toAttr(this); 1494 if (attr->ownerElement()) 1495 return attr->ownerElement()->isDefaultNamespace(namespaceURI); 1496 return false; 1497 } 1498 default: 1499 if (Element* ancestor = ancestorElement()) 1500 return ancestor->isDefaultNamespace(namespaceURI); 1501 return false; 1502 } 1503 } 1504 1505 const AtomicString& Node::lookupPrefix(const AtomicString& namespaceURI) const 1506 { 1507 // Implemented according to 1508 // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespacePrefixAlgo 1509 1510 if (namespaceURI.isEmpty()) 1511 return nullAtom; 1512 1513 switch (nodeType()) { 1514 case ELEMENT_NODE: 1515 return lookupNamespacePrefix(namespaceURI, toElement(this)); 1516 case DOCUMENT_NODE: 1517 if (Element* de = toDocument(this)->documentElement()) 1518 return de->lookupPrefix(namespaceURI); 1519 return nullAtom; 1520 case ENTITY_NODE: 1521 case NOTATION_NODE: 1522 case DOCUMENT_FRAGMENT_NODE: 1523 case DOCUMENT_TYPE_NODE: 1524 return nullAtom; 1525 case ATTRIBUTE_NODE: { 1526 const Attr *attr = toAttr(this); 1527 if (attr->ownerElement()) 1528 return attr->ownerElement()->lookupPrefix(namespaceURI); 1529 return nullAtom; 1530 } 1531 default: 1532 if (Element* ancestor = ancestorElement()) 1533 return ancestor->lookupPrefix(namespaceURI); 1534 return nullAtom; 1535 } 1536 } 1537 1538 const AtomicString& Node::lookupNamespaceURI(const String& prefix) const 1539 { 1540 // Implemented according to 1541 // http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo 1542 1543 if (!prefix.isNull() && prefix.isEmpty()) 1544 return nullAtom; 1545 1546 switch (nodeType()) { 1547 case ELEMENT_NODE: { 1548 const Element *elem = toElement(this); 1549 1550 if (!elem->namespaceURI().isNull() && elem->prefix() == prefix) 1551 return elem->namespaceURI(); 1552 1553 if (elem->hasAttributes()) { 1554 for (unsigned i = 0; i < elem->attributeCount(); i++) { 1555 const Attribute* attr = elem->attributeItem(i); 1556 1557 if (attr->prefix() == xmlnsAtom && attr->localName() == prefix) { 1558 if (!attr->value().isEmpty()) 1559 return attr->value(); 1560 1561 return nullAtom; 1562 } else if (attr->localName() == xmlnsAtom && prefix.isNull()) { 1563 if (!attr->value().isEmpty()) 1564 return attr->value(); 1565 1566 return nullAtom; 1567 } 1568 } 1569 } 1570 if (Element* ancestor = ancestorElement()) 1571 return ancestor->lookupNamespaceURI(prefix); 1572 return nullAtom; 1573 } 1574 case DOCUMENT_NODE: 1575 if (Element* de = toDocument(this)->documentElement()) 1576 return de->lookupNamespaceURI(prefix); 1577 return nullAtom; 1578 case ENTITY_NODE: 1579 case NOTATION_NODE: 1580 case DOCUMENT_TYPE_NODE: 1581 case DOCUMENT_FRAGMENT_NODE: 1582 return nullAtom; 1583 case ATTRIBUTE_NODE: { 1584 const Attr *attr = toAttr(this); 1585 if (attr->ownerElement()) 1586 return attr->ownerElement()->lookupNamespaceURI(prefix); 1587 else 1588 return nullAtom; 1589 } 1590 default: 1591 if (Element* ancestor = ancestorElement()) 1592 return ancestor->lookupNamespaceURI(prefix); 1593 return nullAtom; 1594 } 1595 } 1596 1597 const AtomicString& Node::lookupNamespacePrefix(const AtomicString& _namespaceURI, const Element* originalElement) const 1598 { 1599 if (_namespaceURI.isNull()) 1600 return nullAtom; 1601 1602 if (originalElement->lookupNamespaceURI(prefix()) == _namespaceURI) 1603 return prefix(); 1604 1605 ASSERT(isElementNode()); 1606 const Element* thisElement = toElement(this); 1607 if (thisElement->hasAttributes()) { 1608 for (unsigned i = 0; i < thisElement->attributeCount(); i++) { 1609 const Attribute* attr = thisElement->attributeItem(i); 1610 1611 if (attr->prefix() == xmlnsAtom && attr->value() == _namespaceURI 1612 && originalElement->lookupNamespaceURI(attr->localName()) == _namespaceURI) 1613 return attr->localName(); 1614 } 1615 } 1616 1617 if (Element* ancestor = ancestorElement()) 1618 return ancestor->lookupNamespacePrefix(_namespaceURI, originalElement); 1619 return nullAtom; 1620 } 1621 1622 static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content) 1623 { 1624 switch (node->nodeType()) { 1625 case Node::TEXT_NODE: 1626 case Node::CDATA_SECTION_NODE: 1627 case Node::COMMENT_NODE: 1628 isNullString = false; 1629 content.append(toCharacterData(node)->data()); 1630 break; 1631 1632 case Node::PROCESSING_INSTRUCTION_NODE: 1633 isNullString = false; 1634 content.append(toProcessingInstruction(node)->data()); 1635 break; 1636 1637 case Node::ELEMENT_NODE: 1638 if (node->hasTagName(brTag) && convertBRsToNewlines) { 1639 isNullString = false; 1640 content.append('\n'); 1641 break; 1642 } 1643 // Fall through. 1644 case Node::ATTRIBUTE_NODE: 1645 case Node::ENTITY_NODE: 1646 case Node::DOCUMENT_FRAGMENT_NODE: 1647 isNullString = false; 1648 for (Node* child = node->firstChild(); child; child = child->nextSibling()) { 1649 if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE) 1650 continue; 1651 appendTextContent(child, convertBRsToNewlines, isNullString, content); 1652 } 1653 break; 1654 1655 case Node::DOCUMENT_NODE: 1656 case Node::DOCUMENT_TYPE_NODE: 1657 case Node::NOTATION_NODE: 1658 case Node::XPATH_NAMESPACE_NODE: 1659 break; 1660 } 1661 } 1662 1663 String Node::textContent(bool convertBRsToNewlines) const 1664 { 1665 StringBuilder content; 1666 bool isNullString = true; 1667 appendTextContent(this, convertBRsToNewlines, isNullString, content); 1668 return isNullString ? String() : content.toString(); 1669 } 1670 1671 void Node::setTextContent(const String& text) 1672 { 1673 switch (nodeType()) { 1674 case TEXT_NODE: 1675 case CDATA_SECTION_NODE: 1676 case COMMENT_NODE: 1677 case PROCESSING_INSTRUCTION_NODE: 1678 setNodeValue(text); 1679 return; 1680 case ELEMENT_NODE: 1681 case ATTRIBUTE_NODE: 1682 case ENTITY_NODE: 1683 case DOCUMENT_FRAGMENT_NODE: { 1684 RefPtr<ContainerNode> container = toContainerNode(this); 1685 ChildListMutationScope mutation(*this); 1686 container->removeChildren(); 1687 if (!text.isEmpty()) 1688 container->appendChild(document().createTextNode(text), ASSERT_NO_EXCEPTION); 1689 return; 1690 } 1691 case DOCUMENT_NODE: 1692 case DOCUMENT_TYPE_NODE: 1693 case NOTATION_NODE: 1694 case XPATH_NAMESPACE_NODE: 1695 // Do nothing. 1696 return; 1697 } 1698 ASSERT_NOT_REACHED(); 1699 } 1700 1701 Element* Node::ancestorElement() const 1702 { 1703 // In theory, there can be EntityReference nodes between elements, but this is currently not supported. 1704 for (ContainerNode* n = parentNode(); n; n = n->parentNode()) { 1705 if (n->isElementNode()) 1706 return toElement(n); 1707 } 1708 return 0; 1709 } 1710 1711 bool Node::offsetInCharacters() const 1712 { 1713 return false; 1714 } 1715 1716 unsigned short Node::compareDocumentPosition(const Node* otherNode) const 1717 { 1718 return compareDocumentPositionInternal(otherNode, TreatShadowTreesAsDisconnected); 1719 } 1720 1721 unsigned short Node::compareDocumentPositionInternal(const Node* otherNode, ShadowTreesTreatment treatment) const 1722 { 1723 // It is not clear what should be done if |otherNode| is 0. 1724 if (!otherNode) 1725 return DOCUMENT_POSITION_DISCONNECTED; 1726 1727 if (otherNode == this) 1728 return DOCUMENT_POSITION_EQUIVALENT; 1729 1730 const Attr* attr1 = nodeType() == ATTRIBUTE_NODE ? toAttr(this) : 0; 1731 const Attr* attr2 = otherNode->nodeType() == ATTRIBUTE_NODE ? toAttr(otherNode) : 0; 1732 1733 const Node* start1 = attr1 ? attr1->ownerElement() : this; 1734 const Node* start2 = attr2 ? attr2->ownerElement() : otherNode; 1735 1736 // If either of start1 or start2 is null, then we are disconnected, since one of the nodes is 1737 // an orphaned attribute node. 1738 if (!start1 || !start2) { 1739 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1740 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1741 } 1742 1743 Vector<const Node*, 16> chain1; 1744 Vector<const Node*, 16> chain2; 1745 if (attr1) 1746 chain1.append(attr1); 1747 if (attr2) 1748 chain2.append(attr2); 1749 1750 if (attr1 && attr2 && start1 == start2 && start1) { 1751 // We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first. 1752 const Element* owner1 = attr1->ownerElement(); 1753 owner1->synchronizeAllAttributes(); 1754 unsigned length = owner1->attributeCount(); 1755 for (unsigned i = 0; i < length; ++i) { 1756 // If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an 1757 // implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of 1758 // the same nodeType are inserted into or removed from the direct container. This would be the case, for example, 1759 // when comparing two attributes of the same element, and inserting or removing additional attributes might change 1760 // the order between existing attributes. 1761 const Attribute* attribute = owner1->attributeItem(i); 1762 if (attr1->qualifiedName() == attribute->name()) 1763 return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING; 1764 if (attr2->qualifiedName() == attribute->name()) 1765 return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING; 1766 } 1767 1768 ASSERT_NOT_REACHED(); 1769 return DOCUMENT_POSITION_DISCONNECTED; 1770 } 1771 1772 // If one node is in the document and the other is not, we must be disconnected. 1773 // If the nodes have different owning documents, they must be disconnected. Note that we avoid 1774 // comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug). 1775 if (start1->inDocument() != start2->inDocument() || (treatment == TreatShadowTreesAsDisconnected && start1->treeScope() != start2->treeScope())) { 1776 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1777 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1778 } 1779 1780 // We need to find a common ancestor container, and then compare the indices of the two immediate children. 1781 const Node* current; 1782 for (current = start1; current; current = current->parentOrShadowHostNode()) 1783 chain1.append(current); 1784 for (current = start2; current; current = current->parentOrShadowHostNode()) 1785 chain2.append(current); 1786 1787 unsigned index1 = chain1.size(); 1788 unsigned index2 = chain2.size(); 1789 1790 // If the two elements don't have a common root, they're not in the same tree. 1791 if (chain1[index1 - 1] != chain2[index2 - 1]) { 1792 unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING; 1793 return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction; 1794 } 1795 1796 unsigned connection = start1->treeScope() != start2->treeScope() ? DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC : 0; 1797 1798 // Walk the two chains backwards and look for the first difference. 1799 for (unsigned i = min(index1, index2); i; --i) { 1800 const Node* child1 = chain1[--index1]; 1801 const Node* child2 = chain2[--index2]; 1802 if (child1 != child2) { 1803 // If one of the children is an attribute, it wins. 1804 if (child1->nodeType() == ATTRIBUTE_NODE) 1805 return DOCUMENT_POSITION_FOLLOWING | connection; 1806 if (child2->nodeType() == ATTRIBUTE_NODE) 1807 return DOCUMENT_POSITION_PRECEDING | connection; 1808 1809 // If one of the children is a shadow root, 1810 if (child1->isShadowRoot() || child2->isShadowRoot()) { 1811 if (!child2->isShadowRoot()) 1812 return Node::DOCUMENT_POSITION_FOLLOWING | connection; 1813 if (!child1->isShadowRoot()) 1814 return Node::DOCUMENT_POSITION_PRECEDING | connection; 1815 1816 for (ShadowRoot* child = toShadowRoot(child2)->olderShadowRoot(); child; child = child->olderShadowRoot()) 1817 if (child == child1) 1818 return Node::DOCUMENT_POSITION_FOLLOWING | connection; 1819 1820 return Node::DOCUMENT_POSITION_PRECEDING | connection; 1821 } 1822 1823 if (!child2->nextSibling()) 1824 return DOCUMENT_POSITION_FOLLOWING | connection; 1825 if (!child1->nextSibling()) 1826 return DOCUMENT_POSITION_PRECEDING | connection; 1827 1828 // Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1. 1829 for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) { 1830 if (child == child1) 1831 return DOCUMENT_POSITION_FOLLOWING | connection; 1832 } 1833 return DOCUMENT_POSITION_PRECEDING | connection; 1834 } 1835 } 1836 1837 // There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter 1838 // chain is the ancestor. 1839 return index1 < index2 ? 1840 DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY | connection : 1841 DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS | connection; 1842 } 1843 1844 FloatPoint Node::convertToPage(const FloatPoint& p) const 1845 { 1846 // If there is a renderer, just ask it to do the conversion 1847 if (renderer()) 1848 return renderer()->localToAbsolute(p, UseTransforms); 1849 1850 // Otherwise go up the tree looking for a renderer 1851 Element *parent = ancestorElement(); 1852 if (parent) 1853 return parent->convertToPage(p); 1854 1855 // No parent - no conversion needed 1856 return p; 1857 } 1858 1859 FloatPoint Node::convertFromPage(const FloatPoint& p) const 1860 { 1861 // If there is a renderer, just ask it to do the conversion 1862 if (renderer()) 1863 return renderer()->absoluteToLocal(p, UseTransforms); 1864 1865 // Otherwise go up the tree looking for a renderer 1866 Element *parent = ancestorElement(); 1867 if (parent) 1868 return parent->convertFromPage(p); 1869 1870 // No parent - no conversion needed 1871 return p; 1872 } 1873 1874 String Node::debugName() const 1875 { 1876 StringBuilder name; 1877 name.append(nodeName()); 1878 1879 if (hasID()) { 1880 name.appendLiteral(" id=\'"); 1881 name.append(toElement(this)->getIdAttribute()); 1882 name.append('\''); 1883 } 1884 1885 if (hasClass()) { 1886 name.appendLiteral(" class=\'"); 1887 for (size_t i = 0; i < toElement(this)->classNames().size(); ++i) { 1888 if (i > 0) 1889 name.append(' '); 1890 name.append(toElement(this)->classNames()[i]); 1891 } 1892 name.append('\''); 1893 } 1894 1895 return name.toString(); 1896 } 1897 1898 #ifndef NDEBUG 1899 1900 static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc) 1901 { 1902 if (!node->isElementNode()) 1903 return; 1904 1905 String attr = toElement(node)->getAttribute(name); 1906 if (attr.isEmpty()) 1907 return; 1908 1909 stringBuilder.append(attrDesc); 1910 stringBuilder.append(attr); 1911 } 1912 1913 void Node::showNode(const char* prefix) const 1914 { 1915 if (!prefix) 1916 prefix = ""; 1917 if (isTextNode()) { 1918 String value = nodeValue(); 1919 value.replaceWithLiteral('\\', "\\\\"); 1920 value.replaceWithLiteral('\n', "\\n"); 1921 fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data()); 1922 } else { 1923 StringBuilder attrs; 1924 appendAttributeDesc(this, attrs, classAttr, " CLASS="); 1925 appendAttributeDesc(this, attrs, styleAttr, " STYLE="); 1926 fprintf(stderr, "%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.toString().utf8().data()); 1927 } 1928 } 1929 1930 void Node::showTreeForThis() const 1931 { 1932 showTreeAndMark(this, "*"); 1933 } 1934 1935 void Node::showNodePathForThis() const 1936 { 1937 Vector<const Node*, 16> chain; 1938 const Node* node = this; 1939 while (node->parentOrShadowHostNode()) { 1940 chain.append(node); 1941 node = node->parentOrShadowHostNode(); 1942 } 1943 for (unsigned index = chain.size(); index > 0; --index) { 1944 const Node* node = chain[index - 1]; 1945 if (node->isShadowRoot()) { 1946 int count = 0; 1947 for (ShadowRoot* shadowRoot = toShadowRoot(node)->olderShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot()) 1948 ++count; 1949 fprintf(stderr, "/#shadow-root[%d]", count); 1950 continue; 1951 } 1952 1953 switch (node->nodeType()) { 1954 case ELEMENT_NODE: { 1955 fprintf(stderr, "/%s", node->nodeName().utf8().data()); 1956 1957 const Element* element = toElement(node); 1958 const AtomicString& idattr = element->getIdAttribute(); 1959 bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty(); 1960 if (node->previousSibling() || node->nextSibling()) { 1961 int count = 0; 1962 for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling()) 1963 if (previous->nodeName() == node->nodeName()) 1964 ++count; 1965 if (hasIdAttr) 1966 fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.string().utf8().data(), count); 1967 else 1968 fprintf(stderr, "[%d]", count); 1969 } else if (hasIdAttr) 1970 fprintf(stderr, "[@id=\"%s\"]", idattr.string().utf8().data()); 1971 break; 1972 } 1973 case TEXT_NODE: 1974 fprintf(stderr, "/text()"); 1975 break; 1976 case ATTRIBUTE_NODE: 1977 fprintf(stderr, "/@%s", node->nodeName().utf8().data()); 1978 break; 1979 default: 1980 break; 1981 } 1982 } 1983 fprintf(stderr, "\n"); 1984 } 1985 1986 static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) 1987 { 1988 for (const Node* node = rootNode; node; node = NodeTraversal::next(*node)) { 1989 if (node == markedNode1) 1990 fprintf(stderr, "%s", markedLabel1); 1991 if (node == markedNode2) 1992 fprintf(stderr, "%s", markedLabel2); 1993 1994 StringBuilder indent; 1995 indent.append(baseIndent); 1996 for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode()) 1997 indent.append('\t'); 1998 fprintf(stderr, "%s", indent.toString().utf8().data()); 1999 node->showNode(); 2000 indent.append('\t'); 2001 if (node->isShadowRoot()) { 2002 if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot()) 2003 traverseTreeAndMark(indent.toString(), youngerShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2); 2004 } else if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node)) 2005 traverseTreeAndMark(indent.toString(), oldestShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2); 2006 } 2007 } 2008 2009 void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const 2010 { 2011 const Node* rootNode; 2012 const Node* node = this; 2013 while (node->parentOrShadowHostNode() && !node->hasTagName(bodyTag)) 2014 node = node->parentOrShadowHostNode(); 2015 rootNode = node; 2016 2017 String startingIndent; 2018 traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2); 2019 } 2020 2021 void Node::formatForDebugger(char* buffer, unsigned length) const 2022 { 2023 String result; 2024 String s; 2025 2026 s = nodeName(); 2027 if (s.isEmpty()) 2028 result = "<none>"; 2029 else 2030 result = s; 2031 2032 strncpy(buffer, result.utf8().data(), length - 1); 2033 } 2034 2035 static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node) 2036 { 2037 ContainerNode* parent = node->parentOrShadowHostNode(); 2038 if (!parent && node->document().frame()) 2039 parent = node->document().frame()->ownerElement(); 2040 return parent; 2041 } 2042 2043 static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent) 2044 { 2045 if (node == markedNode) 2046 fputs("*", stderr); 2047 fputs(indent.utf8().data(), stderr); 2048 node->showNode(); 2049 if (node->isShadowRoot()) { 2050 if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot()) 2051 showSubTreeAcrossFrame(youngerShadowRoot, markedNode, indent + "\t"); 2052 } else { 2053 if (node->isFrameOwnerElement()) 2054 showSubTreeAcrossFrame(toHTMLFrameOwnerElement(node)->contentDocument(), markedNode, indent + "\t"); 2055 if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node)) 2056 showSubTreeAcrossFrame(oldestShadowRoot, markedNode, indent + "\t"); 2057 } 2058 for (Node* child = node->firstChild(); child; child = child->nextSibling()) 2059 showSubTreeAcrossFrame(child, markedNode, indent + "\t"); 2060 } 2061 2062 void Node::showTreeForThisAcrossFrame() const 2063 { 2064 Node* rootNode = const_cast<Node*>(this); 2065 while (parentOrShadowHostOrFrameOwner(rootNode)) 2066 rootNode = parentOrShadowHostOrFrameOwner(rootNode); 2067 showSubTreeAcrossFrame(rootNode, this, ""); 2068 } 2069 2070 #endif 2071 2072 // -------- 2073 2074 void NodeListsNodeData::invalidateCaches(const QualifiedName* attrName) 2075 { 2076 NodeListAtomicNameCacheMap::const_iterator atomicNameCacheEnd = m_atomicNameCaches.end(); 2077 for (NodeListAtomicNameCacheMap::const_iterator it = m_atomicNameCaches.begin(); it != atomicNameCacheEnd; ++it) 2078 it->value->invalidateCache(attrName); 2079 2080 NodeListNameCacheMap::const_iterator nameCacheEnd = m_nameCaches.end(); 2081 for (NodeListNameCacheMap::const_iterator it = m_nameCaches.begin(); it != nameCacheEnd; ++it) 2082 it->value->invalidateCache(attrName); 2083 2084 if (attrName) 2085 return; 2086 2087 TagNodeListCacheNS::iterator tagCacheEnd = m_tagNodeListCacheNS.end(); 2088 for (TagNodeListCacheNS::iterator it = m_tagNodeListCacheNS.begin(); it != tagCacheEnd; ++it) 2089 it->value->invalidateCache(); 2090 } 2091 2092 Node* Node::enclosingLinkEventParentOrSelf() 2093 { 2094 for (Node* node = this; node; node = node->parentOrShadowHostNode()) { 2095 // For imagemaps, the enclosing link node is the associated area element not the image itself. 2096 // So we don't let images be the enclosingLinkNode, even though isLink sometimes returns true 2097 // for them. 2098 if (node->isLink() && !node->hasTagName(imgTag)) 2099 return node; 2100 } 2101 2102 return 0; 2103 } 2104 2105 const AtomicString& Node::interfaceName() const 2106 { 2107 return EventTargetNames::Node; 2108 } 2109 2110 ExecutionContext* Node::executionContext() const 2111 { 2112 return document().contextDocument().get(); 2113 } 2114 2115 void Node::didMoveToNewDocument(Document& oldDocument) 2116 { 2117 TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument); 2118 2119 if (const EventTargetData* eventTargetData = this->eventTargetData()) { 2120 const EventListenerMap& listenerMap = eventTargetData->eventListenerMap; 2121 if (!listenerMap.isEmpty()) { 2122 Vector<AtomicString> types = listenerMap.eventTypes(); 2123 for (unsigned i = 0; i < types.size(); ++i) 2124 document().addListenerTypeIfNeeded(types[i]); 2125 } 2126 } 2127 2128 if (AXObjectCache::accessibilityEnabled()) { 2129 if (AXObjectCache* cache = oldDocument.existingAXObjectCache()) 2130 cache->remove(this); 2131 } 2132 2133 const EventListenerVector& mousewheelListeners = getEventListeners(EventTypeNames::mousewheel); 2134 WheelController* oldController = WheelController::from(&oldDocument); 2135 WheelController* newController = WheelController::from(&document()); 2136 for (size_t i = 0; i < mousewheelListeners.size(); ++i) { 2137 oldController->didRemoveWheelEventHandler(&oldDocument); 2138 newController->didAddWheelEventHandler(&document()); 2139 } 2140 2141 const EventListenerVector& wheelListeners = getEventListeners(EventTypeNames::wheel); 2142 for (size_t i = 0; i < wheelListeners.size(); ++i) { 2143 oldController->didRemoveWheelEventHandler(&oldDocument); 2144 newController->didAddWheelEventHandler(&document()); 2145 } 2146 2147 if (const TouchEventTargetSet* touchHandlers = oldDocument.touchEventTargets()) { 2148 while (touchHandlers->contains(this)) { 2149 oldDocument.didRemoveTouchEventHandler(this); 2150 document().didAddTouchEventHandler(this); 2151 } 2152 } 2153 2154 if (Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry()) { 2155 for (size_t i = 0; i < registry->size(); ++i) { 2156 document().addMutationObserverTypes(registry->at(i)->mutationTypes()); 2157 } 2158 } 2159 2160 if (HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry()) { 2161 for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) { 2162 document().addMutationObserverTypes((*iter)->mutationTypes()); 2163 } 2164 } 2165 } 2166 2167 static inline bool tryAddEventListener(Node* targetNode, const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture) 2168 { 2169 if (!targetNode->EventTarget::addEventListener(eventType, listener, useCapture)) 2170 return false; 2171 2172 Document& document = targetNode->document(); 2173 document.addListenerTypeIfNeeded(eventType); 2174 if (eventType == EventTypeNames::wheel || eventType == EventTypeNames::mousewheel) 2175 WheelController::from(&document)->didAddWheelEventHandler(&document); 2176 else if (isTouchEventType(eventType)) 2177 document.didAddTouchEventHandler(targetNode); 2178 2179 return true; 2180 } 2181 2182 bool Node::addEventListener(const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture) 2183 { 2184 return tryAddEventListener(this, eventType, listener, useCapture); 2185 } 2186 2187 static inline bool tryRemoveEventListener(Node* targetNode, const AtomicString& eventType, EventListener* listener, bool useCapture) 2188 { 2189 if (!targetNode->EventTarget::removeEventListener(eventType, listener, useCapture)) 2190 return false; 2191 2192 // FIXME: Notify Document that the listener has vanished. We need to keep track of a number of 2193 // listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861 2194 Document& document = targetNode->document(); 2195 if (eventType == EventTypeNames::wheel || eventType == EventTypeNames::mousewheel) 2196 WheelController::from(&document)->didAddWheelEventHandler(&document); 2197 else if (isTouchEventType(eventType)) 2198 document.didRemoveTouchEventHandler(targetNode); 2199 2200 return true; 2201 } 2202 2203 bool Node::removeEventListener(const AtomicString& eventType, EventListener* listener, bool useCapture) 2204 { 2205 return tryRemoveEventListener(this, eventType, listener, useCapture); 2206 } 2207 2208 typedef HashMap<Node*, OwnPtr<EventTargetData> > EventTargetDataMap; 2209 2210 static EventTargetDataMap& eventTargetDataMap() 2211 { 2212 DEFINE_STATIC_LOCAL(EventTargetDataMap, map, ()); 2213 return map; 2214 } 2215 2216 EventTargetData* Node::eventTargetData() 2217 { 2218 return hasEventTargetData() ? eventTargetDataMap().get(this) : 0; 2219 } 2220 2221 EventTargetData& Node::ensureEventTargetData() 2222 { 2223 if (hasEventTargetData()) 2224 return *eventTargetDataMap().get(this); 2225 setHasEventTargetData(true); 2226 EventTargetData* data = new EventTargetData; 2227 eventTargetDataMap().set(this, adoptPtr(data)); 2228 return *data; 2229 } 2230 2231 void Node::clearEventTargetData() 2232 { 2233 eventTargetDataMap().remove(this); 2234 } 2235 2236 Vector<OwnPtr<MutationObserverRegistration> >* Node::mutationObserverRegistry() 2237 { 2238 if (!hasRareData()) 2239 return 0; 2240 NodeMutationObserverData* data = rareData()->mutationObserverData(); 2241 if (!data) 2242 return 0; 2243 return &data->registry; 2244 } 2245 2246 HashSet<MutationObserverRegistration*>* Node::transientMutationObserverRegistry() 2247 { 2248 if (!hasRareData()) 2249 return 0; 2250 NodeMutationObserverData* data = rareData()->mutationObserverData(); 2251 if (!data) 2252 return 0; 2253 return &data->transientRegistry; 2254 } 2255 2256 template<typename Registry> 2257 static inline void collectMatchingObserversForMutation(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, Registry* registry, Node* target, MutationObserver::MutationType type, const QualifiedName* attributeName) 2258 { 2259 if (!registry) 2260 return; 2261 for (typename Registry::iterator iter = registry->begin(); iter != registry->end(); ++iter) { 2262 const MutationObserverRegistration& registration = **iter; 2263 if (registration.shouldReceiveMutationFrom(target, type, attributeName)) { 2264 MutationRecordDeliveryOptions deliveryOptions = registration.deliveryOptions(); 2265 HashMap<MutationObserver*, MutationRecordDeliveryOptions>::AddResult result = observers.add(registration.observer(), deliveryOptions); 2266 if (!result.isNewEntry) 2267 result.iterator->value |= deliveryOptions; 2268 } 2269 } 2270 } 2271 2272 void Node::getRegisteredMutationObserversOfType(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, MutationObserver::MutationType type, const QualifiedName* attributeName) 2273 { 2274 ASSERT((type == MutationObserver::Attributes && attributeName) || !attributeName); 2275 collectMatchingObserversForMutation(observers, mutationObserverRegistry(), this, type, attributeName); 2276 collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), this, type, attributeName); 2277 for (Node* node = parentNode(); node; node = node->parentNode()) { 2278 collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), this, type, attributeName); 2279 collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), this, type, attributeName); 2280 } 2281 } 2282 2283 void Node::registerMutationObserver(MutationObserver* observer, MutationObserverOptions options, const HashSet<AtomicString>& attributeFilter) 2284 { 2285 MutationObserverRegistration* registration = 0; 2286 Vector<OwnPtr<MutationObserverRegistration> >& registry = ensureRareData().ensureMutationObserverData().registry; 2287 for (size_t i = 0; i < registry.size(); ++i) { 2288 if (registry[i]->observer() == observer) { 2289 registration = registry[i].get(); 2290 registration->resetObservation(options, attributeFilter); 2291 } 2292 } 2293 2294 if (!registration) { 2295 registry.append(MutationObserverRegistration::create(observer, this, options, attributeFilter)); 2296 registration = registry.last().get(); 2297 } 2298 2299 document().addMutationObserverTypes(registration->mutationTypes()); 2300 } 2301 2302 void Node::unregisterMutationObserver(MutationObserverRegistration* registration) 2303 { 2304 Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry(); 2305 ASSERT(registry); 2306 if (!registry) 2307 return; 2308 2309 size_t index = registry->find(registration); 2310 ASSERT(index != kNotFound); 2311 if (index == kNotFound) 2312 return; 2313 2314 // Deleting the registration may cause this node to be derefed, so we must make sure the Vector operation completes 2315 // before that, in case |this| is destroyed (see MutationObserverRegistration::m_registrationNodeKeepAlive). 2316 // FIXME: Simplify the registration/transient registration logic to make this understandable by humans. 2317 RefPtr<Node> protect(this); 2318 registry->remove(index); 2319 } 2320 2321 void Node::registerTransientMutationObserver(MutationObserverRegistration* registration) 2322 { 2323 ensureRareData().ensureMutationObserverData().transientRegistry.add(registration); 2324 } 2325 2326 void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration) 2327 { 2328 HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry(); 2329 ASSERT(transientRegistry); 2330 if (!transientRegistry) 2331 return; 2332 2333 ASSERT(transientRegistry->contains(registration)); 2334 transientRegistry->remove(registration); 2335 } 2336 2337 void Node::notifyMutationObserversNodeWillDetach() 2338 { 2339 if (!document().hasMutationObservers()) 2340 return; 2341 2342 for (Node* node = parentNode(); node; node = node->parentNode()) { 2343 if (Vector<OwnPtr<MutationObserverRegistration> >* registry = node->mutationObserverRegistry()) { 2344 const size_t size = registry->size(); 2345 for (size_t i = 0; i < size; ++i) 2346 registry->at(i)->observedSubtreeNodeWillDetach(this); 2347 } 2348 2349 if (HashSet<MutationObserverRegistration*>* transientRegistry = node->transientMutationObserverRegistry()) { 2350 for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) 2351 (*iter)->observedSubtreeNodeWillDetach(this); 2352 } 2353 } 2354 } 2355 2356 void Node::handleLocalEvents(Event* event) 2357 { 2358 if (!hasEventTargetData()) 2359 return; 2360 2361 if (isDisabledFormControl(this) && event->isMouseEvent()) 2362 return; 2363 2364 fireEventListeners(event); 2365 } 2366 2367 void Node::dispatchScopedEvent(PassRefPtr<Event> event) 2368 { 2369 dispatchScopedEventDispatchMediator(EventDispatchMediator::create(event)); 2370 } 2371 2372 void Node::dispatchScopedEventDispatchMediator(PassRefPtr<EventDispatchMediator> eventDispatchMediator) 2373 { 2374 EventDispatcher::dispatchScopedEvent(this, eventDispatchMediator); 2375 } 2376 2377 bool Node::dispatchEvent(PassRefPtr<Event> event) 2378 { 2379 if (event->isMouseEvent()) 2380 return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(static_pointer_cast<MouseEvent>(event), MouseEventDispatchMediator::SyntheticMouseEvent)); 2381 if (event->isTouchEvent()) 2382 return dispatchTouchEvent(static_pointer_cast<TouchEvent>(event)); 2383 return EventDispatcher::dispatchEvent(this, EventDispatchMediator::create(event)); 2384 } 2385 2386 void Node::dispatchSubtreeModifiedEvent() 2387 { 2388 if (isInShadowTree()) 2389 return; 2390 2391 ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden()); 2392 2393 if (!document().hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER)) 2394 return; 2395 2396 dispatchScopedEvent(MutationEvent::create(EventTypeNames::DOMSubtreeModified, true)); 2397 } 2398 2399 bool Node::dispatchDOMActivateEvent(int detail, PassRefPtr<Event> underlyingEvent) 2400 { 2401 ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden()); 2402 RefPtr<UIEvent> event = UIEvent::create(EventTypeNames::DOMActivate, true, true, document().domWindow(), detail); 2403 event->setUnderlyingEvent(underlyingEvent); 2404 dispatchScopedEvent(event); 2405 return event->defaultHandled(); 2406 } 2407 2408 bool Node::dispatchKeyEvent(const PlatformKeyboardEvent& event) 2409 { 2410 return EventDispatcher::dispatchEvent(this, KeyboardEventDispatchMediator::create(KeyboardEvent::create(event, document().domWindow()))); 2411 } 2412 2413 bool Node::dispatchMouseEvent(const PlatformMouseEvent& event, const AtomicString& eventType, 2414 int detail, Node* relatedTarget) 2415 { 2416 return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(MouseEvent::create(eventType, document().domWindow(), event, detail, relatedTarget))); 2417 } 2418 2419 bool Node::dispatchGestureEvent(const PlatformGestureEvent& event) 2420 { 2421 RefPtr<GestureEvent> gestureEvent = GestureEvent::create(document().domWindow(), event); 2422 if (!gestureEvent.get()) 2423 return false; 2424 return EventDispatcher::dispatchEvent(this, GestureEventDispatchMediator::create(gestureEvent)); 2425 } 2426 2427 bool Node::dispatchTouchEvent(PassRefPtr<TouchEvent> event) 2428 { 2429 return EventDispatcher::dispatchEvent(this, TouchEventDispatchMediator::create(event)); 2430 } 2431 2432 void Node::dispatchSimulatedClick(Event* underlyingEvent, SimulatedClickMouseEventOptions eventOptions) 2433 { 2434 EventDispatcher::dispatchSimulatedClick(this, underlyingEvent, eventOptions); 2435 } 2436 2437 bool Node::dispatchBeforeLoadEvent(const String& sourceURL) 2438 { 2439 if (!document().hasListenerType(Document::BEFORELOAD_LISTENER)) 2440 return true; 2441 2442 RefPtr<Node> protector(this); 2443 RefPtr<BeforeLoadEvent> beforeLoadEvent = BeforeLoadEvent::create(sourceURL); 2444 dispatchEvent(beforeLoadEvent.get()); 2445 return !beforeLoadEvent->defaultPrevented(); 2446 } 2447 2448 bool Node::dispatchWheelEvent(const PlatformWheelEvent& event) 2449 { 2450 return EventDispatcher::dispatchEvent(this, WheelEventDispatchMediator::create(event, document().domWindow())); 2451 } 2452 2453 void Node::dispatchChangeEvent() 2454 { 2455 dispatchScopedEvent(Event::createBubble(EventTypeNames::change)); 2456 } 2457 2458 void Node::dispatchInputEvent() 2459 { 2460 dispatchScopedEvent(Event::createBubble(EventTypeNames::input)); 2461 } 2462 2463 void Node::defaultEventHandler(Event* event) 2464 { 2465 if (event->target() != this) 2466 return; 2467 const AtomicString& eventType = event->type(); 2468 if (eventType == EventTypeNames::keydown || eventType == EventTypeNames::keypress) { 2469 if (event->isKeyboardEvent()) { 2470 if (Frame* frame = document().frame()) 2471 frame->eventHandler().defaultKeyboardEventHandler(toKeyboardEvent(event)); 2472 } 2473 } else if (eventType == EventTypeNames::click) { 2474 int detail = event->isUIEvent() ? static_cast<UIEvent*>(event)->detail() : 0; 2475 if (dispatchDOMActivateEvent(detail, event)) 2476 event->setDefaultHandled(); 2477 } else if (eventType == EventTypeNames::contextmenu) { 2478 if (Page* page = document().page()) 2479 page->contextMenuController().handleContextMenuEvent(event); 2480 } else if (eventType == EventTypeNames::textInput) { 2481 if (event->hasInterface(EventNames::TextEvent)) { 2482 if (Frame* frame = document().frame()) 2483 frame->eventHandler().defaultTextInputEventHandler(toTextEvent(event)); 2484 } 2485 #if OS(WIN) 2486 } else if (eventType == EventTypeNames::mousedown && event->isMouseEvent()) { 2487 MouseEvent* mouseEvent = toMouseEvent(event); 2488 if (mouseEvent->button() == MiddleButton) { 2489 if (enclosingLinkEventParentOrSelf()) 2490 return; 2491 2492 RenderObject* renderer = this->renderer(); 2493 while (renderer && (!renderer->isBox() || !toRenderBox(renderer)->canBeScrolledAndHasScrollableArea())) 2494 renderer = renderer->parent(); 2495 2496 if (renderer) { 2497 if (Frame* frame = document().frame()) 2498 frame->eventHandler().startPanScrolling(renderer); 2499 } 2500 } 2501 #endif 2502 } else if ((eventType == EventTypeNames::wheel || eventType == EventTypeNames::mousewheel) && event->hasInterface(EventNames::WheelEvent)) { 2503 WheelEvent* wheelEvent = toWheelEvent(event); 2504 2505 // If we don't have a renderer, send the wheel event to the first node we find with a renderer. 2506 // This is needed for <option> and <optgroup> elements so that <select>s get a wheel scroll. 2507 Node* startNode = this; 2508 while (startNode && !startNode->renderer()) 2509 startNode = startNode->parentOrShadowHostNode(); 2510 2511 if (startNode && startNode->renderer()) { 2512 if (Frame* frame = document().frame()) 2513 frame->eventHandler().defaultWheelEventHandler(startNode, wheelEvent); 2514 } 2515 } else if (event->type() == EventTypeNames::webkitEditableContentChanged) { 2516 dispatchInputEvent(); 2517 } 2518 } 2519 2520 void Node::willCallDefaultEventHandler(const Event&) 2521 { 2522 } 2523 2524 bool Node::willRespondToMouseMoveEvents() 2525 { 2526 if (isDisabledFormControl(this)) 2527 return false; 2528 return hasEventListeners(EventTypeNames::mousemove) || hasEventListeners(EventTypeNames::mouseover) || hasEventListeners(EventTypeNames::mouseout); 2529 } 2530 2531 bool Node::willRespondToMouseClickEvents() 2532 { 2533 if (isDisabledFormControl(this)) 2534 return false; 2535 return isContentEditable(UserSelectAllIsAlwaysNonEditable) || hasEventListeners(EventTypeNames::mouseup) || hasEventListeners(EventTypeNames::mousedown) || hasEventListeners(EventTypeNames::click) || hasEventListeners(EventTypeNames::DOMActivate); 2536 } 2537 2538 bool Node::willRespondToTouchEvents() 2539 { 2540 if (isDisabledFormControl(this)) 2541 return false; 2542 return hasEventListeners(EventTypeNames::touchstart) || hasEventListeners(EventTypeNames::touchmove) || hasEventListeners(EventTypeNames::touchcancel) || hasEventListeners(EventTypeNames::touchend); 2543 } 2544 2545 // This is here for inlining 2546 inline void TreeScope::removedLastRefToScope() 2547 { 2548 ASSERT_WITH_SECURITY_IMPLICATION(!deletionHasBegun()); 2549 if (m_guardRefCount) { 2550 // If removing a child removes the last self-only ref, we don't 2551 // want the scope to be destructed until after 2552 // removeDetachedChildren returns, so we guard ourselves with an 2553 // extra self-only ref. 2554 guardRef(); 2555 dispose(); 2556 #if !ASSERT_DISABLED 2557 // We need to do this right now since guardDeref() can delete this. 2558 rootNode()->m_inRemovedLastRefFunction = false; 2559 #endif 2560 guardDeref(); 2561 } else { 2562 #if !ASSERT_DISABLED 2563 rootNode()->m_inRemovedLastRefFunction = false; 2564 #endif 2565 #if SECURITY_ASSERT_ENABLED 2566 beginDeletion(); 2567 #endif 2568 delete this; 2569 } 2570 } 2571 2572 // It's important not to inline removedLastRef, because we don't want to inline the code to 2573 // delete a Node at each deref call site. 2574 void Node::removedLastRef() 2575 { 2576 // An explicit check for Document here is better than a virtual function since it is 2577 // faster for non-Document nodes, and because the call to removedLastRef that is inlined 2578 // at all deref call sites is smaller if it's a non-virtual function. 2579 if (isTreeScope()) { 2580 treeScope().removedLastRefToScope(); 2581 return; 2582 } 2583 2584 #if SECURITY_ASSERT_ENABLED 2585 m_deletionHasBegun = true; 2586 #endif 2587 delete this; 2588 } 2589 2590 unsigned Node::connectedSubframeCount() const 2591 { 2592 return hasRareData() ? rareData()->connectedSubframeCount() : 0; 2593 } 2594 2595 void Node::incrementConnectedSubframeCount(unsigned amount) 2596 { 2597 ASSERT(isContainerNode()); 2598 ensureRareData().incrementConnectedSubframeCount(amount); 2599 } 2600 2601 void Node::decrementConnectedSubframeCount(unsigned amount) 2602 { 2603 rareData()->decrementConnectedSubframeCount(amount); 2604 } 2605 2606 void Node::updateAncestorConnectedSubframeCountForRemoval() const 2607 { 2608 unsigned count = connectedSubframeCount(); 2609 2610 if (!count) 2611 return; 2612 2613 for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode()) 2614 node->decrementConnectedSubframeCount(count); 2615 } 2616 2617 void Node::updateAncestorConnectedSubframeCountForInsertion() const 2618 { 2619 unsigned count = connectedSubframeCount(); 2620 2621 if (!count) 2622 return; 2623 2624 for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode()) 2625 node->incrementConnectedSubframeCount(count); 2626 } 2627 2628 PassRefPtr<NodeList> Node::getDestinationInsertionPoints() 2629 { 2630 document().updateDistributionForNodeIfNeeded(this); 2631 Vector<InsertionPoint*, 8> insertionPoints; 2632 collectDestinationInsertionPoints(*this, insertionPoints); 2633 Vector<RefPtr<Node> > filteredInsertionPoints; 2634 for (size_t i = 0; i < insertionPoints.size(); ++i) { 2635 InsertionPoint* insertionPoint = insertionPoints[i]; 2636 ASSERT(insertionPoint->containingShadowRoot()); 2637 if (insertionPoint->containingShadowRoot()->type() != ShadowRoot::UserAgentShadowRoot) 2638 filteredInsertionPoints.append(insertionPoint); 2639 } 2640 return StaticNodeList::adopt(filteredInsertionPoints); 2641 } 2642 2643 void Node::registerScopedHTMLStyleChild() 2644 { 2645 setHasScopedHTMLStyleChild(true); 2646 } 2647 2648 void Node::unregisterScopedHTMLStyleChild() 2649 { 2650 ASSERT(hasScopedHTMLStyleChild()); 2651 setHasScopedHTMLStyleChild(numberOfScopedHTMLStyleChildren()); 2652 } 2653 2654 size_t Node::numberOfScopedHTMLStyleChildren() const 2655 { 2656 size_t count = 0; 2657 for (Node* child = firstChild(); child; child = child->nextSibling()) { 2658 if (child->hasTagName(HTMLNames::styleTag) && toHTMLStyleElement(child)->isRegisteredAsScoped()) 2659 count++; 2660 } 2661 2662 return count; 2663 } 2664 2665 void Node::setFocus(bool flag) 2666 { 2667 document().userActionElements().setFocused(this, flag); 2668 } 2669 2670 void Node::setActive(bool flag) 2671 { 2672 document().userActionElements().setActive(this, flag); 2673 } 2674 2675 void Node::setHovered(bool flag) 2676 { 2677 document().userActionElements().setHovered(this, flag); 2678 } 2679 2680 bool Node::isUserActionElementActive() const 2681 { 2682 ASSERT(isUserActionElement()); 2683 return document().userActionElements().isActive(this); 2684 } 2685 2686 bool Node::isUserActionElementInActiveChain() const 2687 { 2688 ASSERT(isUserActionElement()); 2689 return document().userActionElements().isInActiveChain(this); 2690 } 2691 2692 bool Node::isUserActionElementHovered() const 2693 { 2694 ASSERT(isUserActionElement()); 2695 return document().userActionElements().isHovered(this); 2696 } 2697 2698 bool Node::isUserActionElementFocused() const 2699 { 2700 ASSERT(isUserActionElement()); 2701 return document().userActionElements().isFocused(this); 2702 } 2703 2704 void Node::setCustomElementState(CustomElementState newState) 2705 { 2706 CustomElementState oldState = customElementState(); 2707 2708 switch (newState) { 2709 case NotCustomElement: 2710 ASSERT_NOT_REACHED(); // Everything starts in this state 2711 return; 2712 2713 case WaitingForUpgrade: 2714 ASSERT(NotCustomElement == oldState); 2715 break; 2716 2717 case Upgraded: 2718 ASSERT(WaitingForUpgrade == oldState); 2719 break; 2720 } 2721 2722 ASSERT(isHTMLElement() || isSVGElement()); 2723 setFlag(CustomElement); 2724 setFlag(newState == Upgraded, CustomElementUpgraded); 2725 2726 if (oldState == NotCustomElement || newState == Upgraded) 2727 setNeedsStyleRecalc(); // :unresolved has changed 2728 } 2729 2730 } // namespace WebCore 2731 2732 #ifndef NDEBUG 2733 2734 void showTree(const WebCore::Node* node) 2735 { 2736 if (node) 2737 node->showTreeForThis(); 2738 } 2739 2740 void showNodePath(const WebCore::Node* node) 2741 { 2742 if (node) 2743 node->showNodePathForThis(); 2744 } 2745 2746 #endif 2747