1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code for implementations of the r-tree and r*-tree 13 ** algorithms packaged as an SQLite virtual table module. 14 */ 15 16 /* 17 ** Database Format of R-Tree Tables 18 ** -------------------------------- 19 ** 20 ** The data structure for a single virtual r-tree table is stored in three 21 ** native SQLite tables declared as follows. In each case, the '%' character 22 ** in the table name is replaced with the user-supplied name of the r-tree 23 ** table. 24 ** 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) 28 ** 29 ** The data for each node of the r-tree structure is stored in the %_node 30 ** table. For each node that is not the root node of the r-tree, there is 31 ** an entry in the %_parent table associating the node with its parent. 32 ** And for each row of data in the table, there is an entry in the %_rowid 33 ** table that maps from the entries rowid to the id of the node that it 34 ** is stored on. 35 ** 36 ** The root node of an r-tree always exists, even if the r-tree table is 37 ** empty. The nodeno of the root node is always 1. All other nodes in the 38 ** table must be the same size as the root node. The content of each node 39 ** is formatted as follows: 40 ** 41 ** 1. If the node is the root node (node 1), then the first 2 bytes 42 ** of the node contain the tree depth as a big-endian integer. 43 ** For non-root nodes, the first 2 bytes are left unused. 44 ** 45 ** 2. The next 2 bytes contain the number of entries currently 46 ** stored in the node. 47 ** 48 ** 3. The remainder of the node contains the node entries. Each entry 49 ** consists of a single 8-byte integer followed by an even number 50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid 51 ** of a record. For internal nodes it is the node number of a 52 ** child page. 53 */ 54 55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) 56 57 /* 58 ** This file contains an implementation of a couple of different variants 59 ** of the r-tree algorithm. See the README file for further details. The 60 ** same data-structure is used for all, but the algorithms for insert and 61 ** delete operations vary. The variants used are selected at compile time 62 ** by defining the following symbols: 63 */ 64 65 /* Either, both or none of the following may be set to activate 66 ** r*tree variant algorithms. 67 */ 68 #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 69 #define VARIANT_RSTARTREE_REINSERT 1 70 71 /* 72 ** Exactly one of the following must be set to 1. 73 */ 74 #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 75 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 76 #define VARIANT_RSTARTREE_SPLIT 1 77 78 #define VARIANT_GUTTMAN_SPLIT \ 79 (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) 80 81 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT 82 #define PickNext QuadraticPickNext 83 #define PickSeeds QuadraticPickSeeds 84 #define AssignCells splitNodeGuttman 85 #endif 86 #if VARIANT_GUTTMAN_LINEAR_SPLIT 87 #define PickNext LinearPickNext 88 #define PickSeeds LinearPickSeeds 89 #define AssignCells splitNodeGuttman 90 #endif 91 #if VARIANT_RSTARTREE_SPLIT 92 #define AssignCells splitNodeStartree 93 #endif 94 95 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 96 # define NDEBUG 1 97 #endif 98 99 #ifndef SQLITE_CORE 100 #include "sqlite3ext.h" 101 SQLITE_EXTENSION_INIT1 102 #else 103 #include "sqlite3.h" 104 #endif 105 106 #include <string.h> 107 #include <assert.h> 108 109 #ifndef SQLITE_AMALGAMATION 110 #include "sqlite3rtree.h" 111 typedef sqlite3_int64 i64; 112 typedef unsigned char u8; 113 typedef unsigned int u32; 114 #endif 115 116 /* The following macro is used to suppress compiler warnings. 117 */ 118 #ifndef UNUSED_PARAMETER 119 # define UNUSED_PARAMETER(x) (void)(x) 120 #endif 121 122 typedef struct Rtree Rtree; 123 typedef struct RtreeCursor RtreeCursor; 124 typedef struct RtreeNode RtreeNode; 125 typedef struct RtreeCell RtreeCell; 126 typedef struct RtreeConstraint RtreeConstraint; 127 typedef struct RtreeMatchArg RtreeMatchArg; 128 typedef struct RtreeGeomCallback RtreeGeomCallback; 129 typedef union RtreeCoord RtreeCoord; 130 131 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ 132 #define RTREE_MAX_DIMENSIONS 5 133 134 /* Size of hash table Rtree.aHash. This hash table is not expected to 135 ** ever contain very many entries, so a fixed number of buckets is 136 ** used. 137 */ 138 #define HASHSIZE 128 139 140 /* 141 ** An rtree virtual-table object. 142 */ 143 struct Rtree { 144 sqlite3_vtab base; 145 sqlite3 *db; /* Host database connection */ 146 int iNodeSize; /* Size in bytes of each node in the node table */ 147 int nDim; /* Number of dimensions */ 148 int nBytesPerCell; /* Bytes consumed per cell */ 149 int iDepth; /* Current depth of the r-tree structure */ 150 char *zDb; /* Name of database containing r-tree table */ 151 char *zName; /* Name of r-tree table */ 152 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 153 int nBusy; /* Current number of users of this structure */ 154 155 /* List of nodes removed during a CondenseTree operation. List is 156 ** linked together via the pointer normally used for hash chains - 157 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 158 ** headed by the node (leaf nodes have RtreeNode.iNode==0). 159 */ 160 RtreeNode *pDeleted; 161 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ 162 163 /* Statements to read/write/delete a record from xxx_node */ 164 sqlite3_stmt *pReadNode; 165 sqlite3_stmt *pWriteNode; 166 sqlite3_stmt *pDeleteNode; 167 168 /* Statements to read/write/delete a record from xxx_rowid */ 169 sqlite3_stmt *pReadRowid; 170 sqlite3_stmt *pWriteRowid; 171 sqlite3_stmt *pDeleteRowid; 172 173 /* Statements to read/write/delete a record from xxx_parent */ 174 sqlite3_stmt *pReadParent; 175 sqlite3_stmt *pWriteParent; 176 sqlite3_stmt *pDeleteParent; 177 178 int eCoordType; 179 }; 180 181 /* Possible values for eCoordType: */ 182 #define RTREE_COORD_REAL32 0 183 #define RTREE_COORD_INT32 1 184 185 /* 186 ** The minimum number of cells allowed for a node is a third of the 187 ** maximum. In Gutman's notation: 188 ** 189 ** m = M/3 190 ** 191 ** If an R*-tree "Reinsert" operation is required, the same number of 192 ** cells are removed from the overfull node and reinserted into the tree. 193 */ 194 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) 195 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) 196 #define RTREE_MAXCELLS 51 197 198 /* 199 ** The smallest possible node-size is (512-64)==448 bytes. And the largest 200 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). 201 ** Therefore all non-root nodes must contain at least 3 entries. Since 202 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of 203 ** 40 or less. 204 */ 205 #define RTREE_MAX_DEPTH 40 206 207 /* 208 ** An rtree cursor object. 209 */ 210 struct RtreeCursor { 211 sqlite3_vtab_cursor base; 212 RtreeNode *pNode; /* Node cursor is currently pointing at */ 213 int iCell; /* Index of current cell in pNode */ 214 int iStrategy; /* Copy of idxNum search parameter */ 215 int nConstraint; /* Number of entries in aConstraint */ 216 RtreeConstraint *aConstraint; /* Search constraints. */ 217 }; 218 219 union RtreeCoord { 220 float f; 221 int i; 222 }; 223 224 /* 225 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord 226 ** formatted as a double. This macro assumes that local variable pRtree points 227 ** to the Rtree structure associated with the RtreeCoord. 228 */ 229 #define DCOORD(coord) ( \ 230 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ 231 ((double)coord.f) : \ 232 ((double)coord.i) \ 233 ) 234 235 /* 236 ** A search constraint. 237 */ 238 struct RtreeConstraint { 239 int iCoord; /* Index of constrained coordinate */ 240 int op; /* Constraining operation */ 241 double rValue; /* Constraint value. */ 242 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); 243 sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ 244 }; 245 246 /* Possible values for RtreeConstraint.op */ 247 #define RTREE_EQ 0x41 248 #define RTREE_LE 0x42 249 #define RTREE_LT 0x43 250 #define RTREE_GE 0x44 251 #define RTREE_GT 0x45 252 #define RTREE_MATCH 0x46 253 254 /* 255 ** An rtree structure node. 256 */ 257 struct RtreeNode { 258 RtreeNode *pParent; /* Parent node */ 259 i64 iNode; 260 int nRef; 261 int isDirty; 262 u8 *zData; 263 RtreeNode *pNext; /* Next node in this hash chain */ 264 }; 265 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) 266 267 /* 268 ** Structure to store a deserialized rtree record. 269 */ 270 struct RtreeCell { 271 i64 iRowid; 272 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; 273 }; 274 275 276 /* 277 ** Value for the first field of every RtreeMatchArg object. The MATCH 278 ** operator tests that the first field of a blob operand matches this 279 ** value to avoid operating on invalid blobs (which could cause a segfault). 280 */ 281 #define RTREE_GEOMETRY_MAGIC 0x891245AB 282 283 /* 284 ** An instance of this structure must be supplied as a blob argument to 285 ** the right-hand-side of an SQL MATCH operator used to constrain an 286 ** r-tree query. 287 */ 288 struct RtreeMatchArg { 289 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ 290 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); 291 void *pContext; 292 int nParam; 293 double aParam[1]; 294 }; 295 296 /* 297 ** When a geometry callback is created (see sqlite3_rtree_geometry_callback), 298 ** a single instance of the following structure is allocated. It is used 299 ** as the context for the user-function created by by s_r_g_c(). The object 300 ** is eventually deleted by the destructor mechanism provided by 301 ** sqlite3_create_function_v2() (which is called by s_r_g_c() to create 302 ** the geometry callback function). 303 */ 304 struct RtreeGeomCallback { 305 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); 306 void *pContext; 307 }; 308 309 #ifndef MAX 310 # define MAX(x,y) ((x) < (y) ? (y) : (x)) 311 #endif 312 #ifndef MIN 313 # define MIN(x,y) ((x) > (y) ? (y) : (x)) 314 #endif 315 316 /* 317 ** Functions to deserialize a 16 bit integer, 32 bit real number and 318 ** 64 bit integer. The deserialized value is returned. 319 */ 320 static int readInt16(u8 *p){ 321 return (p[0]<<8) + p[1]; 322 } 323 static void readCoord(u8 *p, RtreeCoord *pCoord){ 324 u32 i = ( 325 (((u32)p[0]) << 24) + 326 (((u32)p[1]) << 16) + 327 (((u32)p[2]) << 8) + 328 (((u32)p[3]) << 0) 329 ); 330 *(u32 *)pCoord = i; 331 } 332 static i64 readInt64(u8 *p){ 333 return ( 334 (((i64)p[0]) << 56) + 335 (((i64)p[1]) << 48) + 336 (((i64)p[2]) << 40) + 337 (((i64)p[3]) << 32) + 338 (((i64)p[4]) << 24) + 339 (((i64)p[5]) << 16) + 340 (((i64)p[6]) << 8) + 341 (((i64)p[7]) << 0) 342 ); 343 } 344 345 /* 346 ** Functions to serialize a 16 bit integer, 32 bit real number and 347 ** 64 bit integer. The value returned is the number of bytes written 348 ** to the argument buffer (always 2, 4 and 8 respectively). 349 */ 350 static int writeInt16(u8 *p, int i){ 351 p[0] = (i>> 8)&0xFF; 352 p[1] = (i>> 0)&0xFF; 353 return 2; 354 } 355 static int writeCoord(u8 *p, RtreeCoord *pCoord){ 356 u32 i; 357 assert( sizeof(RtreeCoord)==4 ); 358 assert( sizeof(u32)==4 ); 359 i = *(u32 *)pCoord; 360 p[0] = (i>>24)&0xFF; 361 p[1] = (i>>16)&0xFF; 362 p[2] = (i>> 8)&0xFF; 363 p[3] = (i>> 0)&0xFF; 364 return 4; 365 } 366 static int writeInt64(u8 *p, i64 i){ 367 p[0] = (i>>56)&0xFF; 368 p[1] = (i>>48)&0xFF; 369 p[2] = (i>>40)&0xFF; 370 p[3] = (i>>32)&0xFF; 371 p[4] = (i>>24)&0xFF; 372 p[5] = (i>>16)&0xFF; 373 p[6] = (i>> 8)&0xFF; 374 p[7] = (i>> 0)&0xFF; 375 return 8; 376 } 377 378 /* 379 ** Increment the reference count of node p. 380 */ 381 static void nodeReference(RtreeNode *p){ 382 if( p ){ 383 p->nRef++; 384 } 385 } 386 387 /* 388 ** Clear the content of node p (set all bytes to 0x00). 389 */ 390 static void nodeZero(Rtree *pRtree, RtreeNode *p){ 391 memset(&p->zData[2], 0, pRtree->iNodeSize-2); 392 p->isDirty = 1; 393 } 394 395 /* 396 ** Given a node number iNode, return the corresponding key to use 397 ** in the Rtree.aHash table. 398 */ 399 static int nodeHash(i64 iNode){ 400 return ( 401 (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ 402 (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) 403 ) % HASHSIZE; 404 } 405 406 /* 407 ** Search the node hash table for node iNode. If found, return a pointer 408 ** to it. Otherwise, return 0. 409 */ 410 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ 411 RtreeNode *p; 412 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); 413 return p; 414 } 415 416 /* 417 ** Add node pNode to the node hash table. 418 */ 419 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ 420 int iHash; 421 assert( pNode->pNext==0 ); 422 iHash = nodeHash(pNode->iNode); 423 pNode->pNext = pRtree->aHash[iHash]; 424 pRtree->aHash[iHash] = pNode; 425 } 426 427 /* 428 ** Remove node pNode from the node hash table. 429 */ 430 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ 431 RtreeNode **pp; 432 if( pNode->iNode!=0 ){ 433 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; 434 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } 435 *pp = pNode->pNext; 436 pNode->pNext = 0; 437 } 438 } 439 440 /* 441 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), 442 ** indicating that node has not yet been assigned a node number. It is 443 ** assigned a node number when nodeWrite() is called to write the 444 ** node contents out to the database. 445 */ 446 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ 447 RtreeNode *pNode; 448 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); 449 if( pNode ){ 450 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); 451 pNode->zData = (u8 *)&pNode[1]; 452 pNode->nRef = 1; 453 pNode->pParent = pParent; 454 pNode->isDirty = 1; 455 nodeReference(pParent); 456 } 457 return pNode; 458 } 459 460 /* 461 ** Obtain a reference to an r-tree node. 462 */ 463 static int 464 nodeAcquire( 465 Rtree *pRtree, /* R-tree structure */ 466 i64 iNode, /* Node number to load */ 467 RtreeNode *pParent, /* Either the parent node or NULL */ 468 RtreeNode **ppNode /* OUT: Acquired node */ 469 ){ 470 int rc; 471 int rc2 = SQLITE_OK; 472 RtreeNode *pNode; 473 474 /* Check if the requested node is already in the hash table. If so, 475 ** increase its reference count and return it. 476 */ 477 if( (pNode = nodeHashLookup(pRtree, iNode)) ){ 478 assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); 479 if( pParent && !pNode->pParent ){ 480 nodeReference(pParent); 481 pNode->pParent = pParent; 482 } 483 pNode->nRef++; 484 *ppNode = pNode; 485 return SQLITE_OK; 486 } 487 488 sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); 489 rc = sqlite3_step(pRtree->pReadNode); 490 if( rc==SQLITE_ROW ){ 491 const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); 492 if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){ 493 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); 494 if( !pNode ){ 495 rc2 = SQLITE_NOMEM; 496 }else{ 497 pNode->pParent = pParent; 498 pNode->zData = (u8 *)&pNode[1]; 499 pNode->nRef = 1; 500 pNode->iNode = iNode; 501 pNode->isDirty = 0; 502 pNode->pNext = 0; 503 memcpy(pNode->zData, zBlob, pRtree->iNodeSize); 504 nodeReference(pParent); 505 } 506 } 507 } 508 rc = sqlite3_reset(pRtree->pReadNode); 509 if( rc==SQLITE_OK ) rc = rc2; 510 511 /* If the root node was just loaded, set pRtree->iDepth to the height 512 ** of the r-tree structure. A height of zero means all data is stored on 513 ** the root node. A height of one means the children of the root node 514 ** are the leaves, and so on. If the depth as specified on the root node 515 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. 516 */ 517 if( pNode && iNode==1 ){ 518 pRtree->iDepth = readInt16(pNode->zData); 519 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ 520 rc = SQLITE_CORRUPT; 521 } 522 } 523 524 /* If no error has occurred so far, check if the "number of entries" 525 ** field on the node is too large. If so, set the return code to 526 ** SQLITE_CORRUPT. 527 */ 528 if( pNode && rc==SQLITE_OK ){ 529 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ 530 rc = SQLITE_CORRUPT; 531 } 532 } 533 534 if( rc==SQLITE_OK ){ 535 if( pNode!=0 ){ 536 nodeHashInsert(pRtree, pNode); 537 }else{ 538 rc = SQLITE_CORRUPT; 539 } 540 *ppNode = pNode; 541 }else{ 542 sqlite3_free(pNode); 543 *ppNode = 0; 544 } 545 546 return rc; 547 } 548 549 /* 550 ** Overwrite cell iCell of node pNode with the contents of pCell. 551 */ 552 static void nodeOverwriteCell( 553 Rtree *pRtree, 554 RtreeNode *pNode, 555 RtreeCell *pCell, 556 int iCell 557 ){ 558 int ii; 559 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 560 p += writeInt64(p, pCell->iRowid); 561 for(ii=0; ii<(pRtree->nDim*2); ii++){ 562 p += writeCoord(p, &pCell->aCoord[ii]); 563 } 564 pNode->isDirty = 1; 565 } 566 567 /* 568 ** Remove cell the cell with index iCell from node pNode. 569 */ 570 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ 571 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; 572 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; 573 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; 574 memmove(pDst, pSrc, nByte); 575 writeInt16(&pNode->zData[2], NCELL(pNode)-1); 576 pNode->isDirty = 1; 577 } 578 579 /* 580 ** Insert the contents of cell pCell into node pNode. If the insert 581 ** is successful, return SQLITE_OK. 582 ** 583 ** If there is not enough free space in pNode, return SQLITE_FULL. 584 */ 585 static int 586 nodeInsertCell( 587 Rtree *pRtree, 588 RtreeNode *pNode, 589 RtreeCell *pCell 590 ){ 591 int nCell; /* Current number of cells in pNode */ 592 int nMaxCell; /* Maximum number of cells for pNode */ 593 594 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; 595 nCell = NCELL(pNode); 596 597 assert( nCell<=nMaxCell ); 598 if( nCell<nMaxCell ){ 599 nodeOverwriteCell(pRtree, pNode, pCell, nCell); 600 writeInt16(&pNode->zData[2], nCell+1); 601 pNode->isDirty = 1; 602 } 603 604 return (nCell==nMaxCell); 605 } 606 607 /* 608 ** If the node is dirty, write it out to the database. 609 */ 610 static int 611 nodeWrite(Rtree *pRtree, RtreeNode *pNode){ 612 int rc = SQLITE_OK; 613 if( pNode->isDirty ){ 614 sqlite3_stmt *p = pRtree->pWriteNode; 615 if( pNode->iNode ){ 616 sqlite3_bind_int64(p, 1, pNode->iNode); 617 }else{ 618 sqlite3_bind_null(p, 1); 619 } 620 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); 621 sqlite3_step(p); 622 pNode->isDirty = 0; 623 rc = sqlite3_reset(p); 624 if( pNode->iNode==0 && rc==SQLITE_OK ){ 625 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); 626 nodeHashInsert(pRtree, pNode); 627 } 628 } 629 return rc; 630 } 631 632 /* 633 ** Release a reference to a node. If the node is dirty and the reference 634 ** count drops to zero, the node data is written to the database. 635 */ 636 static int 637 nodeRelease(Rtree *pRtree, RtreeNode *pNode){ 638 int rc = SQLITE_OK; 639 if( pNode ){ 640 assert( pNode->nRef>0 ); 641 pNode->nRef--; 642 if( pNode->nRef==0 ){ 643 if( pNode->iNode==1 ){ 644 pRtree->iDepth = -1; 645 } 646 if( pNode->pParent ){ 647 rc = nodeRelease(pRtree, pNode->pParent); 648 } 649 if( rc==SQLITE_OK ){ 650 rc = nodeWrite(pRtree, pNode); 651 } 652 nodeHashDelete(pRtree, pNode); 653 sqlite3_free(pNode); 654 } 655 } 656 return rc; 657 } 658 659 /* 660 ** Return the 64-bit integer value associated with cell iCell of 661 ** node pNode. If pNode is a leaf node, this is a rowid. If it is 662 ** an internal node, then the 64-bit integer is a child page number. 663 */ 664 static i64 nodeGetRowid( 665 Rtree *pRtree, 666 RtreeNode *pNode, 667 int iCell 668 ){ 669 assert( iCell<NCELL(pNode) ); 670 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); 671 } 672 673 /* 674 ** Return coordinate iCoord from cell iCell in node pNode. 675 */ 676 static void nodeGetCoord( 677 Rtree *pRtree, 678 RtreeNode *pNode, 679 int iCell, 680 int iCoord, 681 RtreeCoord *pCoord /* Space to write result to */ 682 ){ 683 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); 684 } 685 686 /* 687 ** Deserialize cell iCell of node pNode. Populate the structure pointed 688 ** to by pCell with the results. 689 */ 690 static void nodeGetCell( 691 Rtree *pRtree, 692 RtreeNode *pNode, 693 int iCell, 694 RtreeCell *pCell 695 ){ 696 int ii; 697 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); 698 for(ii=0; ii<pRtree->nDim*2; ii++){ 699 nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); 700 } 701 } 702 703 704 /* Forward declaration for the function that does the work of 705 ** the virtual table module xCreate() and xConnect() methods. 706 */ 707 static int rtreeInit( 708 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int 709 ); 710 711 /* 712 ** Rtree virtual table module xCreate method. 713 */ 714 static int rtreeCreate( 715 sqlite3 *db, 716 void *pAux, 717 int argc, const char *const*argv, 718 sqlite3_vtab **ppVtab, 719 char **pzErr 720 ){ 721 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); 722 } 723 724 /* 725 ** Rtree virtual table module xConnect method. 726 */ 727 static int rtreeConnect( 728 sqlite3 *db, 729 void *pAux, 730 int argc, const char *const*argv, 731 sqlite3_vtab **ppVtab, 732 char **pzErr 733 ){ 734 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); 735 } 736 737 /* 738 ** Increment the r-tree reference count. 739 */ 740 static void rtreeReference(Rtree *pRtree){ 741 pRtree->nBusy++; 742 } 743 744 /* 745 ** Decrement the r-tree reference count. When the reference count reaches 746 ** zero the structure is deleted. 747 */ 748 static void rtreeRelease(Rtree *pRtree){ 749 pRtree->nBusy--; 750 if( pRtree->nBusy==0 ){ 751 sqlite3_finalize(pRtree->pReadNode); 752 sqlite3_finalize(pRtree->pWriteNode); 753 sqlite3_finalize(pRtree->pDeleteNode); 754 sqlite3_finalize(pRtree->pReadRowid); 755 sqlite3_finalize(pRtree->pWriteRowid); 756 sqlite3_finalize(pRtree->pDeleteRowid); 757 sqlite3_finalize(pRtree->pReadParent); 758 sqlite3_finalize(pRtree->pWriteParent); 759 sqlite3_finalize(pRtree->pDeleteParent); 760 sqlite3_free(pRtree); 761 } 762 } 763 764 /* 765 ** Rtree virtual table module xDisconnect method. 766 */ 767 static int rtreeDisconnect(sqlite3_vtab *pVtab){ 768 rtreeRelease((Rtree *)pVtab); 769 return SQLITE_OK; 770 } 771 772 /* 773 ** Rtree virtual table module xDestroy method. 774 */ 775 static int rtreeDestroy(sqlite3_vtab *pVtab){ 776 Rtree *pRtree = (Rtree *)pVtab; 777 int rc; 778 char *zCreate = sqlite3_mprintf( 779 "DROP TABLE '%q'.'%q_node';" 780 "DROP TABLE '%q'.'%q_rowid';" 781 "DROP TABLE '%q'.'%q_parent';", 782 pRtree->zDb, pRtree->zName, 783 pRtree->zDb, pRtree->zName, 784 pRtree->zDb, pRtree->zName 785 ); 786 if( !zCreate ){ 787 rc = SQLITE_NOMEM; 788 }else{ 789 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); 790 sqlite3_free(zCreate); 791 } 792 if( rc==SQLITE_OK ){ 793 rtreeRelease(pRtree); 794 } 795 796 return rc; 797 } 798 799 /* 800 ** Rtree virtual table module xOpen method. 801 */ 802 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 803 int rc = SQLITE_NOMEM; 804 RtreeCursor *pCsr; 805 806 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); 807 if( pCsr ){ 808 memset(pCsr, 0, sizeof(RtreeCursor)); 809 pCsr->base.pVtab = pVTab; 810 rc = SQLITE_OK; 811 } 812 *ppCursor = (sqlite3_vtab_cursor *)pCsr; 813 814 return rc; 815 } 816 817 818 /* 819 ** Free the RtreeCursor.aConstraint[] array and its contents. 820 */ 821 static void freeCursorConstraints(RtreeCursor *pCsr){ 822 if( pCsr->aConstraint ){ 823 int i; /* Used to iterate through constraint array */ 824 for(i=0; i<pCsr->nConstraint; i++){ 825 sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; 826 if( pGeom ){ 827 if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); 828 sqlite3_free(pGeom); 829 } 830 } 831 sqlite3_free(pCsr->aConstraint); 832 pCsr->aConstraint = 0; 833 } 834 } 835 836 /* 837 ** Rtree virtual table module xClose method. 838 */ 839 static int rtreeClose(sqlite3_vtab_cursor *cur){ 840 Rtree *pRtree = (Rtree *)(cur->pVtab); 841 int rc; 842 RtreeCursor *pCsr = (RtreeCursor *)cur; 843 freeCursorConstraints(pCsr); 844 rc = nodeRelease(pRtree, pCsr->pNode); 845 sqlite3_free(pCsr); 846 return rc; 847 } 848 849 /* 850 ** Rtree virtual table module xEof method. 851 ** 852 ** Return non-zero if the cursor does not currently point to a valid 853 ** record (i.e if the scan has finished), or zero otherwise. 854 */ 855 static int rtreeEof(sqlite3_vtab_cursor *cur){ 856 RtreeCursor *pCsr = (RtreeCursor *)cur; 857 return (pCsr->pNode==0); 858 } 859 860 /* 861 ** The r-tree constraint passed as the second argument to this function is 862 ** guaranteed to be a MATCH constraint. 863 */ 864 static int testRtreeGeom( 865 Rtree *pRtree, /* R-Tree object */ 866 RtreeConstraint *pConstraint, /* MATCH constraint to test */ 867 RtreeCell *pCell, /* Cell to test */ 868 int *pbRes /* OUT: Test result */ 869 ){ 870 int i; 871 double aCoord[RTREE_MAX_DIMENSIONS*2]; 872 int nCoord = pRtree->nDim*2; 873 874 assert( pConstraint->op==RTREE_MATCH ); 875 assert( pConstraint->pGeom ); 876 877 for(i=0; i<nCoord; i++){ 878 aCoord[i] = DCOORD(pCell->aCoord[i]); 879 } 880 return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); 881 } 882 883 /* 884 ** Cursor pCursor currently points to a cell in a non-leaf page. 885 ** Set *pbEof to true if the sub-tree headed by the cell is filtered 886 ** (excluded) by the constraints in the pCursor->aConstraint[] 887 ** array, or false otherwise. 888 ** 889 ** Return SQLITE_OK if successful or an SQLite error code if an error 890 ** occurs within a geometry callback. 891 */ 892 static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ 893 RtreeCell cell; 894 int ii; 895 int bRes = 0; 896 int rc = SQLITE_OK; 897 898 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); 899 for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ 900 RtreeConstraint *p = &pCursor->aConstraint[ii]; 901 double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); 902 double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); 903 904 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 905 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH 906 ); 907 908 switch( p->op ){ 909 case RTREE_LE: case RTREE_LT: 910 bRes = p->rValue<cell_min; 911 break; 912 913 case RTREE_GE: case RTREE_GT: 914 bRes = p->rValue>cell_max; 915 break; 916 917 case RTREE_EQ: 918 bRes = (p->rValue>cell_max || p->rValue<cell_min); 919 break; 920 921 default: { 922 assert( p->op==RTREE_MATCH ); 923 rc = testRtreeGeom(pRtree, p, &cell, &bRes); 924 bRes = !bRes; 925 break; 926 } 927 } 928 } 929 930 *pbEof = bRes; 931 return rc; 932 } 933 934 /* 935 ** Test if the cell that cursor pCursor currently points to 936 ** would be filtered (excluded) by the constraints in the 937 ** pCursor->aConstraint[] array. If so, set *pbEof to true before 938 ** returning. If the cell is not filtered (excluded) by the constraints, 939 ** set pbEof to zero. 940 ** 941 ** Return SQLITE_OK if successful or an SQLite error code if an error 942 ** occurs within a geometry callback. 943 ** 944 ** This function assumes that the cell is part of a leaf node. 945 */ 946 static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ 947 RtreeCell cell; 948 int ii; 949 *pbEof = 0; 950 951 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); 952 for(ii=0; ii<pCursor->nConstraint; ii++){ 953 RtreeConstraint *p = &pCursor->aConstraint[ii]; 954 double coord = DCOORD(cell.aCoord[p->iCoord]); 955 int res; 956 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 957 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH 958 ); 959 switch( p->op ){ 960 case RTREE_LE: res = (coord<=p->rValue); break; 961 case RTREE_LT: res = (coord<p->rValue); break; 962 case RTREE_GE: res = (coord>=p->rValue); break; 963 case RTREE_GT: res = (coord>p->rValue); break; 964 case RTREE_EQ: res = (coord==p->rValue); break; 965 default: { 966 int rc; 967 assert( p->op==RTREE_MATCH ); 968 rc = testRtreeGeom(pRtree, p, &cell, &res); 969 if( rc!=SQLITE_OK ){ 970 return rc; 971 } 972 break; 973 } 974 } 975 976 if( !res ){ 977 *pbEof = 1; 978 return SQLITE_OK; 979 } 980 } 981 982 return SQLITE_OK; 983 } 984 985 /* 986 ** Cursor pCursor currently points at a node that heads a sub-tree of 987 ** height iHeight (if iHeight==0, then the node is a leaf). Descend 988 ** to point to the left-most cell of the sub-tree that matches the 989 ** configured constraints. 990 */ 991 static int descendToCell( 992 Rtree *pRtree, 993 RtreeCursor *pCursor, 994 int iHeight, 995 int *pEof /* OUT: Set to true if cannot descend */ 996 ){ 997 int isEof; 998 int rc; 999 int ii; 1000 RtreeNode *pChild; 1001 sqlite3_int64 iRowid; 1002 1003 RtreeNode *pSavedNode = pCursor->pNode; 1004 int iSavedCell = pCursor->iCell; 1005 1006 assert( iHeight>=0 ); 1007 1008 if( iHeight==0 ){ 1009 rc = testRtreeEntry(pRtree, pCursor, &isEof); 1010 }else{ 1011 rc = testRtreeCell(pRtree, pCursor, &isEof); 1012 } 1013 if( rc!=SQLITE_OK || isEof || iHeight==0 ){ 1014 goto descend_to_cell_out; 1015 } 1016 1017 iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); 1018 rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); 1019 if( rc!=SQLITE_OK ){ 1020 goto descend_to_cell_out; 1021 } 1022 1023 nodeRelease(pRtree, pCursor->pNode); 1024 pCursor->pNode = pChild; 1025 isEof = 1; 1026 for(ii=0; isEof && ii<NCELL(pChild); ii++){ 1027 pCursor->iCell = ii; 1028 rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); 1029 if( rc!=SQLITE_OK ){ 1030 goto descend_to_cell_out; 1031 } 1032 } 1033 1034 if( isEof ){ 1035 assert( pCursor->pNode==pChild ); 1036 nodeReference(pSavedNode); 1037 nodeRelease(pRtree, pChild); 1038 pCursor->pNode = pSavedNode; 1039 pCursor->iCell = iSavedCell; 1040 } 1041 1042 descend_to_cell_out: 1043 *pEof = isEof; 1044 return rc; 1045 } 1046 1047 /* 1048 ** One of the cells in node pNode is guaranteed to have a 64-bit 1049 ** integer value equal to iRowid. Return the index of this cell. 1050 */ 1051 static int nodeRowidIndex( 1052 Rtree *pRtree, 1053 RtreeNode *pNode, 1054 i64 iRowid, 1055 int *piIndex 1056 ){ 1057 int ii; 1058 int nCell = NCELL(pNode); 1059 for(ii=0; ii<nCell; ii++){ 1060 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ 1061 *piIndex = ii; 1062 return SQLITE_OK; 1063 } 1064 } 1065 return SQLITE_CORRUPT; 1066 } 1067 1068 /* 1069 ** Return the index of the cell containing a pointer to node pNode 1070 ** in its parent. If pNode is the root node, return -1. 1071 */ 1072 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ 1073 RtreeNode *pParent = pNode->pParent; 1074 if( pParent ){ 1075 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); 1076 } 1077 *piIndex = -1; 1078 return SQLITE_OK; 1079 } 1080 1081 /* 1082 ** Rtree virtual table module xNext method. 1083 */ 1084 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ 1085 Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); 1086 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1087 int rc = SQLITE_OK; 1088 1089 /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is 1090 ** already at EOF. It is against the rules to call the xNext() method of 1091 ** a cursor that has already reached EOF. 1092 */ 1093 assert( pCsr->pNode ); 1094 1095 if( pCsr->iStrategy==1 ){ 1096 /* This "scan" is a direct lookup by rowid. There is no next entry. */ 1097 nodeRelease(pRtree, pCsr->pNode); 1098 pCsr->pNode = 0; 1099 }else{ 1100 /* Move to the next entry that matches the configured constraints. */ 1101 int iHeight = 0; 1102 while( pCsr->pNode ){ 1103 RtreeNode *pNode = pCsr->pNode; 1104 int nCell = NCELL(pNode); 1105 for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ 1106 int isEof; 1107 rc = descendToCell(pRtree, pCsr, iHeight, &isEof); 1108 if( rc!=SQLITE_OK || !isEof ){ 1109 return rc; 1110 } 1111 } 1112 pCsr->pNode = pNode->pParent; 1113 rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); 1114 if( rc!=SQLITE_OK ){ 1115 return rc; 1116 } 1117 nodeReference(pCsr->pNode); 1118 nodeRelease(pRtree, pNode); 1119 iHeight++; 1120 } 1121 } 1122 1123 return rc; 1124 } 1125 1126 /* 1127 ** Rtree virtual table module xRowid method. 1128 */ 1129 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ 1130 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; 1131 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1132 1133 assert(pCsr->pNode); 1134 *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); 1135 1136 return SQLITE_OK; 1137 } 1138 1139 /* 1140 ** Rtree virtual table module xColumn method. 1141 */ 1142 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1143 Rtree *pRtree = (Rtree *)cur->pVtab; 1144 RtreeCursor *pCsr = (RtreeCursor *)cur; 1145 1146 if( i==0 ){ 1147 i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); 1148 sqlite3_result_int64(ctx, iRowid); 1149 }else{ 1150 RtreeCoord c; 1151 nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); 1152 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1153 sqlite3_result_double(ctx, c.f); 1154 }else{ 1155 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); 1156 sqlite3_result_int(ctx, c.i); 1157 } 1158 } 1159 1160 return SQLITE_OK; 1161 } 1162 1163 /* 1164 ** Use nodeAcquire() to obtain the leaf node containing the record with 1165 ** rowid iRowid. If successful, set *ppLeaf to point to the node and 1166 ** return SQLITE_OK. If there is no such record in the table, set 1167 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf 1168 ** to zero and return an SQLite error code. 1169 */ 1170 static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ 1171 int rc; 1172 *ppLeaf = 0; 1173 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); 1174 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ 1175 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); 1176 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); 1177 sqlite3_reset(pRtree->pReadRowid); 1178 }else{ 1179 rc = sqlite3_reset(pRtree->pReadRowid); 1180 } 1181 return rc; 1182 } 1183 1184 /* 1185 ** This function is called to configure the RtreeConstraint object passed 1186 ** as the second argument for a MATCH constraint. The value passed as the 1187 ** first argument to this function is the right-hand operand to the MATCH 1188 ** operator. 1189 */ 1190 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ 1191 RtreeMatchArg *p; 1192 sqlite3_rtree_geometry *pGeom; 1193 int nBlob; 1194 1195 /* Check that value is actually a blob. */ 1196 if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR; 1197 1198 /* Check that the blob is roughly the right size. */ 1199 nBlob = sqlite3_value_bytes(pValue); 1200 if( nBlob<(int)sizeof(RtreeMatchArg) 1201 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0 1202 ){ 1203 return SQLITE_ERROR; 1204 } 1205 1206 pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( 1207 sizeof(sqlite3_rtree_geometry) + nBlob 1208 ); 1209 if( !pGeom ) return SQLITE_NOMEM; 1210 memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); 1211 p = (RtreeMatchArg *)&pGeom[1]; 1212 1213 memcpy(p, sqlite3_value_blob(pValue), nBlob); 1214 if( p->magic!=RTREE_GEOMETRY_MAGIC 1215 || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double)) 1216 ){ 1217 sqlite3_free(pGeom); 1218 return SQLITE_ERROR; 1219 } 1220 1221 pGeom->pContext = p->pContext; 1222 pGeom->nParam = p->nParam; 1223 pGeom->aParam = p->aParam; 1224 1225 pCons->xGeom = p->xGeom; 1226 pCons->pGeom = pGeom; 1227 return SQLITE_OK; 1228 } 1229 1230 /* 1231 ** Rtree virtual table module xFilter method. 1232 */ 1233 static int rtreeFilter( 1234 sqlite3_vtab_cursor *pVtabCursor, 1235 int idxNum, const char *idxStr, 1236 int argc, sqlite3_value **argv 1237 ){ 1238 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; 1239 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; 1240 1241 RtreeNode *pRoot = 0; 1242 int ii; 1243 int rc = SQLITE_OK; 1244 1245 rtreeReference(pRtree); 1246 1247 freeCursorConstraints(pCsr); 1248 pCsr->iStrategy = idxNum; 1249 1250 if( idxNum==1 ){ 1251 /* Special case - lookup by rowid. */ 1252 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ 1253 i64 iRowid = sqlite3_value_int64(argv[0]); 1254 rc = findLeafNode(pRtree, iRowid, &pLeaf); 1255 pCsr->pNode = pLeaf; 1256 if( pLeaf ){ 1257 assert( rc==SQLITE_OK ); 1258 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); 1259 } 1260 }else{ 1261 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array 1262 ** with the configured constraints. 1263 */ 1264 if( argc>0 ){ 1265 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); 1266 pCsr->nConstraint = argc; 1267 if( !pCsr->aConstraint ){ 1268 rc = SQLITE_NOMEM; 1269 }else{ 1270 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); 1271 assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 ); 1272 for(ii=0; ii<argc; ii++){ 1273 RtreeConstraint *p = &pCsr->aConstraint[ii]; 1274 p->op = idxStr[ii*2]; 1275 p->iCoord = idxStr[ii*2+1]-'a'; 1276 if( p->op==RTREE_MATCH ){ 1277 /* A MATCH operator. The right-hand-side must be a blob that 1278 ** can be cast into an RtreeMatchArg object. One created using 1279 ** an sqlite3_rtree_geometry_callback() SQL user function. 1280 */ 1281 rc = deserializeGeometry(argv[ii], p); 1282 if( rc!=SQLITE_OK ){ 1283 break; 1284 } 1285 }else{ 1286 p->rValue = sqlite3_value_double(argv[ii]); 1287 } 1288 } 1289 } 1290 } 1291 1292 if( rc==SQLITE_OK ){ 1293 pCsr->pNode = 0; 1294 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 1295 } 1296 if( rc==SQLITE_OK ){ 1297 int isEof = 1; 1298 int nCell = NCELL(pRoot); 1299 pCsr->pNode = pRoot; 1300 for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ 1301 assert( pCsr->pNode==pRoot ); 1302 rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); 1303 if( !isEof ){ 1304 break; 1305 } 1306 } 1307 if( rc==SQLITE_OK && isEof ){ 1308 assert( pCsr->pNode==pRoot ); 1309 nodeRelease(pRtree, pRoot); 1310 pCsr->pNode = 0; 1311 } 1312 assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); 1313 } 1314 } 1315 1316 rtreeRelease(pRtree); 1317 return rc; 1318 } 1319 1320 /* 1321 ** Rtree virtual table module xBestIndex method. There are three 1322 ** table scan strategies to choose from (in order from most to 1323 ** least desirable): 1324 ** 1325 ** idxNum idxStr Strategy 1326 ** ------------------------------------------------ 1327 ** 1 Unused Direct lookup by rowid. 1328 ** 2 See below R-tree query or full-table scan. 1329 ** ------------------------------------------------ 1330 ** 1331 ** If strategy 1 is used, then idxStr is not meaningful. If strategy 1332 ** 2 is used, idxStr is formatted to contain 2 bytes for each 1333 ** constraint used. The first two bytes of idxStr correspond to 1334 ** the constraint in sqlite3_index_info.aConstraintUsage[] with 1335 ** (argvIndex==1) etc. 1336 ** 1337 ** The first of each pair of bytes in idxStr identifies the constraint 1338 ** operator as follows: 1339 ** 1340 ** Operator Byte Value 1341 ** ---------------------- 1342 ** = 0x41 ('A') 1343 ** <= 0x42 ('B') 1344 ** < 0x43 ('C') 1345 ** >= 0x44 ('D') 1346 ** > 0x45 ('E') 1347 ** MATCH 0x46 ('F') 1348 ** ---------------------- 1349 ** 1350 ** The second of each pair of bytes identifies the coordinate column 1351 ** to which the constraint applies. The leftmost coordinate column 1352 ** is 'a', the second from the left 'b' etc. 1353 */ 1354 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1355 int rc = SQLITE_OK; 1356 int ii; 1357 1358 int iIdx = 0; 1359 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; 1360 memset(zIdxStr, 0, sizeof(zIdxStr)); 1361 UNUSED_PARAMETER(tab); 1362 1363 assert( pIdxInfo->idxStr==0 ); 1364 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ 1365 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; 1366 1367 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ 1368 /* We have an equality constraint on the rowid. Use strategy 1. */ 1369 int jj; 1370 for(jj=0; jj<ii; jj++){ 1371 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; 1372 pIdxInfo->aConstraintUsage[jj].omit = 0; 1373 } 1374 pIdxInfo->idxNum = 1; 1375 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; 1376 pIdxInfo->aConstraintUsage[jj].omit = 1; 1377 1378 /* This strategy involves a two rowid lookups on an B-Tree structures 1379 ** and then a linear search of an R-Tree node. This should be 1380 ** considered almost as quick as a direct rowid lookup (for which 1381 ** sqlite uses an internal cost of 0.0). 1382 */ 1383 pIdxInfo->estimatedCost = 10.0; 1384 return SQLITE_OK; 1385 } 1386 1387 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ 1388 u8 op; 1389 switch( p->op ){ 1390 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; 1391 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; 1392 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; 1393 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; 1394 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; 1395 default: 1396 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); 1397 op = RTREE_MATCH; 1398 break; 1399 } 1400 zIdxStr[iIdx++] = op; 1401 zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; 1402 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); 1403 pIdxInfo->aConstraintUsage[ii].omit = 1; 1404 } 1405 } 1406 1407 pIdxInfo->idxNum = 2; 1408 pIdxInfo->needToFreeIdxStr = 1; 1409 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ 1410 return SQLITE_NOMEM; 1411 } 1412 assert( iIdx>=0 ); 1413 pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); 1414 return rc; 1415 } 1416 1417 /* 1418 ** Return the N-dimensional volumn of the cell stored in *p. 1419 */ 1420 static float cellArea(Rtree *pRtree, RtreeCell *p){ 1421 float area = 1.0; 1422 int ii; 1423 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 1424 area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); 1425 } 1426 return area; 1427 } 1428 1429 /* 1430 ** Return the margin length of cell p. The margin length is the sum 1431 ** of the objects size in each dimension. 1432 */ 1433 static float cellMargin(Rtree *pRtree, RtreeCell *p){ 1434 float margin = 0.0; 1435 int ii; 1436 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 1437 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); 1438 } 1439 return margin; 1440 } 1441 1442 /* 1443 ** Store the union of cells p1 and p2 in p1. 1444 */ 1445 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 1446 int ii; 1447 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 1448 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 1449 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); 1450 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); 1451 } 1452 }else{ 1453 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 1454 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); 1455 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); 1456 } 1457 } 1458 } 1459 1460 /* 1461 ** Return true if the area covered by p2 is a subset of the area covered 1462 ** by p1. False otherwise. 1463 */ 1464 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ 1465 int ii; 1466 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); 1467 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 1468 RtreeCoord *a1 = &p1->aCoord[ii]; 1469 RtreeCoord *a2 = &p2->aCoord[ii]; 1470 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) 1471 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) 1472 ){ 1473 return 0; 1474 } 1475 } 1476 return 1; 1477 } 1478 1479 /* 1480 ** Return the amount cell p would grow by if it were unioned with pCell. 1481 */ 1482 static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ 1483 float area; 1484 RtreeCell cell; 1485 memcpy(&cell, p, sizeof(RtreeCell)); 1486 area = cellArea(pRtree, &cell); 1487 cellUnion(pRtree, &cell, pCell); 1488 return (cellArea(pRtree, &cell)-area); 1489 } 1490 1491 #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT 1492 static float cellOverlap( 1493 Rtree *pRtree, 1494 RtreeCell *p, 1495 RtreeCell *aCell, 1496 int nCell, 1497 int iExclude 1498 ){ 1499 int ii; 1500 float overlap = 0.0; 1501 for(ii=0; ii<nCell; ii++){ 1502 #if VARIANT_RSTARTREE_CHOOSESUBTREE 1503 if( ii!=iExclude ) 1504 #else 1505 assert( iExclude==-1 ); 1506 UNUSED_PARAMETER(iExclude); 1507 #endif 1508 { 1509 int jj; 1510 float o = 1.0; 1511 for(jj=0; jj<(pRtree->nDim*2); jj+=2){ 1512 double x1; 1513 double x2; 1514 1515 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); 1516 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); 1517 1518 if( x2<x1 ){ 1519 o = 0.0; 1520 break; 1521 }else{ 1522 o = o * (x2-x1); 1523 } 1524 } 1525 overlap += o; 1526 } 1527 } 1528 return overlap; 1529 } 1530 #endif 1531 1532 #if VARIANT_RSTARTREE_CHOOSESUBTREE 1533 static float cellOverlapEnlargement( 1534 Rtree *pRtree, 1535 RtreeCell *p, 1536 RtreeCell *pInsert, 1537 RtreeCell *aCell, 1538 int nCell, 1539 int iExclude 1540 ){ 1541 float before; 1542 float after; 1543 before = cellOverlap(pRtree, p, aCell, nCell, iExclude); 1544 cellUnion(pRtree, p, pInsert); 1545 after = cellOverlap(pRtree, p, aCell, nCell, iExclude); 1546 return after-before; 1547 } 1548 #endif 1549 1550 1551 /* 1552 ** This function implements the ChooseLeaf algorithm from Gutman[84]. 1553 ** ChooseSubTree in r*tree terminology. 1554 */ 1555 static int ChooseLeaf( 1556 Rtree *pRtree, /* Rtree table */ 1557 RtreeCell *pCell, /* Cell to insert into rtree */ 1558 int iHeight, /* Height of sub-tree rooted at pCell */ 1559 RtreeNode **ppLeaf /* OUT: Selected leaf page */ 1560 ){ 1561 int rc; 1562 int ii; 1563 RtreeNode *pNode; 1564 rc = nodeAcquire(pRtree, 1, 0, &pNode); 1565 1566 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ 1567 int iCell; 1568 sqlite3_int64 iBest; 1569 1570 float fMinGrowth; 1571 float fMinArea; 1572 float fMinOverlap; 1573 1574 int nCell = NCELL(pNode); 1575 RtreeCell cell; 1576 RtreeNode *pChild; 1577 1578 RtreeCell *aCell = 0; 1579 1580 #if VARIANT_RSTARTREE_CHOOSESUBTREE 1581 if( ii==(pRtree->iDepth-1) ){ 1582 int jj; 1583 aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); 1584 if( !aCell ){ 1585 rc = SQLITE_NOMEM; 1586 nodeRelease(pRtree, pNode); 1587 pNode = 0; 1588 continue; 1589 } 1590 for(jj=0; jj<nCell; jj++){ 1591 nodeGetCell(pRtree, pNode, jj, &aCell[jj]); 1592 } 1593 } 1594 #endif 1595 1596 /* Select the child node which will be enlarged the least if pCell 1597 ** is inserted into it. Resolve ties by choosing the entry with 1598 ** the smallest area. 1599 */ 1600 for(iCell=0; iCell<nCell; iCell++){ 1601 int bBest = 0; 1602 float growth; 1603 float area; 1604 float overlap = 0.0; 1605 nodeGetCell(pRtree, pNode, iCell, &cell); 1606 growth = cellGrowth(pRtree, &cell, pCell); 1607 area = cellArea(pRtree, &cell); 1608 1609 #if VARIANT_RSTARTREE_CHOOSESUBTREE 1610 if( ii==(pRtree->iDepth-1) ){ 1611 overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); 1612 } 1613 if( (iCell==0) 1614 || (overlap<fMinOverlap) 1615 || (overlap==fMinOverlap && growth<fMinGrowth) 1616 || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) 1617 ){ 1618 bBest = 1; 1619 } 1620 #else 1621 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ 1622 bBest = 1; 1623 } 1624 #endif 1625 if( bBest ){ 1626 fMinOverlap = overlap; 1627 fMinGrowth = growth; 1628 fMinArea = area; 1629 iBest = cell.iRowid; 1630 } 1631 } 1632 1633 sqlite3_free(aCell); 1634 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); 1635 nodeRelease(pRtree, pNode); 1636 pNode = pChild; 1637 } 1638 1639 *ppLeaf = pNode; 1640 return rc; 1641 } 1642 1643 /* 1644 ** A cell with the same content as pCell has just been inserted into 1645 ** the node pNode. This function updates the bounding box cells in 1646 ** all ancestor elements. 1647 */ 1648 static int AdjustTree( 1649 Rtree *pRtree, /* Rtree table */ 1650 RtreeNode *pNode, /* Adjust ancestry of this node. */ 1651 RtreeCell *pCell /* This cell was just inserted */ 1652 ){ 1653 RtreeNode *p = pNode; 1654 while( p->pParent ){ 1655 RtreeNode *pParent = p->pParent; 1656 RtreeCell cell; 1657 int iCell; 1658 1659 if( nodeParentIndex(pRtree, p, &iCell) ){ 1660 return SQLITE_CORRUPT; 1661 } 1662 1663 nodeGetCell(pRtree, pParent, iCell, &cell); 1664 if( !cellContains(pRtree, &cell, pCell) ){ 1665 cellUnion(pRtree, &cell, pCell); 1666 nodeOverwriteCell(pRtree, pParent, &cell, iCell); 1667 } 1668 1669 p = pParent; 1670 } 1671 return SQLITE_OK; 1672 } 1673 1674 /* 1675 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. 1676 */ 1677 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ 1678 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); 1679 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); 1680 sqlite3_step(pRtree->pWriteRowid); 1681 return sqlite3_reset(pRtree->pWriteRowid); 1682 } 1683 1684 /* 1685 ** Write mapping (iNode->iPar) to the <rtree>_parent table. 1686 */ 1687 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ 1688 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); 1689 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); 1690 sqlite3_step(pRtree->pWriteParent); 1691 return sqlite3_reset(pRtree->pWriteParent); 1692 } 1693 1694 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); 1695 1696 #if VARIANT_GUTTMAN_LINEAR_SPLIT 1697 /* 1698 ** Implementation of the linear variant of the PickNext() function from 1699 ** Guttman[84]. 1700 */ 1701 static RtreeCell *LinearPickNext( 1702 Rtree *pRtree, 1703 RtreeCell *aCell, 1704 int nCell, 1705 RtreeCell *pLeftBox, 1706 RtreeCell *pRightBox, 1707 int *aiUsed 1708 ){ 1709 int ii; 1710 for(ii=0; aiUsed[ii]; ii++); 1711 aiUsed[ii] = 1; 1712 return &aCell[ii]; 1713 } 1714 1715 /* 1716 ** Implementation of the linear variant of the PickSeeds() function from 1717 ** Guttman[84]. 1718 */ 1719 static void LinearPickSeeds( 1720 Rtree *pRtree, 1721 RtreeCell *aCell, 1722 int nCell, 1723 int *piLeftSeed, 1724 int *piRightSeed 1725 ){ 1726 int i; 1727 int iLeftSeed = 0; 1728 int iRightSeed = 1; 1729 float maxNormalInnerWidth = 0.0; 1730 1731 /* Pick two "seed" cells from the array of cells. The algorithm used 1732 ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 1733 ** indices of the two seed cells in the array are stored in local 1734 ** variables iLeftSeek and iRightSeed. 1735 */ 1736 for(i=0; i<pRtree->nDim; i++){ 1737 float x1 = DCOORD(aCell[0].aCoord[i*2]); 1738 float x2 = DCOORD(aCell[0].aCoord[i*2+1]); 1739 float x3 = x1; 1740 float x4 = x2; 1741 int jj; 1742 1743 int iCellLeft = 0; 1744 int iCellRight = 0; 1745 1746 for(jj=1; jj<nCell; jj++){ 1747 float left = DCOORD(aCell[jj].aCoord[i*2]); 1748 float right = DCOORD(aCell[jj].aCoord[i*2+1]); 1749 1750 if( left<x1 ) x1 = left; 1751 if( right>x4 ) x4 = right; 1752 if( left>x3 ){ 1753 x3 = left; 1754 iCellRight = jj; 1755 } 1756 if( right<x2 ){ 1757 x2 = right; 1758 iCellLeft = jj; 1759 } 1760 } 1761 1762 if( x4!=x1 ){ 1763 float normalwidth = (x3 - x2) / (x4 - x1); 1764 if( normalwidth>maxNormalInnerWidth ){ 1765 iLeftSeed = iCellLeft; 1766 iRightSeed = iCellRight; 1767 } 1768 } 1769 } 1770 1771 *piLeftSeed = iLeftSeed; 1772 *piRightSeed = iRightSeed; 1773 } 1774 #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ 1775 1776 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT 1777 /* 1778 ** Implementation of the quadratic variant of the PickNext() function from 1779 ** Guttman[84]. 1780 */ 1781 static RtreeCell *QuadraticPickNext( 1782 Rtree *pRtree, 1783 RtreeCell *aCell, 1784 int nCell, 1785 RtreeCell *pLeftBox, 1786 RtreeCell *pRightBox, 1787 int *aiUsed 1788 ){ 1789 #define FABS(a) ((a)<0.0?-1.0*(a):(a)) 1790 1791 int iSelect = -1; 1792 float fDiff; 1793 int ii; 1794 for(ii=0; ii<nCell; ii++){ 1795 if( aiUsed[ii]==0 ){ 1796 float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); 1797 float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); 1798 float diff = FABS(right-left); 1799 if( iSelect<0 || diff>fDiff ){ 1800 fDiff = diff; 1801 iSelect = ii; 1802 } 1803 } 1804 } 1805 aiUsed[iSelect] = 1; 1806 return &aCell[iSelect]; 1807 } 1808 1809 /* 1810 ** Implementation of the quadratic variant of the PickSeeds() function from 1811 ** Guttman[84]. 1812 */ 1813 static void QuadraticPickSeeds( 1814 Rtree *pRtree, 1815 RtreeCell *aCell, 1816 int nCell, 1817 int *piLeftSeed, 1818 int *piRightSeed 1819 ){ 1820 int ii; 1821 int jj; 1822 1823 int iLeftSeed = 0; 1824 int iRightSeed = 1; 1825 float fWaste = 0.0; 1826 1827 for(ii=0; ii<nCell; ii++){ 1828 for(jj=ii+1; jj<nCell; jj++){ 1829 float right = cellArea(pRtree, &aCell[jj]); 1830 float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); 1831 float waste = growth - right; 1832 1833 if( waste>fWaste ){ 1834 iLeftSeed = ii; 1835 iRightSeed = jj; 1836 fWaste = waste; 1837 } 1838 } 1839 } 1840 1841 *piLeftSeed = iLeftSeed; 1842 *piRightSeed = iRightSeed; 1843 } 1844 #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ 1845 1846 /* 1847 ** Arguments aIdx, aDistance and aSpare all point to arrays of size 1848 ** nIdx. The aIdx array contains the set of integers from 0 to 1849 ** (nIdx-1) in no particular order. This function sorts the values 1850 ** in aIdx according to the indexed values in aDistance. For 1851 ** example, assuming the inputs: 1852 ** 1853 ** aIdx = { 0, 1, 2, 3 } 1854 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } 1855 ** 1856 ** this function sets the aIdx array to contain: 1857 ** 1858 ** aIdx = { 0, 1, 2, 3 } 1859 ** 1860 ** The aSpare array is used as temporary working space by the 1861 ** sorting algorithm. 1862 */ 1863 static void SortByDistance( 1864 int *aIdx, 1865 int nIdx, 1866 float *aDistance, 1867 int *aSpare 1868 ){ 1869 if( nIdx>1 ){ 1870 int iLeft = 0; 1871 int iRight = 0; 1872 1873 int nLeft = nIdx/2; 1874 int nRight = nIdx-nLeft; 1875 int *aLeft = aIdx; 1876 int *aRight = &aIdx[nLeft]; 1877 1878 SortByDistance(aLeft, nLeft, aDistance, aSpare); 1879 SortByDistance(aRight, nRight, aDistance, aSpare); 1880 1881 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 1882 aLeft = aSpare; 1883 1884 while( iLeft<nLeft || iRight<nRight ){ 1885 if( iLeft==nLeft ){ 1886 aIdx[iLeft+iRight] = aRight[iRight]; 1887 iRight++; 1888 }else if( iRight==nRight ){ 1889 aIdx[iLeft+iRight] = aLeft[iLeft]; 1890 iLeft++; 1891 }else{ 1892 float fLeft = aDistance[aLeft[iLeft]]; 1893 float fRight = aDistance[aRight[iRight]]; 1894 if( fLeft<fRight ){ 1895 aIdx[iLeft+iRight] = aLeft[iLeft]; 1896 iLeft++; 1897 }else{ 1898 aIdx[iLeft+iRight] = aRight[iRight]; 1899 iRight++; 1900 } 1901 } 1902 } 1903 1904 #if 0 1905 /* Check that the sort worked */ 1906 { 1907 int jj; 1908 for(jj=1; jj<nIdx; jj++){ 1909 float left = aDistance[aIdx[jj-1]]; 1910 float right = aDistance[aIdx[jj]]; 1911 assert( left<=right ); 1912 } 1913 } 1914 #endif 1915 } 1916 } 1917 1918 /* 1919 ** Arguments aIdx, aCell and aSpare all point to arrays of size 1920 ** nIdx. The aIdx array contains the set of integers from 0 to 1921 ** (nIdx-1) in no particular order. This function sorts the values 1922 ** in aIdx according to dimension iDim of the cells in aCell. The 1923 ** minimum value of dimension iDim is considered first, the 1924 ** maximum used to break ties. 1925 ** 1926 ** The aSpare array is used as temporary working space by the 1927 ** sorting algorithm. 1928 */ 1929 static void SortByDimension( 1930 Rtree *pRtree, 1931 int *aIdx, 1932 int nIdx, 1933 int iDim, 1934 RtreeCell *aCell, 1935 int *aSpare 1936 ){ 1937 if( nIdx>1 ){ 1938 1939 int iLeft = 0; 1940 int iRight = 0; 1941 1942 int nLeft = nIdx/2; 1943 int nRight = nIdx-nLeft; 1944 int *aLeft = aIdx; 1945 int *aRight = &aIdx[nLeft]; 1946 1947 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); 1948 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); 1949 1950 memcpy(aSpare, aLeft, sizeof(int)*nLeft); 1951 aLeft = aSpare; 1952 while( iLeft<nLeft || iRight<nRight ){ 1953 double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); 1954 double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); 1955 double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); 1956 double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); 1957 if( (iLeft!=nLeft) && ((iRight==nRight) 1958 || (xleft1<xright1) 1959 || (xleft1==xright1 && xleft2<xright2) 1960 )){ 1961 aIdx[iLeft+iRight] = aLeft[iLeft]; 1962 iLeft++; 1963 }else{ 1964 aIdx[iLeft+iRight] = aRight[iRight]; 1965 iRight++; 1966 } 1967 } 1968 1969 #if 0 1970 /* Check that the sort worked */ 1971 { 1972 int jj; 1973 for(jj=1; jj<nIdx; jj++){ 1974 float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; 1975 float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; 1976 float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; 1977 float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; 1978 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); 1979 } 1980 } 1981 #endif 1982 } 1983 } 1984 1985 #if VARIANT_RSTARTREE_SPLIT 1986 /* 1987 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. 1988 */ 1989 static int splitNodeStartree( 1990 Rtree *pRtree, 1991 RtreeCell *aCell, 1992 int nCell, 1993 RtreeNode *pLeft, 1994 RtreeNode *pRight, 1995 RtreeCell *pBboxLeft, 1996 RtreeCell *pBboxRight 1997 ){ 1998 int **aaSorted; 1999 int *aSpare; 2000 int ii; 2001 2002 int iBestDim; 2003 int iBestSplit; 2004 float fBestMargin; 2005 2006 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); 2007 2008 aaSorted = (int **)sqlite3_malloc(nByte); 2009 if( !aaSorted ){ 2010 return SQLITE_NOMEM; 2011 } 2012 2013 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; 2014 memset(aaSorted, 0, nByte); 2015 for(ii=0; ii<pRtree->nDim; ii++){ 2016 int jj; 2017 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; 2018 for(jj=0; jj<nCell; jj++){ 2019 aaSorted[ii][jj] = jj; 2020 } 2021 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); 2022 } 2023 2024 for(ii=0; ii<pRtree->nDim; ii++){ 2025 float margin = 0.0; 2026 float fBestOverlap; 2027 float fBestArea; 2028 int iBestLeft; 2029 int nLeft; 2030 2031 for( 2032 nLeft=RTREE_MINCELLS(pRtree); 2033 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 2034 nLeft++ 2035 ){ 2036 RtreeCell left; 2037 RtreeCell right; 2038 int kk; 2039 float overlap; 2040 float area; 2041 2042 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); 2043 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); 2044 for(kk=1; kk<(nCell-1); kk++){ 2045 if( kk<nLeft ){ 2046 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); 2047 }else{ 2048 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); 2049 } 2050 } 2051 margin += cellMargin(pRtree, &left); 2052 margin += cellMargin(pRtree, &right); 2053 overlap = cellOverlap(pRtree, &left, &right, 1, -1); 2054 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); 2055 if( (nLeft==RTREE_MINCELLS(pRtree)) 2056 || (overlap<fBestOverlap) 2057 || (overlap==fBestOverlap && area<fBestArea) 2058 ){ 2059 iBestLeft = nLeft; 2060 fBestOverlap = overlap; 2061 fBestArea = area; 2062 } 2063 } 2064 2065 if( ii==0 || margin<fBestMargin ){ 2066 iBestDim = ii; 2067 fBestMargin = margin; 2068 iBestSplit = iBestLeft; 2069 } 2070 } 2071 2072 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); 2073 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); 2074 for(ii=0; ii<nCell; ii++){ 2075 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; 2076 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; 2077 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; 2078 nodeInsertCell(pRtree, pTarget, pCell); 2079 cellUnion(pRtree, pBbox, pCell); 2080 } 2081 2082 sqlite3_free(aaSorted); 2083 return SQLITE_OK; 2084 } 2085 #endif 2086 2087 #if VARIANT_GUTTMAN_SPLIT 2088 /* 2089 ** Implementation of the regular R-tree SplitNode from Guttman[1984]. 2090 */ 2091 static int splitNodeGuttman( 2092 Rtree *pRtree, 2093 RtreeCell *aCell, 2094 int nCell, 2095 RtreeNode *pLeft, 2096 RtreeNode *pRight, 2097 RtreeCell *pBboxLeft, 2098 RtreeCell *pBboxRight 2099 ){ 2100 int iLeftSeed = 0; 2101 int iRightSeed = 1; 2102 int *aiUsed; 2103 int i; 2104 2105 aiUsed = sqlite3_malloc(sizeof(int)*nCell); 2106 if( !aiUsed ){ 2107 return SQLITE_NOMEM; 2108 } 2109 memset(aiUsed, 0, sizeof(int)*nCell); 2110 2111 PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); 2112 2113 memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); 2114 memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); 2115 nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); 2116 nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); 2117 aiUsed[iLeftSeed] = 1; 2118 aiUsed[iRightSeed] = 1; 2119 2120 for(i=nCell-2; i>0; i--){ 2121 RtreeCell *pNext; 2122 pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); 2123 float diff = 2124 cellGrowth(pRtree, pBboxLeft, pNext) - 2125 cellGrowth(pRtree, pBboxRight, pNext) 2126 ; 2127 if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) 2128 || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) 2129 ){ 2130 nodeInsertCell(pRtree, pRight, pNext); 2131 cellUnion(pRtree, pBboxRight, pNext); 2132 }else{ 2133 nodeInsertCell(pRtree, pLeft, pNext); 2134 cellUnion(pRtree, pBboxLeft, pNext); 2135 } 2136 } 2137 2138 sqlite3_free(aiUsed); 2139 return SQLITE_OK; 2140 } 2141 #endif 2142 2143 static int updateMapping( 2144 Rtree *pRtree, 2145 i64 iRowid, 2146 RtreeNode *pNode, 2147 int iHeight 2148 ){ 2149 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); 2150 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); 2151 if( iHeight>0 ){ 2152 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); 2153 if( pChild ){ 2154 nodeRelease(pRtree, pChild->pParent); 2155 nodeReference(pNode); 2156 pChild->pParent = pNode; 2157 } 2158 } 2159 return xSetMapping(pRtree, iRowid, pNode->iNode); 2160 } 2161 2162 static int SplitNode( 2163 Rtree *pRtree, 2164 RtreeNode *pNode, 2165 RtreeCell *pCell, 2166 int iHeight 2167 ){ 2168 int i; 2169 int newCellIsRight = 0; 2170 2171 int rc = SQLITE_OK; 2172 int nCell = NCELL(pNode); 2173 RtreeCell *aCell; 2174 int *aiUsed; 2175 2176 RtreeNode *pLeft = 0; 2177 RtreeNode *pRight = 0; 2178 2179 RtreeCell leftbbox; 2180 RtreeCell rightbbox; 2181 2182 /* Allocate an array and populate it with a copy of pCell and 2183 ** all cells from node pLeft. Then zero the original node. 2184 */ 2185 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); 2186 if( !aCell ){ 2187 rc = SQLITE_NOMEM; 2188 goto splitnode_out; 2189 } 2190 aiUsed = (int *)&aCell[nCell+1]; 2191 memset(aiUsed, 0, sizeof(int)*(nCell+1)); 2192 for(i=0; i<nCell; i++){ 2193 nodeGetCell(pRtree, pNode, i, &aCell[i]); 2194 } 2195 nodeZero(pRtree, pNode); 2196 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); 2197 nCell++; 2198 2199 if( pNode->iNode==1 ){ 2200 pRight = nodeNew(pRtree, pNode); 2201 pLeft = nodeNew(pRtree, pNode); 2202 pRtree->iDepth++; 2203 pNode->isDirty = 1; 2204 writeInt16(pNode->zData, pRtree->iDepth); 2205 }else{ 2206 pLeft = pNode; 2207 pRight = nodeNew(pRtree, pLeft->pParent); 2208 nodeReference(pLeft); 2209 } 2210 2211 if( !pLeft || !pRight ){ 2212 rc = SQLITE_NOMEM; 2213 goto splitnode_out; 2214 } 2215 2216 memset(pLeft->zData, 0, pRtree->iNodeSize); 2217 memset(pRight->zData, 0, pRtree->iNodeSize); 2218 2219 rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); 2220 if( rc!=SQLITE_OK ){ 2221 goto splitnode_out; 2222 } 2223 2224 /* Ensure both child nodes have node numbers assigned to them by calling 2225 ** nodeWrite(). Node pRight always needs a node number, as it was created 2226 ** by nodeNew() above. But node pLeft sometimes already has a node number. 2227 ** In this case avoid the all to nodeWrite(). 2228 */ 2229 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) 2230 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) 2231 ){ 2232 goto splitnode_out; 2233 } 2234 2235 rightbbox.iRowid = pRight->iNode; 2236 leftbbox.iRowid = pLeft->iNode; 2237 2238 if( pNode->iNode==1 ){ 2239 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); 2240 if( rc!=SQLITE_OK ){ 2241 goto splitnode_out; 2242 } 2243 }else{ 2244 RtreeNode *pParent = pLeft->pParent; 2245 int iCell; 2246 rc = nodeParentIndex(pRtree, pLeft, &iCell); 2247 if( rc==SQLITE_OK ){ 2248 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); 2249 rc = AdjustTree(pRtree, pParent, &leftbbox); 2250 } 2251 if( rc!=SQLITE_OK ){ 2252 goto splitnode_out; 2253 } 2254 } 2255 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ 2256 goto splitnode_out; 2257 } 2258 2259 for(i=0; i<NCELL(pRight); i++){ 2260 i64 iRowid = nodeGetRowid(pRtree, pRight, i); 2261 rc = updateMapping(pRtree, iRowid, pRight, iHeight); 2262 if( iRowid==pCell->iRowid ){ 2263 newCellIsRight = 1; 2264 } 2265 if( rc!=SQLITE_OK ){ 2266 goto splitnode_out; 2267 } 2268 } 2269 if( pNode->iNode==1 ){ 2270 for(i=0; i<NCELL(pLeft); i++){ 2271 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); 2272 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); 2273 if( rc!=SQLITE_OK ){ 2274 goto splitnode_out; 2275 } 2276 } 2277 }else if( newCellIsRight==0 ){ 2278 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); 2279 } 2280 2281 if( rc==SQLITE_OK ){ 2282 rc = nodeRelease(pRtree, pRight); 2283 pRight = 0; 2284 } 2285 if( rc==SQLITE_OK ){ 2286 rc = nodeRelease(pRtree, pLeft); 2287 pLeft = 0; 2288 } 2289 2290 splitnode_out: 2291 nodeRelease(pRtree, pRight); 2292 nodeRelease(pRtree, pLeft); 2293 sqlite3_free(aCell); 2294 return rc; 2295 } 2296 2297 /* 2298 ** If node pLeaf is not the root of the r-tree and its pParent pointer is 2299 ** still NULL, load all ancestor nodes of pLeaf into memory and populate 2300 ** the pLeaf->pParent chain all the way up to the root node. 2301 ** 2302 ** This operation is required when a row is deleted (or updated - an update 2303 ** is implemented as a delete followed by an insert). SQLite provides the 2304 ** rowid of the row to delete, which can be used to find the leaf on which 2305 ** the entry resides (argument pLeaf). Once the leaf is located, this 2306 ** function is called to determine its ancestry. 2307 */ 2308 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ 2309 int rc = SQLITE_OK; 2310 RtreeNode *pChild = pLeaf; 2311 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ 2312 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ 2313 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); 2314 rc = sqlite3_step(pRtree->pReadParent); 2315 if( rc==SQLITE_ROW ){ 2316 RtreeNode *pTest; /* Used to test for reference loops */ 2317 i64 iNode; /* Node number of parent node */ 2318 2319 /* Before setting pChild->pParent, test that we are not creating a 2320 ** loop of references (as we would if, say, pChild==pParent). We don't 2321 ** want to do this as it leads to a memory leak when trying to delete 2322 ** the referenced counted node structures. 2323 */ 2324 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); 2325 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); 2326 if( !pTest ){ 2327 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); 2328 } 2329 } 2330 rc = sqlite3_reset(pRtree->pReadParent); 2331 if( rc==SQLITE_OK ) rc = rc2; 2332 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT; 2333 pChild = pChild->pParent; 2334 } 2335 return rc; 2336 } 2337 2338 static int deleteCell(Rtree *, RtreeNode *, int, int); 2339 2340 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ 2341 int rc; 2342 int rc2; 2343 RtreeNode *pParent; 2344 int iCell; 2345 2346 assert( pNode->nRef==1 ); 2347 2348 /* Remove the entry in the parent cell. */ 2349 rc = nodeParentIndex(pRtree, pNode, &iCell); 2350 if( rc==SQLITE_OK ){ 2351 pParent = pNode->pParent; 2352 pNode->pParent = 0; 2353 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); 2354 } 2355 rc2 = nodeRelease(pRtree, pParent); 2356 if( rc==SQLITE_OK ){ 2357 rc = rc2; 2358 } 2359 if( rc!=SQLITE_OK ){ 2360 return rc; 2361 } 2362 2363 /* Remove the xxx_node entry. */ 2364 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); 2365 sqlite3_step(pRtree->pDeleteNode); 2366 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ 2367 return rc; 2368 } 2369 2370 /* Remove the xxx_parent entry. */ 2371 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); 2372 sqlite3_step(pRtree->pDeleteParent); 2373 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ 2374 return rc; 2375 } 2376 2377 /* Remove the node from the in-memory hash table and link it into 2378 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. 2379 */ 2380 nodeHashDelete(pRtree, pNode); 2381 pNode->iNode = iHeight; 2382 pNode->pNext = pRtree->pDeleted; 2383 pNode->nRef++; 2384 pRtree->pDeleted = pNode; 2385 2386 return SQLITE_OK; 2387 } 2388 2389 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ 2390 RtreeNode *pParent = pNode->pParent; 2391 int rc = SQLITE_OK; 2392 if( pParent ){ 2393 int ii; 2394 int nCell = NCELL(pNode); 2395 RtreeCell box; /* Bounding box for pNode */ 2396 nodeGetCell(pRtree, pNode, 0, &box); 2397 for(ii=1; ii<nCell; ii++){ 2398 RtreeCell cell; 2399 nodeGetCell(pRtree, pNode, ii, &cell); 2400 cellUnion(pRtree, &box, &cell); 2401 } 2402 box.iRowid = pNode->iNode; 2403 rc = nodeParentIndex(pRtree, pNode, &ii); 2404 if( rc==SQLITE_OK ){ 2405 nodeOverwriteCell(pRtree, pParent, &box, ii); 2406 rc = fixBoundingBox(pRtree, pParent); 2407 } 2408 } 2409 return rc; 2410 } 2411 2412 /* 2413 ** Delete the cell at index iCell of node pNode. After removing the 2414 ** cell, adjust the r-tree data structure if required. 2415 */ 2416 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ 2417 RtreeNode *pParent; 2418 int rc; 2419 2420 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ 2421 return rc; 2422 } 2423 2424 /* Remove the cell from the node. This call just moves bytes around 2425 ** the in-memory node image, so it cannot fail. 2426 */ 2427 nodeDeleteCell(pRtree, pNode, iCell); 2428 2429 /* If the node is not the tree root and now has less than the minimum 2430 ** number of cells, remove it from the tree. Otherwise, update the 2431 ** cell in the parent node so that it tightly contains the updated 2432 ** node. 2433 */ 2434 pParent = pNode->pParent; 2435 assert( pParent || pNode->iNode==1 ); 2436 if( pParent ){ 2437 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ 2438 rc = removeNode(pRtree, pNode, iHeight); 2439 }else{ 2440 rc = fixBoundingBox(pRtree, pNode); 2441 } 2442 } 2443 2444 return rc; 2445 } 2446 2447 static int Reinsert( 2448 Rtree *pRtree, 2449 RtreeNode *pNode, 2450 RtreeCell *pCell, 2451 int iHeight 2452 ){ 2453 int *aOrder; 2454 int *aSpare; 2455 RtreeCell *aCell; 2456 float *aDistance; 2457 int nCell; 2458 float aCenterCoord[RTREE_MAX_DIMENSIONS]; 2459 int iDim; 2460 int ii; 2461 int rc = SQLITE_OK; 2462 2463 memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); 2464 2465 nCell = NCELL(pNode)+1; 2466 2467 /* Allocate the buffers used by this operation. The allocation is 2468 ** relinquished before this function returns. 2469 */ 2470 aCell = (RtreeCell *)sqlite3_malloc(nCell * ( 2471 sizeof(RtreeCell) + /* aCell array */ 2472 sizeof(int) + /* aOrder array */ 2473 sizeof(int) + /* aSpare array */ 2474 sizeof(float) /* aDistance array */ 2475 )); 2476 if( !aCell ){ 2477 return SQLITE_NOMEM; 2478 } 2479 aOrder = (int *)&aCell[nCell]; 2480 aSpare = (int *)&aOrder[nCell]; 2481 aDistance = (float *)&aSpare[nCell]; 2482 2483 for(ii=0; ii<nCell; ii++){ 2484 if( ii==(nCell-1) ){ 2485 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); 2486 }else{ 2487 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); 2488 } 2489 aOrder[ii] = ii; 2490 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2491 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); 2492 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); 2493 } 2494 } 2495 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2496 aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); 2497 } 2498 2499 for(ii=0; ii<nCell; ii++){ 2500 aDistance[ii] = 0.0; 2501 for(iDim=0; iDim<pRtree->nDim; iDim++){ 2502 float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) - 2503 DCOORD(aCell[ii].aCoord[iDim*2]); 2504 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); 2505 } 2506 } 2507 2508 SortByDistance(aOrder, nCell, aDistance, aSpare); 2509 nodeZero(pRtree, pNode); 2510 2511 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ 2512 RtreeCell *p = &aCell[aOrder[ii]]; 2513 nodeInsertCell(pRtree, pNode, p); 2514 if( p->iRowid==pCell->iRowid ){ 2515 if( iHeight==0 ){ 2516 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); 2517 }else{ 2518 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); 2519 } 2520 } 2521 } 2522 if( rc==SQLITE_OK ){ 2523 rc = fixBoundingBox(pRtree, pNode); 2524 } 2525 for(; rc==SQLITE_OK && ii<nCell; ii++){ 2526 /* Find a node to store this cell in. pNode->iNode currently contains 2527 ** the height of the sub-tree headed by the cell. 2528 */ 2529 RtreeNode *pInsert; 2530 RtreeCell *p = &aCell[aOrder[ii]]; 2531 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); 2532 if( rc==SQLITE_OK ){ 2533 int rc2; 2534 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); 2535 rc2 = nodeRelease(pRtree, pInsert); 2536 if( rc==SQLITE_OK ){ 2537 rc = rc2; 2538 } 2539 } 2540 } 2541 2542 sqlite3_free(aCell); 2543 return rc; 2544 } 2545 2546 /* 2547 ** Insert cell pCell into node pNode. Node pNode is the head of a 2548 ** subtree iHeight high (leaf nodes have iHeight==0). 2549 */ 2550 static int rtreeInsertCell( 2551 Rtree *pRtree, 2552 RtreeNode *pNode, 2553 RtreeCell *pCell, 2554 int iHeight 2555 ){ 2556 int rc = SQLITE_OK; 2557 if( iHeight>0 ){ 2558 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); 2559 if( pChild ){ 2560 nodeRelease(pRtree, pChild->pParent); 2561 nodeReference(pNode); 2562 pChild->pParent = pNode; 2563 } 2564 } 2565 if( nodeInsertCell(pRtree, pNode, pCell) ){ 2566 #if VARIANT_RSTARTREE_REINSERT 2567 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ 2568 rc = SplitNode(pRtree, pNode, pCell, iHeight); 2569 }else{ 2570 pRtree->iReinsertHeight = iHeight; 2571 rc = Reinsert(pRtree, pNode, pCell, iHeight); 2572 } 2573 #else 2574 rc = SplitNode(pRtree, pNode, pCell, iHeight); 2575 #endif 2576 }else{ 2577 rc = AdjustTree(pRtree, pNode, pCell); 2578 if( rc==SQLITE_OK ){ 2579 if( iHeight==0 ){ 2580 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); 2581 }else{ 2582 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); 2583 } 2584 } 2585 } 2586 return rc; 2587 } 2588 2589 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ 2590 int ii; 2591 int rc = SQLITE_OK; 2592 int nCell = NCELL(pNode); 2593 2594 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ 2595 RtreeNode *pInsert; 2596 RtreeCell cell; 2597 nodeGetCell(pRtree, pNode, ii, &cell); 2598 2599 /* Find a node to store this cell in. pNode->iNode currently contains 2600 ** the height of the sub-tree headed by the cell. 2601 */ 2602 rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); 2603 if( rc==SQLITE_OK ){ 2604 int rc2; 2605 rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode); 2606 rc2 = nodeRelease(pRtree, pInsert); 2607 if( rc==SQLITE_OK ){ 2608 rc = rc2; 2609 } 2610 } 2611 } 2612 return rc; 2613 } 2614 2615 /* 2616 ** Select a currently unused rowid for a new r-tree record. 2617 */ 2618 static int newRowid(Rtree *pRtree, i64 *piRowid){ 2619 int rc; 2620 sqlite3_bind_null(pRtree->pWriteRowid, 1); 2621 sqlite3_bind_null(pRtree->pWriteRowid, 2); 2622 sqlite3_step(pRtree->pWriteRowid); 2623 rc = sqlite3_reset(pRtree->pWriteRowid); 2624 *piRowid = sqlite3_last_insert_rowid(pRtree->db); 2625 return rc; 2626 } 2627 2628 /* 2629 ** The xUpdate method for rtree module virtual tables. 2630 */ 2631 static int rtreeUpdate( 2632 sqlite3_vtab *pVtab, 2633 int nData, 2634 sqlite3_value **azData, 2635 sqlite_int64 *pRowid 2636 ){ 2637 Rtree *pRtree = (Rtree *)pVtab; 2638 int rc = SQLITE_OK; 2639 2640 rtreeReference(pRtree); 2641 2642 assert(nData>=1); 2643 2644 /* If azData[0] is not an SQL NULL value, it is the rowid of a 2645 ** record to delete from the r-tree table. The following block does 2646 ** just that. 2647 */ 2648 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ 2649 i64 iDelete; /* The rowid to delete */ 2650 RtreeNode *pLeaf; /* Leaf node containing record iDelete */ 2651 int iCell; /* Index of iDelete cell in pLeaf */ 2652 RtreeNode *pRoot; 2653 2654 /* Obtain a reference to the root node to initialise Rtree.iDepth */ 2655 rc = nodeAcquire(pRtree, 1, 0, &pRoot); 2656 2657 /* Obtain a reference to the leaf node that contains the entry 2658 ** about to be deleted. 2659 */ 2660 if( rc==SQLITE_OK ){ 2661 iDelete = sqlite3_value_int64(azData[0]); 2662 rc = findLeafNode(pRtree, iDelete, &pLeaf); 2663 } 2664 2665 /* Delete the cell in question from the leaf node. */ 2666 if( rc==SQLITE_OK ){ 2667 int rc2; 2668 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); 2669 if( rc==SQLITE_OK ){ 2670 rc = deleteCell(pRtree, pLeaf, iCell, 0); 2671 } 2672 rc2 = nodeRelease(pRtree, pLeaf); 2673 if( rc==SQLITE_OK ){ 2674 rc = rc2; 2675 } 2676 } 2677 2678 /* Delete the corresponding entry in the <rtree>_rowid table. */ 2679 if( rc==SQLITE_OK ){ 2680 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); 2681 sqlite3_step(pRtree->pDeleteRowid); 2682 rc = sqlite3_reset(pRtree->pDeleteRowid); 2683 } 2684 2685 /* Check if the root node now has exactly one child. If so, remove 2686 ** it, schedule the contents of the child for reinsertion and 2687 ** reduce the tree height by one. 2688 ** 2689 ** This is equivalent to copying the contents of the child into 2690 ** the root node (the operation that Gutman's paper says to perform 2691 ** in this scenario). 2692 */ 2693 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ 2694 int rc2; 2695 RtreeNode *pChild; 2696 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); 2697 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); 2698 if( rc==SQLITE_OK ){ 2699 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); 2700 } 2701 rc2 = nodeRelease(pRtree, pChild); 2702 if( rc==SQLITE_OK ) rc = rc2; 2703 if( rc==SQLITE_OK ){ 2704 pRtree->iDepth--; 2705 writeInt16(pRoot->zData, pRtree->iDepth); 2706 pRoot->isDirty = 1; 2707 } 2708 } 2709 2710 /* Re-insert the contents of any underfull nodes removed from the tree. */ 2711 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ 2712 if( rc==SQLITE_OK ){ 2713 rc = reinsertNodeContent(pRtree, pLeaf); 2714 } 2715 pRtree->pDeleted = pLeaf->pNext; 2716 sqlite3_free(pLeaf); 2717 } 2718 2719 /* Release the reference to the root node. */ 2720 if( rc==SQLITE_OK ){ 2721 rc = nodeRelease(pRtree, pRoot); 2722 }else{ 2723 nodeRelease(pRtree, pRoot); 2724 } 2725 } 2726 2727 /* If the azData[] array contains more than one element, elements 2728 ** (azData[2]..azData[argc-1]) contain a new record to insert into 2729 ** the r-tree structure. 2730 */ 2731 if( rc==SQLITE_OK && nData>1 ){ 2732 /* Insert a new record into the r-tree */ 2733 RtreeCell cell; 2734 int ii; 2735 RtreeNode *pLeaf; 2736 2737 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ 2738 assert( nData==(pRtree->nDim*2 + 3) ); 2739 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ 2740 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 2741 cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]); 2742 cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]); 2743 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ 2744 rc = SQLITE_CONSTRAINT; 2745 goto constraint; 2746 } 2747 } 2748 }else{ 2749 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ 2750 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); 2751 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); 2752 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ 2753 rc = SQLITE_CONSTRAINT; 2754 goto constraint; 2755 } 2756 } 2757 } 2758 2759 /* Figure out the rowid of the new row. */ 2760 if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ 2761 rc = newRowid(pRtree, &cell.iRowid); 2762 }else{ 2763 cell.iRowid = sqlite3_value_int64(azData[2]); 2764 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); 2765 if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ 2766 sqlite3_reset(pRtree->pReadRowid); 2767 rc = SQLITE_CONSTRAINT; 2768 goto constraint; 2769 } 2770 rc = sqlite3_reset(pRtree->pReadRowid); 2771 } 2772 *pRowid = cell.iRowid; 2773 2774 if( rc==SQLITE_OK ){ 2775 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); 2776 } 2777 if( rc==SQLITE_OK ){ 2778 int rc2; 2779 pRtree->iReinsertHeight = -1; 2780 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); 2781 rc2 = nodeRelease(pRtree, pLeaf); 2782 if( rc==SQLITE_OK ){ 2783 rc = rc2; 2784 } 2785 } 2786 } 2787 2788 constraint: 2789 rtreeRelease(pRtree); 2790 return rc; 2791 } 2792 2793 /* 2794 ** The xRename method for rtree module virtual tables. 2795 */ 2796 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ 2797 Rtree *pRtree = (Rtree *)pVtab; 2798 int rc = SQLITE_NOMEM; 2799 char *zSql = sqlite3_mprintf( 2800 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" 2801 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" 2802 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" 2803 , pRtree->zDb, pRtree->zName, zNewName 2804 , pRtree->zDb, pRtree->zName, zNewName 2805 , pRtree->zDb, pRtree->zName, zNewName 2806 ); 2807 if( zSql ){ 2808 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); 2809 sqlite3_free(zSql); 2810 } 2811 return rc; 2812 } 2813 2814 static sqlite3_module rtreeModule = { 2815 0, /* iVersion */ 2816 rtreeCreate, /* xCreate - create a table */ 2817 rtreeConnect, /* xConnect - connect to an existing table */ 2818 rtreeBestIndex, /* xBestIndex - Determine search strategy */ 2819 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ 2820 rtreeDestroy, /* xDestroy - Drop a table */ 2821 rtreeOpen, /* xOpen - open a cursor */ 2822 rtreeClose, /* xClose - close a cursor */ 2823 rtreeFilter, /* xFilter - configure scan constraints */ 2824 rtreeNext, /* xNext - advance a cursor */ 2825 rtreeEof, /* xEof */ 2826 rtreeColumn, /* xColumn - read data */ 2827 rtreeRowid, /* xRowid - read data */ 2828 rtreeUpdate, /* xUpdate - write data */ 2829 0, /* xBegin - begin transaction */ 2830 0, /* xSync - sync transaction */ 2831 0, /* xCommit - commit transaction */ 2832 0, /* xRollback - rollback transaction */ 2833 0, /* xFindFunction - function overloading */ 2834 rtreeRename /* xRename - rename the table */ 2835 }; 2836 2837 static int rtreeSqlInit( 2838 Rtree *pRtree, 2839 sqlite3 *db, 2840 const char *zDb, 2841 const char *zPrefix, 2842 int isCreate 2843 ){ 2844 int rc = SQLITE_OK; 2845 2846 #define N_STATEMENT 9 2847 static const char *azSql[N_STATEMENT] = { 2848 /* Read and write the xxx_node table */ 2849 "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", 2850 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", 2851 "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", 2852 2853 /* Read and write the xxx_rowid table */ 2854 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", 2855 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", 2856 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", 2857 2858 /* Read and write the xxx_parent table */ 2859 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", 2860 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", 2861 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" 2862 }; 2863 sqlite3_stmt **appStmt[N_STATEMENT]; 2864 int i; 2865 2866 pRtree->db = db; 2867 2868 if( isCreate ){ 2869 char *zCreate = sqlite3_mprintf( 2870 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" 2871 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" 2872 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);" 2873 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", 2874 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize 2875 ); 2876 if( !zCreate ){ 2877 return SQLITE_NOMEM; 2878 } 2879 rc = sqlite3_exec(db, zCreate, 0, 0, 0); 2880 sqlite3_free(zCreate); 2881 if( rc!=SQLITE_OK ){ 2882 return rc; 2883 } 2884 } 2885 2886 appStmt[0] = &pRtree->pReadNode; 2887 appStmt[1] = &pRtree->pWriteNode; 2888 appStmt[2] = &pRtree->pDeleteNode; 2889 appStmt[3] = &pRtree->pReadRowid; 2890 appStmt[4] = &pRtree->pWriteRowid; 2891 appStmt[5] = &pRtree->pDeleteRowid; 2892 appStmt[6] = &pRtree->pReadParent; 2893 appStmt[7] = &pRtree->pWriteParent; 2894 appStmt[8] = &pRtree->pDeleteParent; 2895 2896 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ 2897 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); 2898 if( zSql ){ 2899 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); 2900 }else{ 2901 rc = SQLITE_NOMEM; 2902 } 2903 sqlite3_free(zSql); 2904 } 2905 2906 return rc; 2907 } 2908 2909 /* 2910 ** The second argument to this function contains the text of an SQL statement 2911 ** that returns a single integer value. The statement is compiled and executed 2912 ** using database connection db. If successful, the integer value returned 2913 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error 2914 ** code is returned and the value of *piVal after returning is not defined. 2915 */ 2916 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ 2917 int rc = SQLITE_NOMEM; 2918 if( zSql ){ 2919 sqlite3_stmt *pStmt = 0; 2920 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 2921 if( rc==SQLITE_OK ){ 2922 if( SQLITE_ROW==sqlite3_step(pStmt) ){ 2923 *piVal = sqlite3_column_int(pStmt, 0); 2924 } 2925 rc = sqlite3_finalize(pStmt); 2926 } 2927 } 2928 return rc; 2929 } 2930 2931 /* 2932 ** This function is called from within the xConnect() or xCreate() method to 2933 ** determine the node-size used by the rtree table being created or connected 2934 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. 2935 ** Otherwise, an SQLite error code is returned. 2936 ** 2937 ** If this function is being called as part of an xConnect(), then the rtree 2938 ** table already exists. In this case the node-size is determined by inspecting 2939 ** the root node of the tree. 2940 ** 2941 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. 2942 ** This ensures that each node is stored on a single database page. If the 2943 ** database page-size is so large that more than RTREE_MAXCELLS entries 2944 ** would fit in a single node, use a smaller node-size. 2945 */ 2946 static int getNodeSize( 2947 sqlite3 *db, /* Database handle */ 2948 Rtree *pRtree, /* Rtree handle */ 2949 int isCreate /* True for xCreate, false for xConnect */ 2950 ){ 2951 int rc; 2952 char *zSql; 2953 if( isCreate ){ 2954 int iPageSize; 2955 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); 2956 rc = getIntFromStmt(db, zSql, &iPageSize); 2957 if( rc==SQLITE_OK ){ 2958 pRtree->iNodeSize = iPageSize-64; 2959 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ 2960 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; 2961 } 2962 } 2963 }else{ 2964 zSql = sqlite3_mprintf( 2965 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", 2966 pRtree->zDb, pRtree->zName 2967 ); 2968 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); 2969 } 2970 2971 sqlite3_free(zSql); 2972 return rc; 2973 } 2974 2975 /* 2976 ** This function is the implementation of both the xConnect and xCreate 2977 ** methods of the r-tree virtual table. 2978 ** 2979 ** argv[0] -> module name 2980 ** argv[1] -> database name 2981 ** argv[2] -> table name 2982 ** argv[...] -> column names... 2983 */ 2984 static int rtreeInit( 2985 sqlite3 *db, /* Database connection */ 2986 void *pAux, /* One of the RTREE_COORD_* constants */ 2987 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ 2988 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ 2989 char **pzErr, /* OUT: Error message, if any */ 2990 int isCreate /* True for xCreate, false for xConnect */ 2991 ){ 2992 int rc = SQLITE_OK; 2993 Rtree *pRtree; 2994 int nDb; /* Length of string argv[1] */ 2995 int nName; /* Length of string argv[2] */ 2996 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); 2997 2998 const char *aErrMsg[] = { 2999 0, /* 0 */ 3000 "Wrong number of columns for an rtree table", /* 1 */ 3001 "Too few columns for an rtree table", /* 2 */ 3002 "Too many columns for an rtree table" /* 3 */ 3003 }; 3004 3005 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; 3006 if( aErrMsg[iErr] ){ 3007 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); 3008 return SQLITE_ERROR; 3009 } 3010 3011 /* Allocate the sqlite3_vtab structure */ 3012 nDb = strlen(argv[1]); 3013 nName = strlen(argv[2]); 3014 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); 3015 if( !pRtree ){ 3016 return SQLITE_NOMEM; 3017 } 3018 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); 3019 pRtree->nBusy = 1; 3020 pRtree->base.pModule = &rtreeModule; 3021 pRtree->zDb = (char *)&pRtree[1]; 3022 pRtree->zName = &pRtree->zDb[nDb+1]; 3023 pRtree->nDim = (argc-4)/2; 3024 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; 3025 pRtree->eCoordType = eCoordType; 3026 memcpy(pRtree->zDb, argv[1], nDb); 3027 memcpy(pRtree->zName, argv[2], nName); 3028 3029 /* Figure out the node size to use. */ 3030 rc = getNodeSize(db, pRtree, isCreate); 3031 3032 /* Create/Connect to the underlying relational database schema. If 3033 ** that is successful, call sqlite3_declare_vtab() to configure 3034 ** the r-tree table schema. 3035 */ 3036 if( rc==SQLITE_OK ){ 3037 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ 3038 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3039 }else{ 3040 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); 3041 char *zTmp; 3042 int ii; 3043 for(ii=4; zSql && ii<argc; ii++){ 3044 zTmp = zSql; 3045 zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); 3046 sqlite3_free(zTmp); 3047 } 3048 if( zSql ){ 3049 zTmp = zSql; 3050 zSql = sqlite3_mprintf("%s);", zTmp); 3051 sqlite3_free(zTmp); 3052 } 3053 if( !zSql ){ 3054 rc = SQLITE_NOMEM; 3055 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ 3056 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); 3057 } 3058 sqlite3_free(zSql); 3059 } 3060 } 3061 3062 if( rc==SQLITE_OK ){ 3063 *ppVtab = (sqlite3_vtab *)pRtree; 3064 }else{ 3065 rtreeRelease(pRtree); 3066 } 3067 return rc; 3068 } 3069 3070 3071 /* 3072 ** Implementation of a scalar function that decodes r-tree nodes to 3073 ** human readable strings. This can be used for debugging and analysis. 3074 ** 3075 ** The scalar function takes two arguments, a blob of data containing 3076 ** an r-tree node, and the number of dimensions the r-tree indexes. 3077 ** For a two-dimensional r-tree structure called "rt", to deserialize 3078 ** all nodes, a statement like: 3079 ** 3080 ** SELECT rtreenode(2, data) FROM rt_node; 3081 ** 3082 ** The human readable string takes the form of a Tcl list with one 3083 ** entry for each cell in the r-tree node. Each entry is itself a 3084 ** list, containing the 8-byte rowid/pageno followed by the 3085 ** <num-dimension>*2 coordinates. 3086 */ 3087 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3088 char *zText = 0; 3089 RtreeNode node; 3090 Rtree tree; 3091 int ii; 3092 3093 UNUSED_PARAMETER(nArg); 3094 memset(&node, 0, sizeof(RtreeNode)); 3095 memset(&tree, 0, sizeof(Rtree)); 3096 tree.nDim = sqlite3_value_int(apArg[0]); 3097 tree.nBytesPerCell = 8 + 8 * tree.nDim; 3098 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); 3099 3100 for(ii=0; ii<NCELL(&node); ii++){ 3101 char zCell[512]; 3102 int nCell = 0; 3103 RtreeCell cell; 3104 int jj; 3105 3106 nodeGetCell(&tree, &node, ii, &cell); 3107 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); 3108 nCell = strlen(zCell); 3109 for(jj=0; jj<tree.nDim*2; jj++){ 3110 sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f); 3111 nCell = strlen(zCell); 3112 } 3113 3114 if( zText ){ 3115 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); 3116 sqlite3_free(zText); 3117 zText = zTextNew; 3118 }else{ 3119 zText = sqlite3_mprintf("{%s}", zCell); 3120 } 3121 } 3122 3123 sqlite3_result_text(ctx, zText, -1, sqlite3_free); 3124 } 3125 3126 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ 3127 UNUSED_PARAMETER(nArg); 3128 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB 3129 || sqlite3_value_bytes(apArg[0])<2 3130 ){ 3131 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); 3132 }else{ 3133 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); 3134 sqlite3_result_int(ctx, readInt16(zBlob)); 3135 } 3136 } 3137 3138 /* 3139 ** Register the r-tree module with database handle db. This creates the 3140 ** virtual table module "rtree" and the debugging/analysis scalar 3141 ** function "rtreenode". 3142 */ 3143 int sqlite3RtreeInit(sqlite3 *db){ 3144 const int utf8 = SQLITE_UTF8; 3145 int rc; 3146 3147 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); 3148 if( rc==SQLITE_OK ){ 3149 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); 3150 } 3151 if( rc==SQLITE_OK ){ 3152 void *c = (void *)RTREE_COORD_REAL32; 3153 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); 3154 } 3155 if( rc==SQLITE_OK ){ 3156 void *c = (void *)RTREE_COORD_INT32; 3157 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); 3158 } 3159 3160 return rc; 3161 } 3162 3163 /* 3164 ** A version of sqlite3_free() that can be used as a callback. This is used 3165 ** in two places - as the destructor for the blob value returned by the 3166 ** invocation of a geometry function, and as the destructor for the geometry 3167 ** functions themselves. 3168 */ 3169 static void doSqlite3Free(void *p){ 3170 sqlite3_free(p); 3171 } 3172 3173 /* 3174 ** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite 3175 ** scalar user function. This C function is the callback used for all such 3176 ** registered SQL functions. 3177 ** 3178 ** The scalar user functions return a blob that is interpreted by r-tree 3179 ** table MATCH operators. 3180 */ 3181 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ 3182 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); 3183 RtreeMatchArg *pBlob; 3184 int nBlob; 3185 3186 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double); 3187 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); 3188 if( !pBlob ){ 3189 sqlite3_result_error_nomem(ctx); 3190 }else{ 3191 int i; 3192 pBlob->magic = RTREE_GEOMETRY_MAGIC; 3193 pBlob->xGeom = pGeomCtx->xGeom; 3194 pBlob->pContext = pGeomCtx->pContext; 3195 pBlob->nParam = nArg; 3196 for(i=0; i<nArg; i++){ 3197 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); 3198 } 3199 sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); 3200 } 3201 } 3202 3203 /* 3204 ** Register a new geometry function for use with the r-tree MATCH operator. 3205 */ 3206 int sqlite3_rtree_geometry_callback( 3207 sqlite3 *db, 3208 const char *zGeom, 3209 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *), 3210 void *pContext 3211 ){ 3212 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ 3213 3214 /* Allocate and populate the context object. */ 3215 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); 3216 if( !pGeomCtx ) return SQLITE_NOMEM; 3217 pGeomCtx->xGeom = xGeom; 3218 pGeomCtx->pContext = pContext; 3219 3220 /* Create the new user-function. Register a destructor function to delete 3221 ** the context object when it is no longer required. */ 3222 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, 3223 (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free 3224 ); 3225 } 3226 3227 #if !SQLITE_CORE 3228 int sqlite3_extension_init( 3229 sqlite3 *db, 3230 char **pzErrMsg, 3231 const sqlite3_api_routines *pApi 3232 ){ 3233 SQLITE_EXTENSION_INIT2(pApi) 3234 return sqlite3RtreeInit(db); 3235 } 3236 #endif 3237 3238 #endif 3239