1 // Copyright (c) 2005, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // --- 31 // Author: Sanjay Ghemawat <opensource (at) google.com> 32 // 33 // A malloc that uses a per-thread cache to satisfy small malloc requests. 34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) 35 // 36 // See doc/tcmalloc.html for a high-level 37 // description of how this malloc works. 38 // 39 // SYNCHRONIZATION 40 // 1. The thread-specific lists are accessed without acquiring any locks. 41 // This is safe because each such list is only accessed by one thread. 42 // 2. We have a lock per central free-list, and hold it while manipulating 43 // the central free list for a particular size. 44 // 3. The central page allocator is protected by "pageheap_lock". 45 // 4. The pagemap (which maps from page-number to descriptor), 46 // can be read without holding any locks, and written while holding 47 // the "pageheap_lock". 48 // 5. To improve performance, a subset of the information one can get 49 // from the pagemap is cached in a data structure, pagemap_cache_, 50 // that atomically reads and writes its entries. This cache can be 51 // read and written without locking. 52 // 53 // This multi-threaded access to the pagemap is safe for fairly 54 // subtle reasons. We basically assume that when an object X is 55 // allocated by thread A and deallocated by thread B, there must 56 // have been appropriate synchronization in the handoff of object 57 // X from thread A to thread B. The same logic applies to pagemap_cache_. 58 // 59 // THE PAGEID-TO-SIZECLASS CACHE 60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache 61 // returns 0 for a particular PageID then that means "no information," not that 62 // the sizeclass is 0. The cache may have stale information for pages that do 63 // not hold the beginning of any free()'able object. Staleness is eliminated 64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and 65 // do_memalign() for all other relevant pages. 66 // 67 // PAGEMAP 68 // ------- 69 // Page map contains a mapping from page id to Span. 70 // 71 // If Span s occupies pages [p..q], 72 // pagemap[p] == s 73 // pagemap[q] == s 74 // pagemap[p+1..q-1] are undefined 75 // pagemap[p-1] and pagemap[q+1] are defined: 76 // NULL if the corresponding page is not yet in the address space. 77 // Otherwise it points to a Span. This span may be free 78 // or allocated. If free, it is in one of pageheap's freelist. 79 // 80 // TODO: Bias reclamation to larger addresses 81 // TODO: implement mallinfo/mallopt 82 // TODO: Better testing 83 // 84 // 9/28/2003 (new page-level allocator replaces ptmalloc2): 85 // * malloc/free of small objects goes from ~300 ns to ~50 ns. 86 // * allocation of a reasonably complicated struct 87 // goes from about 1100 ns to about 300 ns. 88 89 #include "config.h" 90 #include <gperftools/tcmalloc.h> 91 92 #include <errno.h> // for ENOMEM, EINVAL, errno 93 #ifdef HAVE_SYS_CDEFS_H 94 #include <sys/cdefs.h> // for __THROW 95 #endif 96 #if defined HAVE_STDINT_H 97 #include <stdint.h> 98 #elif defined HAVE_INTTYPES_H 99 #include <inttypes.h> 100 #else 101 #include <sys/types.h> 102 #endif 103 #include <stddef.h> // for size_t, NULL 104 #include <stdlib.h> // for getenv 105 #include <string.h> // for strcmp, memset, strlen, etc 106 #ifdef HAVE_UNISTD_H 107 #include <unistd.h> // for getpagesize, write, etc 108 #endif 109 #include <algorithm> // for max, min 110 #include <limits> // for numeric_limits 111 #include <new> // for nothrow_t (ptr only), etc 112 #include <vector> // for vector 113 114 #include <gperftools/malloc_extension.h> 115 #include <gperftools/malloc_hook.h> // for MallocHook 116 #include "base/basictypes.h" // for int64 117 #include "base/commandlineflags.h" // for RegisterFlagValidator, etc 118 #include "base/dynamic_annotations.h" // for RunningOnValgrind 119 #include "base/spinlock.h" // for SpinLockHolder 120 #include "central_freelist.h" // for CentralFreeListPadded 121 #include "common.h" // for StackTrace, kPageShift, etc 122 #include "free_list.h" // for FL_Init 123 #include "internal_logging.h" // for ASSERT, TCMalloc_Printer, etc 124 #include "malloc_hook-inl.h" // for MallocHook::InvokeNewHook, etc 125 #include "page_heap.h" // for PageHeap, PageHeap::Stats 126 #include "page_heap_allocator.h" // for PageHeapAllocator 127 #include "span.h" // for Span, DLL_Prepend, etc 128 #include "stack_trace_table.h" // for StackTraceTable 129 #include "static_vars.h" // for Static 130 #include "system-alloc.h" // for DumpSystemAllocatorStats, etc 131 #include "tcmalloc_guard.h" // for TCMallocGuard 132 #include "thread_cache.h" // for ThreadCache 133 134 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS) 135 # define WIN32_DO_PATCHING 1 136 #endif 137 138 // Some windows file somewhere (at least on cygwin) #define's small (!) 139 // For instance, <windows.h> appears to have "#define small char". 140 #undef small 141 142 using STL_NAMESPACE::max; 143 using STL_NAMESPACE::min; 144 using STL_NAMESPACE::numeric_limits; 145 using STL_NAMESPACE::vector; 146 147 #include "libc_override.h" 148 149 // __THROW is defined in glibc (via <sys/cdefs.h>). It means, 150 // counter-intuitively, "This function will never throw an exception." 151 // It's an optional optimization tool, but we may need to use it to 152 // match glibc prototypes. 153 #ifndef __THROW // I guess we're not on a glibc system 154 # define __THROW // __THROW is just an optimization, so ok to make it "" 155 #endif 156 157 using tcmalloc::AlignmentForSize; 158 using tcmalloc::kLog; 159 using tcmalloc::kCrash; 160 using tcmalloc::kCrashWithStats; 161 using tcmalloc::Log; 162 using tcmalloc::PageHeap; 163 using tcmalloc::PageHeapAllocator; 164 using tcmalloc::SizeMap; 165 using tcmalloc::Span; 166 using tcmalloc::StackTrace; 167 using tcmalloc::Static; 168 using tcmalloc::ThreadCache; 169 170 // ---- Functions doing validation with an extra mark. 171 static size_t ExcludeSpaceForMark(size_t size); 172 static void AddRoomForMark(size_t* size); 173 static void ExcludeMarkFromSize(size_t* new_size); 174 static void MarkAllocatedRegion(void* ptr); 175 static void ValidateAllocatedRegion(void* ptr, size_t cl); 176 // ---- End validation functions. 177 178 DECLARE_int64(tcmalloc_sample_parameter); 179 DECLARE_double(tcmalloc_release_rate); 180 181 // For windows, the printf we use to report large allocs is 182 // potentially dangerous: it could cause a malloc that would cause an 183 // infinite loop. So by default we set the threshold to a huge number 184 // on windows, so this bad situation will never trigger. You can 185 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you 186 // want this functionality. 187 #ifdef _WIN32 188 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62; 189 #else 190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30; 191 #endif 192 DEFINE_int64(tcmalloc_large_alloc_report_threshold, 193 EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD", 194 kDefaultLargeAllocReportThreshold), 195 "Allocations larger than this value cause a stack " 196 "trace to be dumped to stderr. The threshold for " 197 "dumping stack traces is increased by a factor of 1.125 " 198 "every time we print a message so that the threshold " 199 "automatically goes up by a factor of ~1000 every 60 " 200 "messages. This bounds the amount of extra logging " 201 "generated by this flag. Default value of this flag " 202 "is very large and therefore you should see no extra " 203 "logging unless the flag is overridden. Set to 0 to " 204 "disable reporting entirely."); 205 206 207 // We already declared these functions in tcmalloc.h, but we have to 208 // declare them again to give them an ATTRIBUTE_SECTION: we want to 209 // put all callers of MallocHook::Invoke* in this module into 210 // ATTRIBUTE_SECTION(google_malloc) section, so that 211 // MallocHook::GetCallerStackTrace can function accurately. 212 extern "C" { 213 void* tc_malloc(size_t size) __THROW 214 ATTRIBUTE_SECTION(google_malloc); 215 void tc_free(void* ptr) __THROW 216 ATTRIBUTE_SECTION(google_malloc); 217 void* tc_realloc(void* ptr, size_t size) __THROW 218 ATTRIBUTE_SECTION(google_malloc); 219 void* tc_calloc(size_t nmemb, size_t size) __THROW 220 ATTRIBUTE_SECTION(google_malloc); 221 void tc_cfree(void* ptr) __THROW 222 ATTRIBUTE_SECTION(google_malloc); 223 224 void* tc_memalign(size_t __alignment, size_t __size) __THROW 225 ATTRIBUTE_SECTION(google_malloc); 226 int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW 227 ATTRIBUTE_SECTION(google_malloc); 228 void* tc_valloc(size_t __size) __THROW 229 ATTRIBUTE_SECTION(google_malloc); 230 void* tc_pvalloc(size_t __size) __THROW 231 ATTRIBUTE_SECTION(google_malloc); 232 233 void tc_malloc_stats(void) __THROW 234 ATTRIBUTE_SECTION(google_malloc); 235 int tc_mallopt(int cmd, int value) __THROW 236 ATTRIBUTE_SECTION(google_malloc); 237 #ifdef HAVE_STRUCT_MALLINFO 238 struct mallinfo tc_mallinfo(void) __THROW 239 ATTRIBUTE_SECTION(google_malloc); 240 #endif 241 242 void* tc_new(size_t size) 243 ATTRIBUTE_SECTION(google_malloc); 244 void tc_delete(void* p) __THROW 245 ATTRIBUTE_SECTION(google_malloc); 246 void* tc_newarray(size_t size) 247 ATTRIBUTE_SECTION(google_malloc); 248 void tc_deletearray(void* p) __THROW 249 ATTRIBUTE_SECTION(google_malloc); 250 251 // And the nothrow variants of these: 252 void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW 253 ATTRIBUTE_SECTION(google_malloc); 254 void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW 255 ATTRIBUTE_SECTION(google_malloc); 256 // Surprisingly, standard C++ library implementations use a 257 // nothrow-delete internally. See, eg: 258 // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html 259 void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW 260 ATTRIBUTE_SECTION(google_malloc); 261 void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW 262 ATTRIBUTE_SECTION(google_malloc); 263 264 // Some non-standard extensions that we support. 265 266 // This is equivalent to 267 // OS X: malloc_size() 268 // glibc: malloc_usable_size() 269 // Windows: _msize() 270 size_t tc_malloc_size(void* p) __THROW 271 ATTRIBUTE_SECTION(google_malloc); 272 } // extern "C" 273 274 275 // ----------------------- IMPLEMENTATION ------------------------------- 276 277 static int tc_new_mode = 0; // See tc_set_new_mode(). 278 279 // Routines such as free() and realloc() catch some erroneous pointers 280 // passed to them, and invoke the below when they do. (An erroneous pointer 281 // won't be caught if it's within a valid span or a stale span for which 282 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing 283 // required) kind of exception handling for these routines. 284 namespace { 285 void InvalidFree(void* ptr) { 286 Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr); 287 } 288 289 size_t InvalidGetSizeForRealloc(const void* old_ptr) { 290 Log(kCrash, __FILE__, __LINE__, 291 "Attempt to realloc invalid pointer", old_ptr); 292 return 0; 293 } 294 295 size_t InvalidGetAllocatedSize(const void* ptr) { 296 Log(kCrash, __FILE__, __LINE__, 297 "Attempt to get the size of an invalid pointer", ptr); 298 return 0; 299 } 300 301 // For security reasons, we want to limit the size of allocations. 302 // See crbug.com/169327. 303 inline bool IsAllocSizePermitted(size_t alloc_size) { 304 // Never allow an allocation larger than what can be indexed via an int. 305 // Remove kPageSize to account for various rounding, padding and to have a 306 // small margin. 307 return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize); 308 } 309 310 } // unnamed namespace 311 312 // Extract interesting stats 313 struct TCMallocStats { 314 uint64_t thread_bytes; // Bytes in thread caches 315 uint64_t central_bytes; // Bytes in central cache 316 uint64_t transfer_bytes; // Bytes in central transfer cache 317 uint64_t metadata_bytes; // Bytes alloced for metadata 318 uint64_t metadata_unmapped_bytes; // Address space reserved for metadata 319 // but is not committed. 320 PageHeap::Stats pageheap; // Stats from page heap 321 }; 322 323 // Get stats into "r". Also get per-size-class counts if class_count != NULL 324 static void ExtractStats(TCMallocStats* r, uint64_t* class_count, 325 PageHeap::SmallSpanStats* small_spans, 326 PageHeap::LargeSpanStats* large_spans) { 327 r->central_bytes = 0; 328 r->transfer_bytes = 0; 329 for (int cl = 0; cl < kNumClasses; ++cl) { 330 const int length = Static::central_cache()[cl].length(); 331 const int tc_length = Static::central_cache()[cl].tc_length(); 332 const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes(); 333 const size_t size = static_cast<uint64_t>( 334 Static::sizemap()->ByteSizeForClass(cl)); 335 r->central_bytes += (size * length) + cache_overhead; 336 r->transfer_bytes += (size * tc_length); 337 if (class_count) class_count[cl] = length + tc_length; 338 } 339 340 // Add stats from per-thread heaps 341 r->thread_bytes = 0; 342 { // scope 343 SpinLockHolder h(Static::pageheap_lock()); 344 ThreadCache::GetThreadStats(&r->thread_bytes, class_count); 345 r->metadata_bytes = tcmalloc::metadata_system_bytes(); 346 r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes(); 347 r->pageheap = Static::pageheap()->stats(); 348 if (small_spans != NULL) { 349 Static::pageheap()->GetSmallSpanStats(small_spans); 350 } 351 if (large_spans != NULL) { 352 Static::pageheap()->GetLargeSpanStats(large_spans); 353 } 354 } 355 } 356 357 static double PagesToMiB(uint64_t pages) { 358 return (pages << kPageShift) / 1048576.0; 359 } 360 361 // WRITE stats to "out" 362 static void DumpStats(TCMalloc_Printer* out, int level) { 363 TCMallocStats stats; 364 uint64_t class_count[kNumClasses]; 365 PageHeap::SmallSpanStats small; 366 PageHeap::LargeSpanStats large; 367 if (level >= 2) { 368 ExtractStats(&stats, class_count, &small, &large); 369 } else { 370 ExtractStats(&stats, NULL, NULL, NULL); 371 } 372 373 static const double MiB = 1048576.0; 374 375 const uint64_t physical_memory_used_by_metadata = 376 stats.metadata_bytes - stats.metadata_unmapped_bytes; 377 const uint64_t unmapped_bytes = 378 stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes; 379 380 const uint64_t virtual_memory_used = (stats.pageheap.system_bytes 381 + stats.metadata_bytes); 382 const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes; 383 const uint64_t bytes_in_use_by_app = (physical_memory_used 384 - physical_memory_used_by_metadata 385 - stats.pageheap.free_bytes 386 - stats.central_bytes 387 - stats.transfer_bytes 388 - stats.thread_bytes); 389 390 out->printf( 391 "WASTE: %7.1f MiB bytes in use\n" 392 "WASTE: + %7.1f MiB committed but not used\n" 393 "WASTE: ------------\n" 394 "WASTE: = %7.1f MiB bytes committed\n" 395 "WASTE: committed/used ratio of %f\n", 396 bytes_in_use_by_app / MiB, 397 (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB, 398 stats.pageheap.committed_bytes / MiB, 399 stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app) 400 ); 401 #ifdef TCMALLOC_SMALL_BUT_SLOW 402 out->printf( 403 "NOTE: SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n"); 404 #endif 405 out->printf( 406 "------------------------------------------------\n" 407 "MALLOC: %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n" 408 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n" 409 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n" 410 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n" 411 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n" 412 "MALLOC: ------------\n" 413 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n" 414 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n" 415 "MALLOC: ------------\n" 416 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n" 417 "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n" 418 "MALLOC: ------------\n" 419 "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n" 420 "MALLOC:\n" 421 "MALLOC: %12" PRIu64 " Spans in use\n" 422 "MALLOC: %12" PRIu64 " Thread heaps in use\n" 423 "MALLOC: %12" PRIu64 " Tcmalloc page size\n" 424 "------------------------------------------------\n" 425 "Call ReleaseFreeMemory() to release freelist memory to the OS" 426 " (via madvise()).\n" 427 "Bytes released to the OS take up virtual address space" 428 " but no physical memory.\n", 429 bytes_in_use_by_app, bytes_in_use_by_app / MiB, 430 stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB, 431 stats.central_bytes, stats.central_bytes / MiB, 432 stats.transfer_bytes, stats.transfer_bytes / MiB, 433 stats.thread_bytes, stats.thread_bytes / MiB, 434 stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB, 435 physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB, 436 physical_memory_used, physical_memory_used / MiB, 437 unmapped_bytes, unmapped_bytes / MiB, 438 virtual_memory_used, virtual_memory_used / MiB, 439 uint64_t(Static::span_allocator()->inuse()), 440 uint64_t(ThreadCache::HeapsInUse()), 441 uint64_t(kPageSize)); 442 443 if (level >= 2) { 444 out->printf("------------------------------------------------\n"); 445 out->printf("Size class breakdown\n"); 446 out->printf("------------------------------------------------\n"); 447 uint64_t cumulative = 0; 448 for (int cl = 0; cl < kNumClasses; ++cl) { 449 if (class_count[cl] > 0) { 450 uint64_t class_bytes = 451 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); 452 cumulative += class_bytes; 453 out->printf("class %3d [ %8" PRIuS " bytes ] : " 454 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n", 455 cl, Static::sizemap()->ByteSizeForClass(cl), 456 class_count[cl], 457 class_bytes / MiB, 458 cumulative / MiB); 459 } 460 } 461 462 // append page heap info 463 int nonempty_sizes = 0; 464 for (int s = 0; s < kMaxPages; s++) { 465 if (small.normal_length[s] + small.returned_length[s] > 0) { 466 nonempty_sizes++; 467 } 468 } 469 out->printf("------------------------------------------------\n"); 470 out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n", 471 nonempty_sizes, stats.pageheap.free_bytes / MiB, 472 stats.pageheap.unmapped_bytes / MiB); 473 out->printf("------------------------------------------------\n"); 474 uint64_t total_normal = 0; 475 uint64_t total_returned = 0; 476 for (int s = 0; s < kMaxPages; s++) { 477 const int n_length = small.normal_length[s]; 478 const int r_length = small.returned_length[s]; 479 if (n_length + r_length > 0) { 480 uint64_t n_pages = s * n_length; 481 uint64_t r_pages = s * r_length; 482 total_normal += n_pages; 483 total_returned += r_pages; 484 out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum" 485 "; unmapped: %6.1f MiB; %6.1f MiB cum\n", 486 s, 487 (n_length + r_length), 488 PagesToMiB(n_pages + r_pages), 489 PagesToMiB(total_normal + total_returned), 490 PagesToMiB(r_pages), 491 PagesToMiB(total_returned)); 492 } 493 } 494 495 total_normal += large.normal_pages; 496 total_returned += large.returned_pages; 497 out->printf(">255 large * %6u spans ~ %6.1f MiB; %6.1f MiB cum" 498 "; unmapped: %6.1f MiB; %6.1f MiB cum\n", 499 static_cast<unsigned int>(large.spans), 500 PagesToMiB(large.normal_pages + large.returned_pages), 501 PagesToMiB(total_normal + total_returned), 502 PagesToMiB(large.returned_pages), 503 PagesToMiB(total_returned)); 504 } 505 } 506 507 static void PrintStats(int level) { 508 const int kBufferSize = 16 << 10; 509 char* buffer = new char[kBufferSize]; 510 TCMalloc_Printer printer(buffer, kBufferSize); 511 DumpStats(&printer, level); 512 write(STDERR_FILENO, buffer, strlen(buffer)); 513 delete[] buffer; 514 } 515 516 static void** DumpHeapGrowthStackTraces() { 517 // Count how much space we need 518 int needed_slots = 0; 519 { 520 SpinLockHolder h(Static::pageheap_lock()); 521 for (StackTrace* t = Static::growth_stacks(); 522 t != NULL; 523 t = reinterpret_cast<StackTrace*>( 524 t->stack[tcmalloc::kMaxStackDepth-1])) { 525 needed_slots += 3 + t->depth; 526 } 527 needed_slots += 100; // Slop in case list grows 528 needed_slots += needed_slots/8; // An extra 12.5% slop 529 } 530 531 void** result = new void*[needed_slots]; 532 if (result == NULL) { 533 Log(kLog, __FILE__, __LINE__, 534 "tcmalloc: allocation failed for stack trace slots", 535 needed_slots * sizeof(*result)); 536 return NULL; 537 } 538 539 SpinLockHolder h(Static::pageheap_lock()); 540 int used_slots = 0; 541 for (StackTrace* t = Static::growth_stacks(); 542 t != NULL; 543 t = reinterpret_cast<StackTrace*>( 544 t->stack[tcmalloc::kMaxStackDepth-1])) { 545 ASSERT(used_slots < needed_slots); // Need to leave room for terminator 546 if (used_slots + 3 + t->depth >= needed_slots) { 547 // No more room 548 break; 549 } 550 551 result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); 552 result[used_slots+1] = reinterpret_cast<void*>(t->size); 553 result[used_slots+2] = reinterpret_cast<void*>(t->depth); 554 for (int d = 0; d < t->depth; d++) { 555 result[used_slots+3+d] = t->stack[d]; 556 } 557 used_slots += 3 + t->depth; 558 } 559 result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); 560 return result; 561 } 562 563 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) { 564 PageID page = 1; // Some code may assume that page==0 is never used 565 bool done = false; 566 while (!done) { 567 // Accumulate a small number of ranges in a local buffer 568 static const int kNumRanges = 16; 569 static base::MallocRange ranges[kNumRanges]; 570 int n = 0; 571 { 572 SpinLockHolder h(Static::pageheap_lock()); 573 while (n < kNumRanges) { 574 if (!Static::pageheap()->GetNextRange(page, &ranges[n])) { 575 done = true; 576 break; 577 } else { 578 uintptr_t limit = ranges[n].address + ranges[n].length; 579 page = (limit + kPageSize - 1) >> kPageShift; 580 n++; 581 } 582 } 583 } 584 585 for (int i = 0; i < n; i++) { 586 (*func)(arg, &ranges[i]); 587 } 588 } 589 } 590 591 // TCMalloc's support for extra malloc interfaces 592 class TCMallocImplementation : public MallocExtension { 593 private: 594 // ReleaseToSystem() might release more than the requested bytes because 595 // the page heap releases at the span granularity, and spans are of wildly 596 // different sizes. This member keeps track of the extra bytes bytes 597 // released so that the app can periodically call ReleaseToSystem() to 598 // release memory at a constant rate. 599 // NOTE: Protected by Static::pageheap_lock(). 600 size_t extra_bytes_released_; 601 602 public: 603 TCMallocImplementation() 604 : extra_bytes_released_(0) { 605 } 606 607 virtual void GetStats(char* buffer, int buffer_length) { 608 ASSERT(buffer_length > 0); 609 TCMalloc_Printer printer(buffer, buffer_length); 610 611 // Print level one stats unless lots of space is available 612 if (buffer_length < 10000) { 613 DumpStats(&printer, 1); 614 } else { 615 DumpStats(&printer, 2); 616 } 617 } 618 619 // We may print an extra, tcmalloc-specific warning message here. 620 virtual void GetHeapSample(MallocExtensionWriter* writer) { 621 if (FLAGS_tcmalloc_sample_parameter == 0) { 622 const char* const kWarningMsg = 623 "%warn\n" 624 "%warn This heap profile does not have any data in it, because\n" 625 "%warn the application was run with heap sampling turned off.\n" 626 "%warn To get useful data from GetHeapSample(), you must\n" 627 "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n" 628 "%warn a positive sampling period, such as 524288.\n" 629 "%warn\n"; 630 writer->append(kWarningMsg, strlen(kWarningMsg)); 631 } 632 MallocExtension::GetHeapSample(writer); 633 } 634 635 virtual void** ReadStackTraces(int* sample_period) { 636 tcmalloc::StackTraceTable table; 637 { 638 SpinLockHolder h(Static::pageheap_lock()); 639 Span* sampled = Static::sampled_objects(); 640 for (Span* s = sampled->next; s != sampled; s = s->next) { 641 table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects)); 642 } 643 } 644 *sample_period = ThreadCache::GetCache()->GetSamplePeriod(); 645 return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock 646 } 647 648 virtual void** ReadHeapGrowthStackTraces() { 649 return DumpHeapGrowthStackTraces(); 650 } 651 652 virtual void Ranges(void* arg, RangeFunction func) { 653 IterateOverRanges(arg, func); 654 } 655 656 virtual bool GetNumericProperty(const char* name, size_t* value) { 657 ASSERT(name != NULL); 658 659 if (strcmp(name, "generic.current_allocated_bytes") == 0) { 660 TCMallocStats stats; 661 ExtractStats(&stats, NULL, NULL, NULL); 662 *value = stats.pageheap.system_bytes 663 - stats.thread_bytes 664 - stats.central_bytes 665 - stats.transfer_bytes 666 - stats.pageheap.free_bytes 667 - stats.pageheap.unmapped_bytes; 668 return true; 669 } 670 671 if (strcmp(name, "generic.heap_size") == 0) { 672 TCMallocStats stats; 673 ExtractStats(&stats, NULL, NULL, NULL); 674 *value = stats.pageheap.system_bytes; 675 return true; 676 } 677 678 if (strcmp(name, "tcmalloc.slack_bytes") == 0) { 679 // Kept for backwards compatibility. Now defined externally as: 680 // pageheap_free_bytes + pageheap_unmapped_bytes. 681 SpinLockHolder l(Static::pageheap_lock()); 682 PageHeap::Stats stats = Static::pageheap()->stats(); 683 *value = stats.free_bytes + stats.unmapped_bytes; 684 return true; 685 } 686 687 if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) { 688 SpinLockHolder l(Static::pageheap_lock()); 689 *value = Static::pageheap()->stats().free_bytes; 690 return true; 691 } 692 693 if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) { 694 SpinLockHolder l(Static::pageheap_lock()); 695 *value = Static::pageheap()->stats().unmapped_bytes; 696 return true; 697 } 698 699 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { 700 SpinLockHolder l(Static::pageheap_lock()); 701 *value = ThreadCache::overall_thread_cache_size(); 702 return true; 703 } 704 705 if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) { 706 TCMallocStats stats; 707 ExtractStats(&stats, NULL, NULL, NULL); 708 *value = stats.thread_bytes; 709 return true; 710 } 711 712 return false; 713 } 714 715 virtual bool SetNumericProperty(const char* name, size_t value) { 716 ASSERT(name != NULL); 717 718 if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { 719 SpinLockHolder l(Static::pageheap_lock()); 720 ThreadCache::set_overall_thread_cache_size(value); 721 return true; 722 } 723 724 return false; 725 } 726 727 virtual void MarkThreadIdle() { 728 ThreadCache::BecomeIdle(); 729 } 730 731 virtual void MarkThreadBusy(); // Implemented below 732 733 virtual SysAllocator* GetSystemAllocator() { 734 SpinLockHolder h(Static::pageheap_lock()); 735 return sys_alloc; 736 } 737 738 virtual void SetSystemAllocator(SysAllocator* alloc) { 739 SpinLockHolder h(Static::pageheap_lock()); 740 sys_alloc = alloc; 741 } 742 743 virtual void ReleaseToSystem(size_t num_bytes) { 744 SpinLockHolder h(Static::pageheap_lock()); 745 if (num_bytes <= extra_bytes_released_) { 746 // We released too much on a prior call, so don't release any 747 // more this time. 748 extra_bytes_released_ = extra_bytes_released_ - num_bytes; 749 return; 750 } 751 num_bytes = num_bytes - extra_bytes_released_; 752 // num_bytes might be less than one page. If we pass zero to 753 // ReleaseAtLeastNPages, it won't do anything, so we release a whole 754 // page now and let extra_bytes_released_ smooth it out over time. 755 Length num_pages = max<Length>(num_bytes >> kPageShift, 1); 756 size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages( 757 num_pages) << kPageShift; 758 if (bytes_released > num_bytes) { 759 extra_bytes_released_ = bytes_released - num_bytes; 760 } else { 761 // The PageHeap wasn't able to release num_bytes. Don't try to 762 // compensate with a big release next time. Specifically, 763 // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX). 764 extra_bytes_released_ = 0; 765 } 766 } 767 768 virtual void SetMemoryReleaseRate(double rate) { 769 FLAGS_tcmalloc_release_rate = rate; 770 } 771 772 virtual double GetMemoryReleaseRate() { 773 return FLAGS_tcmalloc_release_rate; 774 } 775 virtual size_t GetEstimatedAllocatedSize(size_t size) { 776 if (size <= kMaxSize) { 777 const size_t cl = Static::sizemap()->SizeClass(size); 778 const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl); 779 return alloc_size; 780 } else { 781 return tcmalloc::pages(size) << kPageShift; 782 } 783 } 784 785 // This just calls GetSizeWithCallback, but because that's in an 786 // unnamed namespace, we need to move the definition below it in the 787 // file. 788 virtual size_t GetAllocatedSize(const void* ptr); 789 790 // This duplicates some of the logic in GetSizeWithCallback, but is 791 // faster. This is important on OS X, where this function is called 792 // on every allocation operation. 793 virtual Ownership GetOwnership(const void* ptr) { 794 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; 795 // The rest of tcmalloc assumes that all allocated pointers use at 796 // most kAddressBits bits. If ptr doesn't, then it definitely 797 // wasn't alloacted by tcmalloc. 798 if ((p >> (kAddressBits - kPageShift)) > 0) { 799 return kNotOwned; 800 } 801 size_t cl = Static::pageheap()->GetSizeClassIfCached(p); 802 if (cl != 0) { 803 return kOwned; 804 } 805 const Span *span = Static::pageheap()->GetDescriptor(p); 806 return span ? kOwned : kNotOwned; 807 } 808 809 virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) { 810 static const char* kCentralCacheType = "tcmalloc.central"; 811 static const char* kTransferCacheType = "tcmalloc.transfer"; 812 static const char* kThreadCacheType = "tcmalloc.thread"; 813 static const char* kPageHeapType = "tcmalloc.page"; 814 static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped"; 815 static const char* kLargeSpanType = "tcmalloc.large"; 816 static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped"; 817 818 v->clear(); 819 820 // central class information 821 int64 prev_class_size = 0; 822 for (int cl = 1; cl < kNumClasses; ++cl) { 823 size_t class_size = Static::sizemap()->ByteSizeForClass(cl); 824 MallocExtension::FreeListInfo i; 825 i.min_object_size = prev_class_size + 1; 826 i.max_object_size = class_size; 827 i.total_bytes_free = 828 Static::central_cache()[cl].length() * class_size; 829 i.type = kCentralCacheType; 830 v->push_back(i); 831 832 // transfer cache 833 i.total_bytes_free = 834 Static::central_cache()[cl].tc_length() * class_size; 835 i.type = kTransferCacheType; 836 v->push_back(i); 837 838 prev_class_size = Static::sizemap()->ByteSizeForClass(cl); 839 } 840 841 // Add stats from per-thread heaps 842 uint64_t class_count[kNumClasses]; 843 memset(class_count, 0, sizeof(class_count)); 844 { 845 SpinLockHolder h(Static::pageheap_lock()); 846 uint64_t thread_bytes = 0; 847 ThreadCache::GetThreadStats(&thread_bytes, class_count); 848 } 849 850 prev_class_size = 0; 851 for (int cl = 1; cl < kNumClasses; ++cl) { 852 MallocExtension::FreeListInfo i; 853 i.min_object_size = prev_class_size + 1; 854 i.max_object_size = Static::sizemap()->ByteSizeForClass(cl); 855 i.total_bytes_free = 856 class_count[cl] * Static::sizemap()->ByteSizeForClass(cl); 857 i.type = kThreadCacheType; 858 v->push_back(i); 859 } 860 861 // append page heap info 862 PageHeap::SmallSpanStats small; 863 PageHeap::LargeSpanStats large; 864 { 865 SpinLockHolder h(Static::pageheap_lock()); 866 Static::pageheap()->GetSmallSpanStats(&small); 867 Static::pageheap()->GetLargeSpanStats(&large); 868 } 869 870 // large spans: mapped 871 MallocExtension::FreeListInfo span_info; 872 span_info.type = kLargeSpanType; 873 span_info.max_object_size = (numeric_limits<size_t>::max)(); 874 span_info.min_object_size = kMaxPages << kPageShift; 875 span_info.total_bytes_free = large.normal_pages << kPageShift; 876 v->push_back(span_info); 877 878 // large spans: unmapped 879 span_info.type = kLargeUnmappedSpanType; 880 span_info.total_bytes_free = large.returned_pages << kPageShift; 881 v->push_back(span_info); 882 883 // small spans 884 for (int s = 1; s < kMaxPages; s++) { 885 MallocExtension::FreeListInfo i; 886 i.max_object_size = (s << kPageShift); 887 i.min_object_size = ((s - 1) << kPageShift); 888 889 i.type = kPageHeapType; 890 i.total_bytes_free = (s << kPageShift) * small.normal_length[s]; 891 v->push_back(i); 892 893 i.type = kPageHeapUnmappedType; 894 i.total_bytes_free = (s << kPageShift) * small.returned_length[s]; 895 v->push_back(i); 896 } 897 } 898 }; 899 900 // The constructor allocates an object to ensure that initialization 901 // runs before main(), and therefore we do not have a chance to become 902 // multi-threaded before initialization. We also create the TSD key 903 // here. Presumably by the time this constructor runs, glibc is in 904 // good enough shape to handle pthread_key_create(). 905 // 906 // The constructor also takes the opportunity to tell STL to use 907 // tcmalloc. We want to do this early, before construct time, so 908 // all user STL allocations go through tcmalloc (which works really 909 // well for STL). 910 // 911 // The destructor prints stats when the program exits. 912 static int tcmallocguard_refcount = 0; // no lock needed: runs before main() 913 TCMallocGuard::TCMallocGuard() { 914 if (tcmallocguard_refcount++ == 0) { 915 #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS 916 // Check whether the kernel also supports TLS (needs to happen at runtime) 917 tcmalloc::CheckIfKernelSupportsTLS(); 918 #endif 919 ReplaceSystemAlloc(); // defined in libc_override_*.h 920 tc_free(tc_malloc(1)); 921 ThreadCache::InitTSD(); 922 tc_free(tc_malloc(1)); 923 // Either we, or debugallocation.cc, or valgrind will control memory 924 // management. We register our extension if we're the winner. 925 #ifdef TCMALLOC_USING_DEBUGALLOCATION 926 // Let debugallocation register its extension. 927 #else 928 if (RunningOnValgrind()) { 929 // Let Valgrind uses its own malloc (so don't register our extension). 930 } else { 931 MallocExtension::Register(new TCMallocImplementation); 932 } 933 #endif 934 } 935 } 936 937 TCMallocGuard::~TCMallocGuard() { 938 if (--tcmallocguard_refcount == 0) { 939 const char* env = getenv("MALLOCSTATS"); 940 if (env != NULL) { 941 int level = atoi(env); 942 if (level < 1) level = 1; 943 PrintStats(level); 944 } 945 } 946 } 947 #ifndef WIN32_OVERRIDE_ALLOCATORS 948 static TCMallocGuard module_enter_exit_hook; 949 #endif 950 951 //------------------------------------------------------------------- 952 // Helpers for the exported routines below 953 //------------------------------------------------------------------- 954 955 static inline bool CheckCachedSizeClass(void *ptr) { 956 PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; 957 size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p); 958 return cached_value == 0 || 959 cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass; 960 } 961 962 static inline void* CheckMallocResult(void *result) { 963 ASSERT(result == NULL || CheckCachedSizeClass(result)); 964 MarkAllocatedRegion(result); 965 return result; 966 } 967 968 static inline void* SpanToMallocResult(Span *span) { 969 Static::pageheap()->CacheSizeClass(span->start, 0); 970 return 971 CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); 972 } 973 974 static void* DoSampledAllocation(size_t size) { 975 // Grab the stack trace outside the heap lock 976 StackTrace tmp; 977 tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1); 978 tmp.size = size; 979 980 SpinLockHolder h(Static::pageheap_lock()); 981 // Allocate span 982 Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size)); 983 if (span == NULL) { 984 return NULL; 985 } 986 987 // Allocate stack trace 988 StackTrace *stack = Static::stacktrace_allocator()->New(); 989 if (stack == NULL) { 990 // Sampling failed because of lack of memory 991 return span; 992 } 993 *stack = tmp; 994 span->sample = 1; 995 span->objects = stack; 996 tcmalloc::DLL_Prepend(Static::sampled_objects(), span); 997 998 return SpanToMallocResult(span); 999 } 1000 1001 namespace { 1002 1003 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with 1004 // automatic increases factored in. 1005 static int64_t large_alloc_threshold = 1006 (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold 1007 ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold); 1008 1009 static void ReportLargeAlloc(Length num_pages, void* result) { 1010 StackTrace stack; 1011 stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1); 1012 1013 static const int N = 1000; 1014 char buffer[N]; 1015 TCMalloc_Printer printer(buffer, N); 1016 printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ", 1017 static_cast<uint64>(num_pages) << kPageShift, 1018 result); 1019 for (int i = 0; i < stack.depth; i++) { 1020 printer.printf(" %p", stack.stack[i]); 1021 } 1022 printer.printf("\n"); 1023 write(STDERR_FILENO, buffer, strlen(buffer)); 1024 } 1025 1026 inline void* cpp_alloc(size_t size, bool nothrow); 1027 inline void* do_malloc(size_t size); 1028 1029 // TODO(willchan): Investigate whether or not inlining this much is harmful to 1030 // performance. 1031 // This is equivalent to do_malloc() except when tc_new_mode is set to true. 1032 // Otherwise, it will run the std::new_handler if set. 1033 inline void* do_malloc_or_cpp_alloc(size_t size) { 1034 return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size); 1035 } 1036 1037 void* cpp_memalign(size_t align, size_t size); 1038 void* do_memalign(size_t align, size_t size); 1039 1040 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) { 1041 return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size); 1042 } 1043 1044 // Must be called with the page lock held. 1045 inline bool should_report_large(Length num_pages) { 1046 const int64 threshold = large_alloc_threshold; 1047 if (threshold > 0 && num_pages >= (threshold >> kPageShift)) { 1048 // Increase the threshold by 1/8 every time we generate a report. 1049 // We cap the threshold at 8GiB to avoid overflow problems. 1050 large_alloc_threshold = (threshold + threshold/8 < 8ll<<30 1051 ? threshold + threshold/8 : 8ll<<30); 1052 return true; 1053 } 1054 return false; 1055 } 1056 1057 // Helper for do_malloc(). 1058 inline void* do_malloc_pages(ThreadCache* heap, size_t size) { 1059 void* result; 1060 bool report_large; 1061 1062 Length num_pages = tcmalloc::pages(size); 1063 size = num_pages << kPageShift; 1064 1065 // Chromium profiling. Measurements in March 2013 suggest this 1066 // imposes a small enough runtime cost that there's no reason to 1067 // try to optimize it. 1068 heap->AddToByteAllocatedTotal(size); 1069 1070 if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { 1071 result = DoSampledAllocation(size); 1072 1073 SpinLockHolder h(Static::pageheap_lock()); 1074 report_large = should_report_large(num_pages); 1075 } else { 1076 SpinLockHolder h(Static::pageheap_lock()); 1077 Span* span = Static::pageheap()->New(num_pages); 1078 result = (span == NULL ? NULL : SpanToMallocResult(span)); 1079 report_large = should_report_large(num_pages); 1080 } 1081 1082 if (report_large) { 1083 ReportLargeAlloc(num_pages, result); 1084 } 1085 return result; 1086 } 1087 1088 inline void* do_malloc(size_t size) { 1089 AddRoomForMark(&size); 1090 1091 void* ret = NULL; 1092 1093 // The following call forces module initialization 1094 ThreadCache* heap = ThreadCache::GetCache(); 1095 if (size <= kMaxSize && IsAllocSizePermitted(size)) { 1096 size_t cl = Static::sizemap()->SizeClass(size); 1097 size = Static::sizemap()->class_to_size(cl); 1098 1099 // Chromium profiling. Measurements in March 2013 suggest this 1100 // imposes a small enough runtime cost that there's no reason to 1101 // try to optimize it. 1102 heap->AddToByteAllocatedTotal(size); 1103 1104 if ((FLAGS_tcmalloc_sample_parameter > 0) && 1105 heap->SampleAllocation(size)) { 1106 ret = DoSampledAllocation(size); 1107 MarkAllocatedRegion(ret); 1108 } else { 1109 // The common case, and also the simplest. This just pops the 1110 // size-appropriate freelist, after replenishing it if it's empty. 1111 ret = CheckMallocResult(heap->Allocate(size, cl)); 1112 } 1113 } else if (IsAllocSizePermitted(size)) { 1114 ret = do_malloc_pages(heap, size); 1115 MarkAllocatedRegion(ret); 1116 } 1117 if (ret == NULL) errno = ENOMEM; 1118 ASSERT(IsAllocSizePermitted(size) || ret == NULL); 1119 return ret; 1120 } 1121 1122 inline void* do_calloc(size_t n, size_t elem_size) { 1123 // Overflow check 1124 const size_t size = n * elem_size; 1125 if (elem_size != 0 && size / elem_size != n) return NULL; 1126 1127 void* result = do_malloc_or_cpp_alloc(size); 1128 if (result != NULL) { 1129 memset(result, 0, size); 1130 } 1131 return result; 1132 } 1133 1134 static inline ThreadCache* GetCacheIfPresent() { 1135 void* const p = ThreadCache::GetCacheIfPresent(); 1136 return reinterpret_cast<ThreadCache*>(p); 1137 } 1138 1139 // This lets you call back to a given function pointer if ptr is invalid. 1140 // It is used primarily by windows code which wants a specialized callback. 1141 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) { 1142 if (ptr == NULL) return; 1143 if (Static::pageheap() == NULL) { 1144 // We called free() before malloc(). This can occur if the 1145 // (system) malloc() is called before tcmalloc is loaded, and then 1146 // free() is called after tcmalloc is loaded (and tc_free has 1147 // replaced free), but before the global constructor has run that 1148 // sets up the tcmalloc data structures. 1149 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request 1150 return; 1151 } 1152 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; 1153 Span* span = NULL; 1154 size_t cl = Static::pageheap()->GetSizeClassIfCached(p); 1155 1156 if (cl == 0) { 1157 span = Static::pageheap()->GetDescriptor(p); 1158 if (!span) { 1159 // span can be NULL because the pointer passed in is invalid 1160 // (not something returned by malloc or friends), or because the 1161 // pointer was allocated with some other allocator besides 1162 // tcmalloc. The latter can happen if tcmalloc is linked in via 1163 // a dynamic library, but is not listed last on the link line. 1164 // In that case, libraries after it on the link line will 1165 // allocate with libc malloc, but free with tcmalloc's free. 1166 (*invalid_free_fn)(ptr); // Decide how to handle the bad free request 1167 return; 1168 } 1169 cl = span->sizeclass; 1170 Static::pageheap()->CacheSizeClass(p, cl); 1171 } 1172 if (cl == 0) { 1173 // Check to see if the object is in use. 1174 CHECK_CONDITION_PRINT(span->location == Span::IN_USE, 1175 "Object was not in-use"); 1176 1177 CHECK_CONDITION_PRINT( 1178 span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr), 1179 "Pointer is not pointing to the start of a span"); 1180 } 1181 ValidateAllocatedRegion(ptr, cl); 1182 1183 if (cl != 0) { 1184 ASSERT(!Static::pageheap()->GetDescriptor(p)->sample); 1185 ThreadCache* heap = GetCacheIfPresent(); 1186 if (heap != NULL) { 1187 heap->Deallocate(ptr, cl); 1188 } else { 1189 // Delete directly into central cache 1190 tcmalloc::FL_Init(ptr); 1191 Static::central_cache()[cl].InsertRange(ptr, ptr, 1); 1192 } 1193 } else { 1194 SpinLockHolder h(Static::pageheap_lock()); 1195 ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); 1196 ASSERT(span != NULL && span->start == p); 1197 if (span->sample) { 1198 StackTrace* st = reinterpret_cast<StackTrace*>(span->objects); 1199 tcmalloc::DLL_Remove(span); 1200 Static::stacktrace_allocator()->Delete(st); 1201 span->objects = NULL; 1202 } 1203 Static::pageheap()->Delete(span); 1204 } 1205 } 1206 1207 // The default "do_free" that uses the default callback. 1208 inline void do_free(void* ptr) { 1209 return do_free_with_callback(ptr, &InvalidFree); 1210 } 1211 1212 // NOTE: some logic here is duplicated in GetOwnership (above), for 1213 // speed. If you change this function, look at that one too. 1214 inline size_t GetSizeWithCallback(const void* ptr, 1215 size_t (*invalid_getsize_fn)(const void*)) { 1216 if (ptr == NULL) 1217 return 0; 1218 const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; 1219 size_t cl = Static::pageheap()->GetSizeClassIfCached(p); 1220 if (cl != 0) { 1221 return Static::sizemap()->ByteSizeForClass(cl); 1222 } else { 1223 const Span *span = Static::pageheap()->GetDescriptor(p); 1224 if (span == NULL) { // means we do not own this memory 1225 return (*invalid_getsize_fn)(ptr); 1226 } else if (span->sizeclass != 0) { 1227 Static::pageheap()->CacheSizeClass(p, span->sizeclass); 1228 return Static::sizemap()->ByteSizeForClass(span->sizeclass); 1229 } else { 1230 return span->length << kPageShift; 1231 } 1232 } 1233 } 1234 1235 // This lets you call back to a given function pointer if ptr is invalid. 1236 // It is used primarily by windows code which wants a specialized callback. 1237 inline void* do_realloc_with_callback( 1238 void* old_ptr, size_t new_size, 1239 void (*invalid_free_fn)(void*), 1240 size_t (*invalid_get_size_fn)(const void*)) { 1241 AddRoomForMark(&new_size); 1242 // Get the size of the old entry 1243 const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn); 1244 1245 // Reallocate if the new size is larger than the old size, 1246 // or if the new size is significantly smaller than the old size. 1247 // We do hysteresis to avoid resizing ping-pongs: 1248 // . If we need to grow, grow to max(new_size, old_size * 1.X) 1249 // . Don't shrink unless new_size < old_size * 0.Y 1250 // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5. 1251 const size_t min_growth = min(old_size / 4, 1252 (std::numeric_limits<size_t>::max)() - old_size); // Avoid overflow. 1253 const size_t lower_bound_to_grow = old_size + min_growth; 1254 const size_t upper_bound_to_shrink = old_size / 2; 1255 if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) { 1256 // Need to reallocate. 1257 void* new_ptr = NULL; 1258 1259 if (new_size > old_size && new_size < lower_bound_to_grow) { 1260 new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow); 1261 } 1262 ExcludeMarkFromSize(&new_size); // do_malloc will add space if needed. 1263 if (new_ptr == NULL) { 1264 // Either new_size is not a tiny increment, or last do_malloc failed. 1265 new_ptr = do_malloc_or_cpp_alloc(new_size); 1266 } 1267 if (new_ptr == NULL) { 1268 return NULL; 1269 } 1270 MallocHook::InvokeNewHook(new_ptr, new_size); 1271 memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); 1272 MallocHook::InvokeDeleteHook(old_ptr); 1273 // We could use a variant of do_free() that leverages the fact 1274 // that we already know the sizeclass of old_ptr. The benefit 1275 // would be small, so don't bother. 1276 do_free_with_callback(old_ptr, invalid_free_fn); 1277 return new_ptr; 1278 } else { 1279 // We still need to call hooks to report the updated size: 1280 MallocHook::InvokeDeleteHook(old_ptr); 1281 ExcludeMarkFromSize(&new_size); 1282 MallocHook::InvokeNewHook(old_ptr, new_size); 1283 return old_ptr; 1284 } 1285 } 1286 1287 inline void* do_realloc(void* old_ptr, size_t new_size) { 1288 return do_realloc_with_callback(old_ptr, new_size, 1289 &InvalidFree, &InvalidGetSizeForRealloc); 1290 } 1291 1292 // For use by exported routines below that want specific alignments 1293 // 1294 // Note: this code can be slow for alignments > 16, and can 1295 // significantly fragment memory. The expectation is that 1296 // memalign/posix_memalign/valloc/pvalloc will not be invoked very 1297 // often. This requirement simplifies our implementation and allows 1298 // us to tune for expected allocation patterns. 1299 void* do_memalign(size_t align, size_t size) { 1300 ASSERT((align & (align - 1)) == 0); 1301 ASSERT(align > 0); 1302 // Marked in CheckMallocResult(), which is also inside SpanToMallocResult(). 1303 AddRoomForMark(&size); 1304 if (size + align < size) return NULL; // Overflow 1305 1306 // Fall back to malloc if we would already align this memory access properly. 1307 if (align <= AlignmentForSize(size)) { 1308 void* p = do_malloc(size); 1309 ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0); 1310 return p; 1311 } 1312 1313 if (Static::pageheap() == NULL) ThreadCache::InitModule(); 1314 1315 // Allocate at least one byte to avoid boundary conditions below 1316 if (size == 0) size = 1; 1317 1318 if (size <= kMaxSize && align < kPageSize) { 1319 // Search through acceptable size classes looking for one with 1320 // enough alignment. This depends on the fact that 1321 // InitSizeClasses() currently produces several size classes that 1322 // are aligned at powers of two. We will waste time and space if 1323 // we miss in the size class array, but that is deemed acceptable 1324 // since memalign() should be used rarely. 1325 int cl = Static::sizemap()->SizeClass(size); 1326 while (cl < kNumClasses && 1327 ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) { 1328 cl++; 1329 } 1330 if (cl < kNumClasses) { 1331 ThreadCache* heap = ThreadCache::GetCache(); 1332 size = Static::sizemap()->class_to_size(cl); 1333 return CheckMallocResult(heap->Allocate(size, cl)); 1334 } 1335 } 1336 1337 // We will allocate directly from the page heap 1338 SpinLockHolder h(Static::pageheap_lock()); 1339 1340 if (align <= kPageSize) { 1341 // Any page-level allocation will be fine 1342 // TODO: We could put the rest of this page in the appropriate 1343 // TODO: cache but it does not seem worth it. 1344 Span* span = Static::pageheap()->New(tcmalloc::pages(size)); 1345 return span == NULL ? NULL : SpanToMallocResult(span); 1346 } 1347 1348 // Allocate extra pages and carve off an aligned portion 1349 const Length alloc = tcmalloc::pages(size + align); 1350 Span* span = Static::pageheap()->New(alloc); 1351 if (span == NULL) return NULL; 1352 1353 // Skip starting portion so that we end up aligned 1354 Length skip = 0; 1355 while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { 1356 skip++; 1357 } 1358 ASSERT(skip < alloc); 1359 if (skip > 0) { 1360 Span* rest = Static::pageheap()->Split(span, skip); 1361 Static::pageheap()->Delete(span); 1362 span = rest; 1363 } 1364 1365 // Skip trailing portion that we do not need to return 1366 const Length needed = tcmalloc::pages(size); 1367 ASSERT(span->length >= needed); 1368 if (span->length > needed) { 1369 Span* trailer = Static::pageheap()->Split(span, needed); 1370 Static::pageheap()->Delete(trailer); 1371 } 1372 return SpanToMallocResult(span); 1373 } 1374 1375 // Helpers for use by exported routines below: 1376 1377 inline void do_malloc_stats() { 1378 PrintStats(1); 1379 } 1380 1381 inline int do_mallopt(int cmd, int value) { 1382 return 1; // Indicates error 1383 } 1384 1385 #ifdef HAVE_STRUCT_MALLINFO 1386 inline struct mallinfo do_mallinfo() { 1387 TCMallocStats stats; 1388 ExtractStats(&stats, NULL, NULL, NULL); 1389 1390 // Just some of the fields are filled in. 1391 struct mallinfo info; 1392 memset(&info, 0, sizeof(info)); 1393 1394 // Unfortunately, the struct contains "int" field, so some of the 1395 // size values will be truncated. 1396 info.arena = static_cast<int>(stats.pageheap.system_bytes); 1397 info.fsmblks = static_cast<int>(stats.thread_bytes 1398 + stats.central_bytes 1399 + stats.transfer_bytes); 1400 info.fordblks = static_cast<int>(stats.pageheap.free_bytes + 1401 stats.pageheap.unmapped_bytes); 1402 info.uordblks = static_cast<int>(stats.pageheap.system_bytes 1403 - stats.thread_bytes 1404 - stats.central_bytes 1405 - stats.transfer_bytes 1406 - stats.pageheap.free_bytes 1407 - stats.pageheap.unmapped_bytes); 1408 1409 return info; 1410 } 1411 #endif // HAVE_STRUCT_MALLINFO 1412 1413 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED); 1414 1415 inline void* cpp_alloc(size_t size, bool nothrow) { 1416 for (;;) { 1417 void* p = do_malloc(size); 1418 #ifdef PREANSINEW 1419 return p; 1420 #else 1421 if (p == NULL) { // allocation failed 1422 // Get the current new handler. NB: this function is not 1423 // thread-safe. We make a feeble stab at making it so here, but 1424 // this lock only protects against tcmalloc interfering with 1425 // itself, not with other libraries calling set_new_handler. 1426 std::new_handler nh; 1427 { 1428 SpinLockHolder h(&set_new_handler_lock); 1429 nh = std::set_new_handler(0); 1430 (void) std::set_new_handler(nh); 1431 } 1432 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) 1433 if (nh) { 1434 // Since exceptions are disabled, we don't really know if new_handler 1435 // failed. Assume it will abort if it fails. 1436 (*nh)(); 1437 continue; 1438 } 1439 return 0; 1440 #else 1441 // If no new_handler is established, the allocation failed. 1442 if (!nh) { 1443 if (nothrow) return 0; 1444 throw std::bad_alloc(); 1445 } 1446 // Otherwise, try the new_handler. If it returns, retry the 1447 // allocation. If it throws std::bad_alloc, fail the allocation. 1448 // if it throws something else, don't interfere. 1449 try { 1450 (*nh)(); 1451 } catch (const std::bad_alloc&) { 1452 if (!nothrow) throw; 1453 return p; 1454 } 1455 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) 1456 } else { // allocation success 1457 return p; 1458 } 1459 #endif // PREANSINEW 1460 } 1461 } 1462 1463 void* cpp_memalign(size_t align, size_t size) { 1464 for (;;) { 1465 void* p = do_memalign(align, size); 1466 #ifdef PREANSINEW 1467 return p; 1468 #else 1469 if (p == NULL) { // allocation failed 1470 // Get the current new handler. NB: this function is not 1471 // thread-safe. We make a feeble stab at making it so here, but 1472 // this lock only protects against tcmalloc interfering with 1473 // itself, not with other libraries calling set_new_handler. 1474 std::new_handler nh; 1475 { 1476 SpinLockHolder h(&set_new_handler_lock); 1477 nh = std::set_new_handler(0); 1478 (void) std::set_new_handler(nh); 1479 } 1480 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) 1481 if (nh) { 1482 // Since exceptions are disabled, we don't really know if new_handler 1483 // failed. Assume it will abort if it fails. 1484 (*nh)(); 1485 continue; 1486 } 1487 return 0; 1488 #else 1489 // If no new_handler is established, the allocation failed. 1490 if (!nh) 1491 return 0; 1492 1493 // Otherwise, try the new_handler. If it returns, retry the 1494 // allocation. If it throws std::bad_alloc, fail the allocation. 1495 // if it throws something else, don't interfere. 1496 try { 1497 (*nh)(); 1498 } catch (const std::bad_alloc&) { 1499 return p; 1500 } 1501 #endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS) 1502 } else { // allocation success 1503 return p; 1504 } 1505 #endif // PREANSINEW 1506 } 1507 } 1508 1509 } // end unnamed namespace 1510 1511 // As promised, the definition of this function, declared above. 1512 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) { 1513 // Chromium workaround for third-party code calling tc_malloc_size(NULL), see 1514 // http://code.google.com/p/chromium/issues/detail?id=118087 1515 // Note: this is consistent with GLIBC's implementation of 1516 // malloc_usable_size(NULL). 1517 if (ptr == NULL) 1518 return 0; 1519 ASSERT(TCMallocImplementation::GetOwnership(ptr) 1520 != TCMallocImplementation::kNotOwned); 1521 return ExcludeSpaceForMark( 1522 GetSizeWithCallback(ptr, &InvalidGetAllocatedSize)); 1523 } 1524 1525 void TCMallocImplementation::MarkThreadBusy() { 1526 // Allocate to force the creation of a thread cache, but avoid 1527 // invoking any hooks. 1528 do_free(do_malloc(0)); 1529 } 1530 1531 //------------------------------------------------------------------- 1532 // Exported routines 1533 //------------------------------------------------------------------- 1534 1535 extern "C" PERFTOOLS_DLL_DECL const char* tc_version( 1536 int* major, int* minor, const char** patch) __THROW { 1537 if (major) *major = TC_VERSION_MAJOR; 1538 if (minor) *minor = TC_VERSION_MINOR; 1539 if (patch) *patch = TC_VERSION_PATCH; 1540 return TC_VERSION_STRING; 1541 } 1542 1543 // This function behaves similarly to MSVC's _set_new_mode. 1544 // If flag is 0 (default), calls to malloc will behave normally. 1545 // If flag is 1, calls to malloc will behave like calls to new, 1546 // and the std_new_handler will be invoked on failure. 1547 // Returns the previous mode. 1548 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW { 1549 int old_mode = tc_new_mode; 1550 tc_new_mode = flag; 1551 return old_mode; 1552 } 1553 1554 #ifndef TCMALLOC_USING_DEBUGALLOCATION // debugallocation.cc defines its own 1555 1556 // CAVEAT: The code structure below ensures that MallocHook methods are always 1557 // called from the stack frame of the invoked allocation function. 1558 // heap-checker.cc depends on this to start a stack trace from 1559 // the call to the (de)allocation function. 1560 1561 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW { 1562 void* result = do_malloc_or_cpp_alloc(size); 1563 MallocHook::InvokeNewHook(result, size); 1564 return result; 1565 } 1566 1567 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW { 1568 MallocHook::InvokeDeleteHook(ptr); 1569 do_free(ptr); 1570 } 1571 1572 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n, 1573 size_t elem_size) __THROW { 1574 void* result = do_calloc(n, elem_size); 1575 MallocHook::InvokeNewHook(result, n * elem_size); 1576 return result; 1577 } 1578 1579 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW { 1580 MallocHook::InvokeDeleteHook(ptr); 1581 do_free(ptr); 1582 } 1583 1584 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr, 1585 size_t new_size) __THROW { 1586 if (old_ptr == NULL) { 1587 void* result = do_malloc_or_cpp_alloc(new_size); 1588 MallocHook::InvokeNewHook(result, new_size); 1589 return result; 1590 } 1591 if (new_size == 0) { 1592 MallocHook::InvokeDeleteHook(old_ptr); 1593 do_free(old_ptr); 1594 return NULL; 1595 } 1596 return do_realloc(old_ptr, new_size); 1597 } 1598 1599 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) { 1600 void* p = cpp_alloc(size, false); 1601 // We keep this next instruction out of cpp_alloc for a reason: when 1602 // it's in, and new just calls cpp_alloc, the optimizer may fold the 1603 // new call into cpp_alloc, which messes up our whole section-based 1604 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc 1605 // isn't the last thing this fn calls, and prevents the folding. 1606 MallocHook::InvokeNewHook(p, size); 1607 return p; 1608 } 1609 1610 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW { 1611 void* p = cpp_alloc(size, true); 1612 MallocHook::InvokeNewHook(p, size); 1613 return p; 1614 } 1615 1616 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW { 1617 MallocHook::InvokeDeleteHook(p); 1618 do_free(p); 1619 } 1620 1621 // Standard C++ library implementations define and use this 1622 // (via ::operator delete(ptr, nothrow)). 1623 // But it's really the same as normal delete, so we just do the same thing. 1624 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW { 1625 MallocHook::InvokeDeleteHook(p); 1626 do_free(p); 1627 } 1628 1629 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) { 1630 void* p = cpp_alloc(size, false); 1631 // We keep this next instruction out of cpp_alloc for a reason: when 1632 // it's in, and new just calls cpp_alloc, the optimizer may fold the 1633 // new call into cpp_alloc, which messes up our whole section-based 1634 // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc 1635 // isn't the last thing this fn calls, and prevents the folding. 1636 MallocHook::InvokeNewHook(p, size); 1637 return p; 1638 } 1639 1640 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) 1641 __THROW { 1642 void* p = cpp_alloc(size, true); 1643 MallocHook::InvokeNewHook(p, size); 1644 return p; 1645 } 1646 1647 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW { 1648 MallocHook::InvokeDeleteHook(p); 1649 do_free(p); 1650 } 1651 1652 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW { 1653 MallocHook::InvokeDeleteHook(p); 1654 do_free(p); 1655 } 1656 1657 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, 1658 size_t size) __THROW { 1659 void* result = do_memalign_or_cpp_memalign(align, size); 1660 MallocHook::InvokeNewHook(result, size); 1661 return result; 1662 } 1663 1664 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign( 1665 void** result_ptr, size_t align, size_t size) __THROW { 1666 if (((align % sizeof(void*)) != 0) || 1667 ((align & (align - 1)) != 0) || 1668 (align == 0)) { 1669 return EINVAL; 1670 } 1671 1672 void* result = do_memalign_or_cpp_memalign(align, size); 1673 MallocHook::InvokeNewHook(result, size); 1674 if (result == NULL) { 1675 return ENOMEM; 1676 } else { 1677 *result_ptr = result; 1678 return 0; 1679 } 1680 } 1681 1682 static size_t pagesize = 0; 1683 1684 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW { 1685 // Allocate page-aligned object of length >= size bytes 1686 if (pagesize == 0) pagesize = getpagesize(); 1687 void* result = do_memalign_or_cpp_memalign(pagesize, size); 1688 MallocHook::InvokeNewHook(result, size); 1689 return result; 1690 } 1691 1692 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW { 1693 // Round up size to a multiple of pagesize 1694 if (pagesize == 0) pagesize = getpagesize(); 1695 if (size == 0) { // pvalloc(0) should allocate one page, according to 1696 size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html 1697 } 1698 size = (size + pagesize - 1) & ~(pagesize - 1); 1699 void* result = do_memalign_or_cpp_memalign(pagesize, size); 1700 MallocHook::InvokeNewHook(result, size); 1701 return result; 1702 } 1703 1704 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW { 1705 do_malloc_stats(); 1706 } 1707 1708 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW { 1709 return do_mallopt(cmd, value); 1710 } 1711 1712 #ifdef HAVE_STRUCT_MALLINFO 1713 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW { 1714 return do_mallinfo(); 1715 } 1716 #endif 1717 1718 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW { 1719 return MallocExtension::instance()->GetAllocatedSize(ptr); 1720 } 1721 1722 #endif // TCMALLOC_USING_DEBUGALLOCATION 1723 1724 // --- Validation implementation with an extra mark ---------------------------- 1725 // We will put a mark at the extreme end of each allocation block. We make 1726 // sure that we always allocate enough "extra memory" that we can fit in the 1727 // mark, and still provide the requested usable region. If ever that mark is 1728 // not as expected, then we know that the user is corrupting memory beyond their 1729 // request size, or that they have called free a second time without having 1730 // the memory allocated (again). This allows us to spot most double free()s, 1731 // but some can "slip by" or confuse our logic if the caller reallocates memory 1732 // (for a second use) before performing an evil double-free of a first 1733 // allocation 1734 1735 // This code can be optimized, but for now, it is written to be most easily 1736 // understood, and flexible (since it is evolving a bit). Potential 1737 // optimizations include using other calculated data, such as class size, or 1738 // allocation size, which is known in the code above, but then is recalculated 1739 // below. Another potential optimization would be careful manual inlining of 1740 // code, but I *think* that the compile will probably do this for me, and I've 1741 // been careful to avoid aliasing issues that might make a compiler back-off. 1742 1743 // Evolution includes experimenting with different marks, to minimize the chance 1744 // that a mark would be misunderstood (missed corruption). The marks are meant 1745 // to be hashed encoding of the location, so that they can't be copied over a 1746 // different region (by accident) without being detected (most of the time). 1747 1748 // Enable the following define to turn on all the TCMalloc checking. 1749 // It will cost about 2% in performance, but it will catch double frees (most of 1750 // the time), and will often catch allocated-buffer overrun errors. This 1751 // validation is only active when TCMalloc is used as the allocator. 1752 #ifndef NDEBUG 1753 #define TCMALLOC_VALIDATION 1754 #endif 1755 1756 #if !defined(TCMALLOC_VALIDATION) 1757 1758 static size_t ExcludeSpaceForMark(size_t size) { return size; } 1759 static void AddRoomForMark(size_t* size) {} 1760 static void ExcludeMarkFromSize(size_t* new_size) {} 1761 static void MarkAllocatedRegion(void* ptr) {} 1762 static void ValidateAllocatedRegion(void* ptr, size_t cl) {} 1763 1764 #else // TCMALLOC_VALIDATION 1765 1766 static void DieFromDoubleFree() { 1767 Log(kCrash, __FILE__, __LINE__, "Attempt to double free"); 1768 } 1769 1770 static void DieFromMemoryCorruption() { 1771 Log(kCrash, __FILE__, __LINE__, "Memory corrupted"); 1772 } 1773 1774 // We can either do byte marking, or whole word marking based on the following 1775 // define. char is as small as we can get, and word marking probably provides 1776 // more than enough bits that we won't miss a corruption. Any sized integral 1777 // type can be used, but we just define two examples. 1778 1779 // #define TCMALLOC_SMALL_VALIDATION 1780 #if defined (TCMALLOC_SMALL_VALIDATION) 1781 1782 typedef char MarkType; // char saves memory... int is more complete. 1783 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36); 1784 1785 #else 1786 1787 typedef int MarkType; // char saves memory... int is more complete. 1788 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536); 1789 1790 #endif 1791 1792 // TODO(jar): See if use of reference rather than pointer gets better inlining, 1793 // or if macro is needed. My fear is that taking address map preclude register 1794 // allocation :-(. 1795 inline static void AddRoomForMark(size_t* size) { 1796 *size += sizeof(kAllocationMarkMask); 1797 } 1798 1799 inline static void ExcludeMarkFromSize(size_t* new_size) { 1800 *new_size -= sizeof(kAllocationMarkMask); 1801 } 1802 1803 inline static size_t ExcludeSpaceForMark(size_t size) { 1804 return size - sizeof(kAllocationMarkMask); // Lie about size when asked. 1805 } 1806 1807 inline static MarkType* GetMarkLocation(void* ptr) { 1808 size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize); 1809 ASSERT(size % sizeof(kAllocationMarkMask) == 0); 1810 size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1; 1811 return static_cast<MarkType*>(ptr) + last_index; 1812 } 1813 1814 // We hash in the mark location plus the pointer so that we effectively mix in 1815 // the size of the block. This means that if a span is used for different sizes 1816 // that the mark will be different. It would be good to hash in the size (which 1817 // we effectively get by using both mark location and pointer), but even better 1818 // would be to also include the class, as it concisely contains the entropy 1819 // found in the size (when we don't have large allocation), and there is less 1820 // risk of losing those bits to truncation. It would probably be good to combine 1821 // the high bits of size (capturing info about large blocks) with the class 1822 // (which is a 6 bit number). 1823 inline static MarkType GetMarkValue(void* ptr, MarkType* mark) { 1824 void* ptr2 = static_cast<void*>(mark); 1825 size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL); 1826 size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL); 1827 static const int kInvariantBits = 2; 1828 ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1); 1829 // Note: low bits of both offsets are invariants due to alignment. High bits 1830 // of both offsets are the same (unless we have a large allocation). Avoid 1831 // XORing high bits together, as they will cancel for most small allocations. 1832 1833 MarkType ret = kAllocationMarkMask; 1834 // Using a little shift, we can safely XOR together both offsets. 1835 ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^ 1836 static_cast<MarkType>(offset2); 1837 if (sizeof(ret) == 1) { 1838 // Try to bring some high level bits into the mix. 1839 ret += static_cast<MarkType>(offset1 >> 8) ^ 1840 static_cast<MarkType>(offset1 >> 16) ^ 1841 static_cast<MarkType>(offset1 >> 24) ; 1842 } 1843 // Hash in high bits on a 64 bit architecture. 1844 if (sizeof(size_t) == 8 && sizeof(ret) == 4) 1845 ret += offset1 >> 16; 1846 if (ret == 0) 1847 ret = kAllocationMarkMask; // Avoid common pattern of all zeros. 1848 return ret; 1849 } 1850 1851 // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location 1852 // faster. The current implementation calls general functions, which have to 1853 // recalculate this in order to get the Class Size. This is a slow and wasteful 1854 // recomputation... but it is much more readable this way (for now). 1855 static void ValidateAllocatedRegion(void* ptr, size_t cl) { 1856 if (ptr == NULL) return; 1857 MarkType* mark = GetMarkLocation(ptr); 1858 MarkType allocated_mark = GetMarkValue(ptr, mark); 1859 MarkType current_mark = *mark; 1860 1861 if (current_mark == ~allocated_mark) 1862 DieFromDoubleFree(); 1863 if (current_mark != allocated_mark) 1864 DieFromMemoryCorruption(); 1865 #ifndef NDEBUG 1866 // In debug mode, copy the mark into all the free'd region. 1867 size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) - 1868 reinterpret_cast<char*>(ptr)); 1869 memset(ptr, static_cast<char>(0x36), class_size); 1870 #endif 1871 *mark = ~allocated_mark; // Distinctively not allocated. 1872 } 1873 1874 static void MarkAllocatedRegion(void* ptr) { 1875 if (ptr == NULL) return; 1876 MarkType* mark = GetMarkLocation(ptr); 1877 *mark = GetMarkValue(ptr, mark); 1878 } 1879 1880 #endif // TCMALLOC_VALIDATION 1881