Home | History | Annotate | Download | only in src
      1 // Copyright (c) 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Sanjay Ghemawat <opensource (at) google.com>
     32 //
     33 // A malloc that uses a per-thread cache to satisfy small malloc requests.
     34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
     35 //
     36 // See doc/tcmalloc.html for a high-level
     37 // description of how this malloc works.
     38 //
     39 // SYNCHRONIZATION
     40 //  1. The thread-specific lists are accessed without acquiring any locks.
     41 //     This is safe because each such list is only accessed by one thread.
     42 //  2. We have a lock per central free-list, and hold it while manipulating
     43 //     the central free list for a particular size.
     44 //  3. The central page allocator is protected by "pageheap_lock".
     45 //  4. The pagemap (which maps from page-number to descriptor),
     46 //     can be read without holding any locks, and written while holding
     47 //     the "pageheap_lock".
     48 //  5. To improve performance, a subset of the information one can get
     49 //     from the pagemap is cached in a data structure, pagemap_cache_,
     50 //     that atomically reads and writes its entries.  This cache can be
     51 //     read and written without locking.
     52 //
     53 //     This multi-threaded access to the pagemap is safe for fairly
     54 //     subtle reasons.  We basically assume that when an object X is
     55 //     allocated by thread A and deallocated by thread B, there must
     56 //     have been appropriate synchronization in the handoff of object
     57 //     X from thread A to thread B.  The same logic applies to pagemap_cache_.
     58 //
     59 // THE PAGEID-TO-SIZECLASS CACHE
     60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
     61 // returns 0 for a particular PageID then that means "no information," not that
     62 // the sizeclass is 0.  The cache may have stale information for pages that do
     63 // not hold the beginning of any free()'able object.  Staleness is eliminated
     64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
     65 // do_memalign() for all other relevant pages.
     66 //
     67 // PAGEMAP
     68 // -------
     69 // Page map contains a mapping from page id to Span.
     70 //
     71 // If Span s occupies pages [p..q],
     72 //      pagemap[p] == s
     73 //      pagemap[q] == s
     74 //      pagemap[p+1..q-1] are undefined
     75 //      pagemap[p-1] and pagemap[q+1] are defined:
     76 //         NULL if the corresponding page is not yet in the address space.
     77 //         Otherwise it points to a Span.  This span may be free
     78 //         or allocated.  If free, it is in one of pageheap's freelist.
     79 //
     80 // TODO: Bias reclamation to larger addresses
     81 // TODO: implement mallinfo/mallopt
     82 // TODO: Better testing
     83 //
     84 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
     85 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
     86 // * allocation of a reasonably complicated struct
     87 //   goes from about 1100 ns to about 300 ns.
     88 
     89 #include "config.h"
     90 #include <gperftools/tcmalloc.h>
     91 
     92 #include <errno.h>                      // for ENOMEM, EINVAL, errno
     93 #ifdef HAVE_SYS_CDEFS_H
     94 #include <sys/cdefs.h>                  // for __THROW
     95 #endif
     96 #if defined HAVE_STDINT_H
     97 #include <stdint.h>
     98 #elif defined HAVE_INTTYPES_H
     99 #include <inttypes.h>
    100 #else
    101 #include <sys/types.h>
    102 #endif
    103 #include <stddef.h>                     // for size_t, NULL
    104 #include <stdlib.h>                     // for getenv
    105 #include <string.h>                     // for strcmp, memset, strlen, etc
    106 #ifdef HAVE_UNISTD_H
    107 #include <unistd.h>                     // for getpagesize, write, etc
    108 #endif
    109 #include <algorithm>                    // for max, min
    110 #include <limits>                       // for numeric_limits
    111 #include <new>                          // for nothrow_t (ptr only), etc
    112 #include <vector>                       // for vector
    113 
    114 #include <gperftools/malloc_extension.h>
    115 #include <gperftools/malloc_hook.h>         // for MallocHook
    116 #include "base/basictypes.h"            // for int64
    117 #include "base/commandlineflags.h"      // for RegisterFlagValidator, etc
    118 #include "base/dynamic_annotations.h"   // for RunningOnValgrind
    119 #include "base/spinlock.h"              // for SpinLockHolder
    120 #include "central_freelist.h"  // for CentralFreeListPadded
    121 #include "common.h"            // for StackTrace, kPageShift, etc
    122 #include "free_list.h"         // for FL_Init
    123 #include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc
    124 #include "malloc_hook-inl.h"       // for MallocHook::InvokeNewHook, etc
    125 #include "page_heap.h"         // for PageHeap, PageHeap::Stats
    126 #include "page_heap_allocator.h"  // for PageHeapAllocator
    127 #include "span.h"              // for Span, DLL_Prepend, etc
    128 #include "stack_trace_table.h"  // for StackTraceTable
    129 #include "static_vars.h"       // for Static
    130 #include "system-alloc.h"      // for DumpSystemAllocatorStats, etc
    131 #include "tcmalloc_guard.h"    // for TCMallocGuard
    132 #include "thread_cache.h"      // for ThreadCache
    133 
    134 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
    135 # define WIN32_DO_PATCHING 1
    136 #endif
    137 
    138 // Some windows file somewhere (at least on cygwin) #define's small (!)
    139 // For instance, <windows.h> appears to have "#define small char".
    140 #undef small
    141 
    142 using STL_NAMESPACE::max;
    143 using STL_NAMESPACE::min;
    144 using STL_NAMESPACE::numeric_limits;
    145 using STL_NAMESPACE::vector;
    146 
    147 #include "libc_override.h"
    148 
    149 // __THROW is defined in glibc (via <sys/cdefs.h>).  It means,
    150 // counter-intuitively, "This function will never throw an exception."
    151 // It's an optional optimization tool, but we may need to use it to
    152 // match glibc prototypes.
    153 #ifndef __THROW    // I guess we're not on a glibc system
    154 # define __THROW   // __THROW is just an optimization, so ok to make it ""
    155 #endif
    156 
    157 using tcmalloc::AlignmentForSize;
    158 using tcmalloc::kLog;
    159 using tcmalloc::kCrash;
    160 using tcmalloc::kCrashWithStats;
    161 using tcmalloc::Log;
    162 using tcmalloc::PageHeap;
    163 using tcmalloc::PageHeapAllocator;
    164 using tcmalloc::SizeMap;
    165 using tcmalloc::Span;
    166 using tcmalloc::StackTrace;
    167 using tcmalloc::Static;
    168 using tcmalloc::ThreadCache;
    169 
    170 // ---- Functions doing validation with an extra mark.
    171 static size_t ExcludeSpaceForMark(size_t size);
    172 static void AddRoomForMark(size_t* size);
    173 static void ExcludeMarkFromSize(size_t* new_size);
    174 static void MarkAllocatedRegion(void* ptr);
    175 static void ValidateAllocatedRegion(void* ptr, size_t cl);
    176 // ---- End validation functions.
    177 
    178 DECLARE_int64(tcmalloc_sample_parameter);
    179 DECLARE_double(tcmalloc_release_rate);
    180 
    181 // For windows, the printf we use to report large allocs is
    182 // potentially dangerous: it could cause a malloc that would cause an
    183 // infinite loop.  So by default we set the threshold to a huge number
    184 // on windows, so this bad situation will never trigger.  You can
    185 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
    186 // want this functionality.
    187 #ifdef _WIN32
    188 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
    189 #else
    190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
    191 #endif
    192 DEFINE_int64(tcmalloc_large_alloc_report_threshold,
    193              EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
    194                         kDefaultLargeAllocReportThreshold),
    195              "Allocations larger than this value cause a stack "
    196              "trace to be dumped to stderr.  The threshold for "
    197              "dumping stack traces is increased by a factor of 1.125 "
    198              "every time we print a message so that the threshold "
    199              "automatically goes up by a factor of ~1000 every 60 "
    200              "messages.  This bounds the amount of extra logging "
    201              "generated by this flag.  Default value of this flag "
    202              "is very large and therefore you should see no extra "
    203              "logging unless the flag is overridden.  Set to 0 to "
    204              "disable reporting entirely.");
    205 
    206 
    207 // We already declared these functions in tcmalloc.h, but we have to
    208 // declare them again to give them an ATTRIBUTE_SECTION: we want to
    209 // put all callers of MallocHook::Invoke* in this module into
    210 // ATTRIBUTE_SECTION(google_malloc) section, so that
    211 // MallocHook::GetCallerStackTrace can function accurately.
    212 extern "C" {
    213   void* tc_malloc(size_t size) __THROW
    214       ATTRIBUTE_SECTION(google_malloc);
    215   void tc_free(void* ptr) __THROW
    216       ATTRIBUTE_SECTION(google_malloc);
    217   void* tc_realloc(void* ptr, size_t size) __THROW
    218       ATTRIBUTE_SECTION(google_malloc);
    219   void* tc_calloc(size_t nmemb, size_t size) __THROW
    220       ATTRIBUTE_SECTION(google_malloc);
    221   void tc_cfree(void* ptr) __THROW
    222       ATTRIBUTE_SECTION(google_malloc);
    223 
    224   void* tc_memalign(size_t __alignment, size_t __size) __THROW
    225       ATTRIBUTE_SECTION(google_malloc);
    226   int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
    227       ATTRIBUTE_SECTION(google_malloc);
    228   void* tc_valloc(size_t __size) __THROW
    229       ATTRIBUTE_SECTION(google_malloc);
    230   void* tc_pvalloc(size_t __size) __THROW
    231       ATTRIBUTE_SECTION(google_malloc);
    232 
    233   void tc_malloc_stats(void) __THROW
    234       ATTRIBUTE_SECTION(google_malloc);
    235   int tc_mallopt(int cmd, int value) __THROW
    236       ATTRIBUTE_SECTION(google_malloc);
    237 #ifdef HAVE_STRUCT_MALLINFO
    238   struct mallinfo tc_mallinfo(void) __THROW
    239       ATTRIBUTE_SECTION(google_malloc);
    240 #endif
    241 
    242   void* tc_new(size_t size)
    243       ATTRIBUTE_SECTION(google_malloc);
    244   void tc_delete(void* p) __THROW
    245       ATTRIBUTE_SECTION(google_malloc);
    246   void* tc_newarray(size_t size)
    247       ATTRIBUTE_SECTION(google_malloc);
    248   void tc_deletearray(void* p) __THROW
    249       ATTRIBUTE_SECTION(google_malloc);
    250 
    251   // And the nothrow variants of these:
    252   void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
    253       ATTRIBUTE_SECTION(google_malloc);
    254   void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
    255       ATTRIBUTE_SECTION(google_malloc);
    256   // Surprisingly, standard C++ library implementations use a
    257   // nothrow-delete internally.  See, eg:
    258   // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
    259   void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
    260       ATTRIBUTE_SECTION(google_malloc);
    261   void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
    262       ATTRIBUTE_SECTION(google_malloc);
    263 
    264   // Some non-standard extensions that we support.
    265 
    266   // This is equivalent to
    267   //    OS X: malloc_size()
    268   //    glibc: malloc_usable_size()
    269   //    Windows: _msize()
    270   size_t tc_malloc_size(void* p) __THROW
    271       ATTRIBUTE_SECTION(google_malloc);
    272 }  // extern "C"
    273 
    274 
    275 // ----------------------- IMPLEMENTATION -------------------------------
    276 
    277 static int tc_new_mode = 0;  // See tc_set_new_mode().
    278 
    279 // Routines such as free() and realloc() catch some erroneous pointers
    280 // passed to them, and invoke the below when they do.  (An erroneous pointer
    281 // won't be caught if it's within a valid span or a stale span for which
    282 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
    283 // required) kind of exception handling for these routines.
    284 namespace {
    285 void InvalidFree(void* ptr) {
    286   Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
    287 }
    288 
    289 size_t InvalidGetSizeForRealloc(const void* old_ptr) {
    290   Log(kCrash, __FILE__, __LINE__,
    291       "Attempt to realloc invalid pointer", old_ptr);
    292   return 0;
    293 }
    294 
    295 size_t InvalidGetAllocatedSize(const void* ptr) {
    296   Log(kCrash, __FILE__, __LINE__,
    297       "Attempt to get the size of an invalid pointer", ptr);
    298   return 0;
    299 }
    300 
    301 // For security reasons, we want to limit the size of allocations.
    302 // See crbug.com/169327.
    303 inline bool IsAllocSizePermitted(size_t alloc_size) {
    304   // Never allow an allocation larger than what can be indexed via an int.
    305   // Remove kPageSize to account for various rounding, padding and to have a
    306   // small margin.
    307   return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize);
    308 }
    309 
    310 }  // unnamed namespace
    311 
    312 // Extract interesting stats
    313 struct TCMallocStats {
    314   uint64_t thread_bytes;      // Bytes in thread caches
    315   uint64_t central_bytes;     // Bytes in central cache
    316   uint64_t transfer_bytes;    // Bytes in central transfer cache
    317   uint64_t metadata_bytes;    // Bytes alloced for metadata
    318   uint64_t metadata_unmapped_bytes;    // Address space reserved for metadata
    319                                        // but is not committed.
    320   PageHeap::Stats pageheap;   // Stats from page heap
    321 };
    322 
    323 // Get stats into "r".  Also get per-size-class counts if class_count != NULL
    324 static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
    325                          PageHeap::SmallSpanStats* small_spans,
    326                          PageHeap::LargeSpanStats* large_spans) {
    327   r->central_bytes = 0;
    328   r->transfer_bytes = 0;
    329   for (int cl = 0; cl < kNumClasses; ++cl) {
    330     const int length = Static::central_cache()[cl].length();
    331     const int tc_length = Static::central_cache()[cl].tc_length();
    332     const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
    333     const size_t size = static_cast<uint64_t>(
    334         Static::sizemap()->ByteSizeForClass(cl));
    335     r->central_bytes += (size * length) + cache_overhead;
    336     r->transfer_bytes += (size * tc_length);
    337     if (class_count) class_count[cl] = length + tc_length;
    338   }
    339 
    340   // Add stats from per-thread heaps
    341   r->thread_bytes = 0;
    342   { // scope
    343     SpinLockHolder h(Static::pageheap_lock());
    344     ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
    345     r->metadata_bytes = tcmalloc::metadata_system_bytes();
    346     r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes();
    347     r->pageheap = Static::pageheap()->stats();
    348     if (small_spans != NULL) {
    349       Static::pageheap()->GetSmallSpanStats(small_spans);
    350     }
    351     if (large_spans != NULL) {
    352       Static::pageheap()->GetLargeSpanStats(large_spans);
    353     }
    354   }
    355 }
    356 
    357 static double PagesToMiB(uint64_t pages) {
    358   return (pages << kPageShift) / 1048576.0;
    359 }
    360 
    361 // WRITE stats to "out"
    362 static void DumpStats(TCMalloc_Printer* out, int level) {
    363   TCMallocStats stats;
    364   uint64_t class_count[kNumClasses];
    365   PageHeap::SmallSpanStats small;
    366   PageHeap::LargeSpanStats large;
    367   if (level >= 2) {
    368     ExtractStats(&stats, class_count, &small, &large);
    369   } else {
    370     ExtractStats(&stats, NULL, NULL, NULL);
    371   }
    372 
    373   static const double MiB = 1048576.0;
    374 
    375   const uint64_t physical_memory_used_by_metadata =
    376       stats.metadata_bytes - stats.metadata_unmapped_bytes;
    377   const uint64_t unmapped_bytes =
    378       stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes;
    379 
    380   const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
    381                                         + stats.metadata_bytes);
    382   const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes;
    383   const uint64_t bytes_in_use_by_app = (physical_memory_used
    384                                         - physical_memory_used_by_metadata
    385                                         - stats.pageheap.free_bytes
    386                                         - stats.central_bytes
    387                                         - stats.transfer_bytes
    388                                         - stats.thread_bytes);
    389 
    390   out->printf(
    391       "WASTE:   %7.1f MiB bytes in use\n"
    392       "WASTE: + %7.1f MiB committed but not used\n"
    393       "WASTE:   ------------\n"
    394       "WASTE: = %7.1f MiB bytes committed\n"
    395       "WASTE: committed/used ratio of %f\n",
    396       bytes_in_use_by_app / MiB,
    397       (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB,
    398       stats.pageheap.committed_bytes / MiB,
    399       stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app)
    400       );
    401 #ifdef TCMALLOC_SMALL_BUT_SLOW
    402   out->printf(
    403       "NOTE:  SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
    404 #endif
    405   out->printf(
    406       "------------------------------------------------\n"
    407       "MALLOC:   %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
    408       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
    409       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
    410       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
    411       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
    412       "MALLOC:   ------------\n"
    413       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n"
    414       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
    415       "MALLOC:   ------------\n"
    416       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
    417       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
    418       "MALLOC:   ------------\n"
    419       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
    420       "MALLOC:\n"
    421       "MALLOC:   %12" PRIu64 "              Spans in use\n"
    422       "MALLOC:   %12" PRIu64 "              Thread heaps in use\n"
    423       "MALLOC:   %12" PRIu64 "              Tcmalloc page size\n"
    424       "------------------------------------------------\n"
    425       "Call ReleaseFreeMemory() to release freelist memory to the OS"
    426       " (via madvise()).\n"
    427       "Bytes released to the OS take up virtual address space"
    428       " but no physical memory.\n",
    429       bytes_in_use_by_app, bytes_in_use_by_app / MiB,
    430       stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
    431       stats.central_bytes, stats.central_bytes / MiB,
    432       stats.transfer_bytes, stats.transfer_bytes / MiB,
    433       stats.thread_bytes, stats.thread_bytes / MiB,
    434       stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB,
    435       physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB,
    436       physical_memory_used, physical_memory_used / MiB,
    437       unmapped_bytes, unmapped_bytes / MiB,
    438       virtual_memory_used, virtual_memory_used / MiB,
    439       uint64_t(Static::span_allocator()->inuse()),
    440       uint64_t(ThreadCache::HeapsInUse()),
    441       uint64_t(kPageSize));
    442 
    443   if (level >= 2) {
    444     out->printf("------------------------------------------------\n");
    445     out->printf("Size class breakdown\n");
    446     out->printf("------------------------------------------------\n");
    447     uint64_t cumulative = 0;
    448     for (int cl = 0; cl < kNumClasses; ++cl) {
    449       if (class_count[cl] > 0) {
    450         uint64_t class_bytes =
    451             class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    452         cumulative += class_bytes;
    453         out->printf("class %3d [ %8" PRIuS " bytes ] : "
    454                 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
    455                 cl, Static::sizemap()->ByteSizeForClass(cl),
    456                 class_count[cl],
    457                 class_bytes / MiB,
    458                 cumulative / MiB);
    459       }
    460     }
    461 
    462     // append page heap info
    463     int nonempty_sizes = 0;
    464     for (int s = 0; s < kMaxPages; s++) {
    465       if (small.normal_length[s] + small.returned_length[s] > 0) {
    466         nonempty_sizes++;
    467       }
    468     }
    469     out->printf("------------------------------------------------\n");
    470     out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
    471                 nonempty_sizes, stats.pageheap.free_bytes / MiB,
    472                 stats.pageheap.unmapped_bytes / MiB);
    473     out->printf("------------------------------------------------\n");
    474     uint64_t total_normal = 0;
    475     uint64_t total_returned = 0;
    476     for (int s = 0; s < kMaxPages; s++) {
    477       const int n_length = small.normal_length[s];
    478       const int r_length = small.returned_length[s];
    479       if (n_length + r_length > 0) {
    480         uint64_t n_pages = s * n_length;
    481         uint64_t r_pages = s * r_length;
    482         total_normal += n_pages;
    483         total_returned += r_pages;
    484         out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    485                     "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    486                     s,
    487                     (n_length + r_length),
    488                     PagesToMiB(n_pages + r_pages),
    489                     PagesToMiB(total_normal + total_returned),
    490                     PagesToMiB(r_pages),
    491                     PagesToMiB(total_returned));
    492       }
    493     }
    494 
    495     total_normal += large.normal_pages;
    496     total_returned += large.returned_pages;
    497     out->printf(">255   large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    498                 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    499                 static_cast<unsigned int>(large.spans),
    500                 PagesToMiB(large.normal_pages + large.returned_pages),
    501                 PagesToMiB(total_normal + total_returned),
    502                 PagesToMiB(large.returned_pages),
    503                 PagesToMiB(total_returned));
    504   }
    505 }
    506 
    507 static void PrintStats(int level) {
    508   const int kBufferSize = 16 << 10;
    509   char* buffer = new char[kBufferSize];
    510   TCMalloc_Printer printer(buffer, kBufferSize);
    511   DumpStats(&printer, level);
    512   write(STDERR_FILENO, buffer, strlen(buffer));
    513   delete[] buffer;
    514 }
    515 
    516 static void** DumpHeapGrowthStackTraces() {
    517   // Count how much space we need
    518   int needed_slots = 0;
    519   {
    520     SpinLockHolder h(Static::pageheap_lock());
    521     for (StackTrace* t = Static::growth_stacks();
    522          t != NULL;
    523          t = reinterpret_cast<StackTrace*>(
    524              t->stack[tcmalloc::kMaxStackDepth-1])) {
    525       needed_slots += 3 + t->depth;
    526     }
    527     needed_slots += 100;            // Slop in case list grows
    528     needed_slots += needed_slots/8; // An extra 12.5% slop
    529   }
    530 
    531   void** result = new void*[needed_slots];
    532   if (result == NULL) {
    533     Log(kLog, __FILE__, __LINE__,
    534         "tcmalloc: allocation failed for stack trace slots",
    535         needed_slots * sizeof(*result));
    536     return NULL;
    537   }
    538 
    539   SpinLockHolder h(Static::pageheap_lock());
    540   int used_slots = 0;
    541   for (StackTrace* t = Static::growth_stacks();
    542        t != NULL;
    543        t = reinterpret_cast<StackTrace*>(
    544            t->stack[tcmalloc::kMaxStackDepth-1])) {
    545     ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
    546     if (used_slots + 3 + t->depth >= needed_slots) {
    547       // No more room
    548       break;
    549     }
    550 
    551     result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
    552     result[used_slots+1] = reinterpret_cast<void*>(t->size);
    553     result[used_slots+2] = reinterpret_cast<void*>(t->depth);
    554     for (int d = 0; d < t->depth; d++) {
    555       result[used_slots+3+d] = t->stack[d];
    556     }
    557     used_slots += 3 + t->depth;
    558   }
    559   result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
    560   return result;
    561 }
    562 
    563 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
    564   PageID page = 1;  // Some code may assume that page==0 is never used
    565   bool done = false;
    566   while (!done) {
    567     // Accumulate a small number of ranges in a local buffer
    568     static const int kNumRanges = 16;
    569     static base::MallocRange ranges[kNumRanges];
    570     int n = 0;
    571     {
    572       SpinLockHolder h(Static::pageheap_lock());
    573       while (n < kNumRanges) {
    574         if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
    575           done = true;
    576           break;
    577         } else {
    578           uintptr_t limit = ranges[n].address + ranges[n].length;
    579           page = (limit + kPageSize - 1) >> kPageShift;
    580           n++;
    581         }
    582       }
    583     }
    584 
    585     for (int i = 0; i < n; i++) {
    586       (*func)(arg, &ranges[i]);
    587     }
    588   }
    589 }
    590 
    591 // TCMalloc's support for extra malloc interfaces
    592 class TCMallocImplementation : public MallocExtension {
    593  private:
    594   // ReleaseToSystem() might release more than the requested bytes because
    595   // the page heap releases at the span granularity, and spans are of wildly
    596   // different sizes.  This member keeps track of the extra bytes bytes
    597   // released so that the app can periodically call ReleaseToSystem() to
    598   // release memory at a constant rate.
    599   // NOTE: Protected by Static::pageheap_lock().
    600   size_t extra_bytes_released_;
    601 
    602  public:
    603   TCMallocImplementation()
    604       : extra_bytes_released_(0) {
    605   }
    606 
    607   virtual void GetStats(char* buffer, int buffer_length) {
    608     ASSERT(buffer_length > 0);
    609     TCMalloc_Printer printer(buffer, buffer_length);
    610 
    611     // Print level one stats unless lots of space is available
    612     if (buffer_length < 10000) {
    613       DumpStats(&printer, 1);
    614     } else {
    615       DumpStats(&printer, 2);
    616     }
    617   }
    618 
    619   // We may print an extra, tcmalloc-specific warning message here.
    620   virtual void GetHeapSample(MallocExtensionWriter* writer) {
    621     if (FLAGS_tcmalloc_sample_parameter == 0) {
    622       const char* const kWarningMsg =
    623           "%warn\n"
    624           "%warn This heap profile does not have any data in it, because\n"
    625           "%warn the application was run with heap sampling turned off.\n"
    626           "%warn To get useful data from GetHeapSample(), you must\n"
    627           "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
    628           "%warn a positive sampling period, such as 524288.\n"
    629           "%warn\n";
    630       writer->append(kWarningMsg, strlen(kWarningMsg));
    631     }
    632     MallocExtension::GetHeapSample(writer);
    633   }
    634 
    635   virtual void** ReadStackTraces(int* sample_period) {
    636     tcmalloc::StackTraceTable table;
    637     {
    638       SpinLockHolder h(Static::pageheap_lock());
    639       Span* sampled = Static::sampled_objects();
    640       for (Span* s = sampled->next; s != sampled; s = s->next) {
    641         table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
    642       }
    643     }
    644     *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
    645     return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
    646   }
    647 
    648   virtual void** ReadHeapGrowthStackTraces() {
    649     return DumpHeapGrowthStackTraces();
    650   }
    651 
    652   virtual void Ranges(void* arg, RangeFunction func) {
    653     IterateOverRanges(arg, func);
    654   }
    655 
    656   virtual bool GetNumericProperty(const char* name, size_t* value) {
    657     ASSERT(name != NULL);
    658 
    659     if (strcmp(name, "generic.current_allocated_bytes") == 0) {
    660       TCMallocStats stats;
    661       ExtractStats(&stats, NULL, NULL, NULL);
    662       *value = stats.pageheap.system_bytes
    663                - stats.thread_bytes
    664                - stats.central_bytes
    665                - stats.transfer_bytes
    666                - stats.pageheap.free_bytes
    667                - stats.pageheap.unmapped_bytes;
    668       return true;
    669     }
    670 
    671     if (strcmp(name, "generic.heap_size") == 0) {
    672       TCMallocStats stats;
    673       ExtractStats(&stats, NULL, NULL, NULL);
    674       *value = stats.pageheap.system_bytes;
    675       return true;
    676     }
    677 
    678     if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
    679       // Kept for backwards compatibility.  Now defined externally as:
    680       //    pageheap_free_bytes + pageheap_unmapped_bytes.
    681       SpinLockHolder l(Static::pageheap_lock());
    682       PageHeap::Stats stats = Static::pageheap()->stats();
    683       *value = stats.free_bytes + stats.unmapped_bytes;
    684       return true;
    685     }
    686 
    687     if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
    688       SpinLockHolder l(Static::pageheap_lock());
    689       *value = Static::pageheap()->stats().free_bytes;
    690       return true;
    691     }
    692 
    693     if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
    694       SpinLockHolder l(Static::pageheap_lock());
    695       *value = Static::pageheap()->stats().unmapped_bytes;
    696       return true;
    697     }
    698 
    699     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    700       SpinLockHolder l(Static::pageheap_lock());
    701       *value = ThreadCache::overall_thread_cache_size();
    702       return true;
    703     }
    704 
    705     if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
    706       TCMallocStats stats;
    707       ExtractStats(&stats, NULL, NULL, NULL);
    708       *value = stats.thread_bytes;
    709       return true;
    710     }
    711 
    712     return false;
    713   }
    714 
    715   virtual bool SetNumericProperty(const char* name, size_t value) {
    716     ASSERT(name != NULL);
    717 
    718     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    719       SpinLockHolder l(Static::pageheap_lock());
    720       ThreadCache::set_overall_thread_cache_size(value);
    721       return true;
    722     }
    723 
    724     return false;
    725   }
    726 
    727   virtual void MarkThreadIdle() {
    728     ThreadCache::BecomeIdle();
    729   }
    730 
    731   virtual void MarkThreadBusy();  // Implemented below
    732 
    733   virtual SysAllocator* GetSystemAllocator() {
    734     SpinLockHolder h(Static::pageheap_lock());
    735     return sys_alloc;
    736   }
    737 
    738   virtual void SetSystemAllocator(SysAllocator* alloc) {
    739     SpinLockHolder h(Static::pageheap_lock());
    740     sys_alloc = alloc;
    741   }
    742 
    743   virtual void ReleaseToSystem(size_t num_bytes) {
    744     SpinLockHolder h(Static::pageheap_lock());
    745     if (num_bytes <= extra_bytes_released_) {
    746       // We released too much on a prior call, so don't release any
    747       // more this time.
    748       extra_bytes_released_ = extra_bytes_released_ - num_bytes;
    749       return;
    750     }
    751     num_bytes = num_bytes - extra_bytes_released_;
    752     // num_bytes might be less than one page.  If we pass zero to
    753     // ReleaseAtLeastNPages, it won't do anything, so we release a whole
    754     // page now and let extra_bytes_released_ smooth it out over time.
    755     Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
    756     size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
    757         num_pages) << kPageShift;
    758     if (bytes_released > num_bytes) {
    759       extra_bytes_released_ = bytes_released - num_bytes;
    760     } else {
    761       // The PageHeap wasn't able to release num_bytes.  Don't try to
    762       // compensate with a big release next time.  Specifically,
    763       // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
    764       extra_bytes_released_ = 0;
    765     }
    766   }
    767 
    768   virtual void SetMemoryReleaseRate(double rate) {
    769     FLAGS_tcmalloc_release_rate = rate;
    770   }
    771 
    772   virtual double GetMemoryReleaseRate() {
    773     return FLAGS_tcmalloc_release_rate;
    774   }
    775   virtual size_t GetEstimatedAllocatedSize(size_t size) {
    776     if (size <= kMaxSize) {
    777       const size_t cl = Static::sizemap()->SizeClass(size);
    778       const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
    779       return alloc_size;
    780     } else {
    781       return tcmalloc::pages(size) << kPageShift;
    782     }
    783   }
    784 
    785   // This just calls GetSizeWithCallback, but because that's in an
    786   // unnamed namespace, we need to move the definition below it in the
    787   // file.
    788   virtual size_t GetAllocatedSize(const void* ptr);
    789 
    790   // This duplicates some of the logic in GetSizeWithCallback, but is
    791   // faster.  This is important on OS X, where this function is called
    792   // on every allocation operation.
    793   virtual Ownership GetOwnership(const void* ptr) {
    794     const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    795     // The rest of tcmalloc assumes that all allocated pointers use at
    796     // most kAddressBits bits.  If ptr doesn't, then it definitely
    797     // wasn't alloacted by tcmalloc.
    798     if ((p >> (kAddressBits - kPageShift)) > 0) {
    799       return kNotOwned;
    800     }
    801     size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
    802     if (cl != 0) {
    803       return kOwned;
    804     }
    805     const Span *span = Static::pageheap()->GetDescriptor(p);
    806     return span ? kOwned : kNotOwned;
    807   }
    808 
    809   virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
    810     static const char* kCentralCacheType = "tcmalloc.central";
    811     static const char* kTransferCacheType = "tcmalloc.transfer";
    812     static const char* kThreadCacheType = "tcmalloc.thread";
    813     static const char* kPageHeapType = "tcmalloc.page";
    814     static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
    815     static const char* kLargeSpanType = "tcmalloc.large";
    816     static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
    817 
    818     v->clear();
    819 
    820     // central class information
    821     int64 prev_class_size = 0;
    822     for (int cl = 1; cl < kNumClasses; ++cl) {
    823       size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
    824       MallocExtension::FreeListInfo i;
    825       i.min_object_size = prev_class_size + 1;
    826       i.max_object_size = class_size;
    827       i.total_bytes_free =
    828           Static::central_cache()[cl].length() * class_size;
    829       i.type = kCentralCacheType;
    830       v->push_back(i);
    831 
    832       // transfer cache
    833       i.total_bytes_free =
    834           Static::central_cache()[cl].tc_length() * class_size;
    835       i.type = kTransferCacheType;
    836       v->push_back(i);
    837 
    838       prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
    839     }
    840 
    841     // Add stats from per-thread heaps
    842     uint64_t class_count[kNumClasses];
    843     memset(class_count, 0, sizeof(class_count));
    844     {
    845       SpinLockHolder h(Static::pageheap_lock());
    846       uint64_t thread_bytes = 0;
    847       ThreadCache::GetThreadStats(&thread_bytes, class_count);
    848     }
    849 
    850     prev_class_size = 0;
    851     for (int cl = 1; cl < kNumClasses; ++cl) {
    852       MallocExtension::FreeListInfo i;
    853       i.min_object_size = prev_class_size + 1;
    854       i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
    855       i.total_bytes_free =
    856           class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    857       i.type = kThreadCacheType;
    858       v->push_back(i);
    859     }
    860 
    861     // append page heap info
    862     PageHeap::SmallSpanStats small;
    863     PageHeap::LargeSpanStats large;
    864     {
    865       SpinLockHolder h(Static::pageheap_lock());
    866       Static::pageheap()->GetSmallSpanStats(&small);
    867       Static::pageheap()->GetLargeSpanStats(&large);
    868     }
    869 
    870     // large spans: mapped
    871     MallocExtension::FreeListInfo span_info;
    872     span_info.type = kLargeSpanType;
    873     span_info.max_object_size = (numeric_limits<size_t>::max)();
    874     span_info.min_object_size = kMaxPages << kPageShift;
    875     span_info.total_bytes_free = large.normal_pages << kPageShift;
    876     v->push_back(span_info);
    877 
    878     // large spans: unmapped
    879     span_info.type = kLargeUnmappedSpanType;
    880     span_info.total_bytes_free = large.returned_pages << kPageShift;
    881     v->push_back(span_info);
    882 
    883     // small spans
    884     for (int s = 1; s < kMaxPages; s++) {
    885       MallocExtension::FreeListInfo i;
    886       i.max_object_size = (s << kPageShift);
    887       i.min_object_size = ((s - 1) << kPageShift);
    888 
    889       i.type = kPageHeapType;
    890       i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
    891       v->push_back(i);
    892 
    893       i.type = kPageHeapUnmappedType;
    894       i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
    895       v->push_back(i);
    896     }
    897   }
    898 };
    899 
    900 // The constructor allocates an object to ensure that initialization
    901 // runs before main(), and therefore we do not have a chance to become
    902 // multi-threaded before initialization.  We also create the TSD key
    903 // here.  Presumably by the time this constructor runs, glibc is in
    904 // good enough shape to handle pthread_key_create().
    905 //
    906 // The constructor also takes the opportunity to tell STL to use
    907 // tcmalloc.  We want to do this early, before construct time, so
    908 // all user STL allocations go through tcmalloc (which works really
    909 // well for STL).
    910 //
    911 // The destructor prints stats when the program exits.
    912 static int tcmallocguard_refcount = 0;  // no lock needed: runs before main()
    913 TCMallocGuard::TCMallocGuard() {
    914   if (tcmallocguard_refcount++ == 0) {
    915 #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
    916     // Check whether the kernel also supports TLS (needs to happen at runtime)
    917     tcmalloc::CheckIfKernelSupportsTLS();
    918 #endif
    919     ReplaceSystemAlloc();    // defined in libc_override_*.h
    920     tc_free(tc_malloc(1));
    921     ThreadCache::InitTSD();
    922     tc_free(tc_malloc(1));
    923     // Either we, or debugallocation.cc, or valgrind will control memory
    924     // management.  We register our extension if we're the winner.
    925 #ifdef TCMALLOC_USING_DEBUGALLOCATION
    926     // Let debugallocation register its extension.
    927 #else
    928     if (RunningOnValgrind()) {
    929       // Let Valgrind uses its own malloc (so don't register our extension).
    930     } else {
    931       MallocExtension::Register(new TCMallocImplementation);
    932     }
    933 #endif
    934   }
    935 }
    936 
    937 TCMallocGuard::~TCMallocGuard() {
    938   if (--tcmallocguard_refcount == 0) {
    939     const char* env = getenv("MALLOCSTATS");
    940     if (env != NULL) {
    941       int level = atoi(env);
    942       if (level < 1) level = 1;
    943       PrintStats(level);
    944     }
    945   }
    946 }
    947 #ifndef WIN32_OVERRIDE_ALLOCATORS
    948 static TCMallocGuard module_enter_exit_hook;
    949 #endif
    950 
    951 //-------------------------------------------------------------------
    952 // Helpers for the exported routines below
    953 //-------------------------------------------------------------------
    954 
    955 static inline bool CheckCachedSizeClass(void *ptr) {
    956   PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    957   size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
    958   return cached_value == 0 ||
    959       cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
    960 }
    961 
    962 static inline void* CheckMallocResult(void *result) {
    963   ASSERT(result == NULL || CheckCachedSizeClass(result));
    964   MarkAllocatedRegion(result);
    965   return result;
    966 }
    967 
    968 static inline void* SpanToMallocResult(Span *span) {
    969   Static::pageheap()->CacheSizeClass(span->start, 0);
    970   return
    971       CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
    972 }
    973 
    974 static void* DoSampledAllocation(size_t size) {
    975   // Grab the stack trace outside the heap lock
    976   StackTrace tmp;
    977   tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
    978   tmp.size = size;
    979 
    980   SpinLockHolder h(Static::pageheap_lock());
    981   // Allocate span
    982   Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
    983   if (span == NULL) {
    984     return NULL;
    985   }
    986 
    987   // Allocate stack trace
    988   StackTrace *stack = Static::stacktrace_allocator()->New();
    989   if (stack == NULL) {
    990     // Sampling failed because of lack of memory
    991     return span;
    992   }
    993   *stack = tmp;
    994   span->sample = 1;
    995   span->objects = stack;
    996   tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
    997 
    998   return SpanToMallocResult(span);
    999 }
   1000 
   1001 namespace {
   1002 
   1003 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
   1004 // automatic increases factored in.
   1005 static int64_t large_alloc_threshold =
   1006   (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
   1007    ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
   1008 
   1009 static void ReportLargeAlloc(Length num_pages, void* result) {
   1010   StackTrace stack;
   1011   stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
   1012 
   1013   static const int N = 1000;
   1014   char buffer[N];
   1015   TCMalloc_Printer printer(buffer, N);
   1016   printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ",
   1017                  static_cast<uint64>(num_pages) << kPageShift,
   1018                  result);
   1019   for (int i = 0; i < stack.depth; i++) {
   1020     printer.printf(" %p", stack.stack[i]);
   1021   }
   1022   printer.printf("\n");
   1023   write(STDERR_FILENO, buffer, strlen(buffer));
   1024 }
   1025 
   1026 inline void* cpp_alloc(size_t size, bool nothrow);
   1027 inline void* do_malloc(size_t size);
   1028 
   1029 // TODO(willchan): Investigate whether or not inlining this much is harmful to
   1030 // performance.
   1031 // This is equivalent to do_malloc() except when tc_new_mode is set to true.
   1032 // Otherwise, it will run the std::new_handler if set.
   1033 inline void* do_malloc_or_cpp_alloc(size_t size) {
   1034   return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
   1035 }
   1036 
   1037 void* cpp_memalign(size_t align, size_t size);
   1038 void* do_memalign(size_t align, size_t size);
   1039 
   1040 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
   1041   return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
   1042 }
   1043 
   1044 // Must be called with the page lock held.
   1045 inline bool should_report_large(Length num_pages) {
   1046   const int64 threshold = large_alloc_threshold;
   1047   if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
   1048     // Increase the threshold by 1/8 every time we generate a report.
   1049     // We cap the threshold at 8GiB to avoid overflow problems.
   1050     large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
   1051                              ? threshold + threshold/8 : 8ll<<30);
   1052     return true;
   1053   }
   1054   return false;
   1055 }
   1056 
   1057 // Helper for do_malloc().
   1058 inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
   1059   void* result;
   1060   bool report_large;
   1061 
   1062   Length num_pages = tcmalloc::pages(size);
   1063   size = num_pages << kPageShift;
   1064 
   1065   // Chromium profiling.  Measurements in March 2013 suggest this
   1066   // imposes a small enough runtime cost that there's no reason to
   1067   // try to optimize it.
   1068   heap->AddToByteAllocatedTotal(size);
   1069 
   1070   if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
   1071     result = DoSampledAllocation(size);
   1072 
   1073     SpinLockHolder h(Static::pageheap_lock());
   1074     report_large = should_report_large(num_pages);
   1075   } else {
   1076     SpinLockHolder h(Static::pageheap_lock());
   1077     Span* span = Static::pageheap()->New(num_pages);
   1078     result = (span == NULL ? NULL : SpanToMallocResult(span));
   1079     report_large = should_report_large(num_pages);
   1080   }
   1081 
   1082   if (report_large) {
   1083     ReportLargeAlloc(num_pages, result);
   1084   }
   1085   return result;
   1086 }
   1087 
   1088 inline void* do_malloc(size_t size) {
   1089   AddRoomForMark(&size);
   1090 
   1091   void* ret = NULL;
   1092 
   1093   // The following call forces module initialization
   1094   ThreadCache* heap = ThreadCache::GetCache();
   1095   if (size <= kMaxSize && IsAllocSizePermitted(size)) {
   1096     size_t cl = Static::sizemap()->SizeClass(size);
   1097     size = Static::sizemap()->class_to_size(cl);
   1098 
   1099     // Chromium profiling.  Measurements in March 2013 suggest this
   1100     // imposes a small enough runtime cost that there's no reason to
   1101     // try to optimize it.
   1102     heap->AddToByteAllocatedTotal(size);
   1103 
   1104     if ((FLAGS_tcmalloc_sample_parameter > 0) &&
   1105         heap->SampleAllocation(size)) {
   1106       ret = DoSampledAllocation(size);
   1107       MarkAllocatedRegion(ret);
   1108     } else {
   1109       // The common case, and also the simplest.  This just pops the
   1110       // size-appropriate freelist, after replenishing it if it's empty.
   1111       ret = CheckMallocResult(heap->Allocate(size, cl));
   1112     }
   1113   } else if (IsAllocSizePermitted(size)) {
   1114     ret = do_malloc_pages(heap, size);
   1115     MarkAllocatedRegion(ret);
   1116   }
   1117   if (ret == NULL) errno = ENOMEM;
   1118   ASSERT(IsAllocSizePermitted(size) || ret == NULL);
   1119   return ret;
   1120 }
   1121 
   1122 inline void* do_calloc(size_t n, size_t elem_size) {
   1123   // Overflow check
   1124   const size_t size = n * elem_size;
   1125   if (elem_size != 0 && size / elem_size != n) return NULL;
   1126 
   1127   void* result = do_malloc_or_cpp_alloc(size);
   1128   if (result != NULL) {
   1129     memset(result, 0, size);
   1130   }
   1131   return result;
   1132 }
   1133 
   1134 static inline ThreadCache* GetCacheIfPresent() {
   1135   void* const p = ThreadCache::GetCacheIfPresent();
   1136   return reinterpret_cast<ThreadCache*>(p);
   1137 }
   1138 
   1139 // This lets you call back to a given function pointer if ptr is invalid.
   1140 // It is used primarily by windows code which wants a specialized callback.
   1141 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
   1142   if (ptr == NULL) return;
   1143   if (Static::pageheap() == NULL) {
   1144     // We called free() before malloc().  This can occur if the
   1145     // (system) malloc() is called before tcmalloc is loaded, and then
   1146     // free() is called after tcmalloc is loaded (and tc_free has
   1147     // replaced free), but before the global constructor has run that
   1148     // sets up the tcmalloc data structures.
   1149     (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1150     return;
   1151   }
   1152   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1153   Span* span = NULL;
   1154   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1155 
   1156   if (cl == 0) {
   1157     span = Static::pageheap()->GetDescriptor(p);
   1158     if (!span) {
   1159       // span can be NULL because the pointer passed in is invalid
   1160       // (not something returned by malloc or friends), or because the
   1161       // pointer was allocated with some other allocator besides
   1162       // tcmalloc.  The latter can happen if tcmalloc is linked in via
   1163       // a dynamic library, but is not listed last on the link line.
   1164       // In that case, libraries after it on the link line will
   1165       // allocate with libc malloc, but free with tcmalloc's free.
   1166       (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1167       return;
   1168     }
   1169     cl = span->sizeclass;
   1170     Static::pageheap()->CacheSizeClass(p, cl);
   1171   }
   1172   if (cl == 0) {
   1173     // Check to see if the object is in use.
   1174     CHECK_CONDITION_PRINT(span->location == Span::IN_USE,
   1175                           "Object was not in-use");
   1176 
   1177     CHECK_CONDITION_PRINT(
   1178         span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr),
   1179         "Pointer is not pointing to the start of a span");
   1180   }
   1181   ValidateAllocatedRegion(ptr, cl);
   1182 
   1183   if (cl != 0) {
   1184     ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
   1185     ThreadCache* heap = GetCacheIfPresent();
   1186     if (heap != NULL) {
   1187       heap->Deallocate(ptr, cl);
   1188     } else {
   1189       // Delete directly into central cache
   1190       tcmalloc::FL_Init(ptr);
   1191       Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
   1192     }
   1193   } else {
   1194     SpinLockHolder h(Static::pageheap_lock());
   1195     ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
   1196     ASSERT(span != NULL && span->start == p);
   1197     if (span->sample) {
   1198       StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
   1199       tcmalloc::DLL_Remove(span);
   1200       Static::stacktrace_allocator()->Delete(st);
   1201       span->objects = NULL;
   1202     }
   1203     Static::pageheap()->Delete(span);
   1204   }
   1205 }
   1206 
   1207 // The default "do_free" that uses the default callback.
   1208 inline void do_free(void* ptr) {
   1209   return do_free_with_callback(ptr, &InvalidFree);
   1210 }
   1211 
   1212 // NOTE: some logic here is duplicated in GetOwnership (above), for
   1213 // speed.  If you change this function, look at that one too.
   1214 inline size_t GetSizeWithCallback(const void* ptr,
   1215                                   size_t (*invalid_getsize_fn)(const void*)) {
   1216   if (ptr == NULL)
   1217     return 0;
   1218   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1219   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1220   if (cl != 0) {
   1221     return Static::sizemap()->ByteSizeForClass(cl);
   1222   } else {
   1223     const Span *span = Static::pageheap()->GetDescriptor(p);
   1224     if (span == NULL) {  // means we do not own this memory
   1225       return (*invalid_getsize_fn)(ptr);
   1226     } else if (span->sizeclass != 0) {
   1227       Static::pageheap()->CacheSizeClass(p, span->sizeclass);
   1228       return Static::sizemap()->ByteSizeForClass(span->sizeclass);
   1229     } else {
   1230       return span->length << kPageShift;
   1231     }
   1232   }
   1233 }
   1234 
   1235 // This lets you call back to a given function pointer if ptr is invalid.
   1236 // It is used primarily by windows code which wants a specialized callback.
   1237 inline void* do_realloc_with_callback(
   1238     void* old_ptr, size_t new_size,
   1239     void (*invalid_free_fn)(void*),
   1240     size_t (*invalid_get_size_fn)(const void*)) {
   1241   AddRoomForMark(&new_size);
   1242   // Get the size of the old entry
   1243   const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
   1244 
   1245   // Reallocate if the new size is larger than the old size,
   1246   // or if the new size is significantly smaller than the old size.
   1247   // We do hysteresis to avoid resizing ping-pongs:
   1248   //    . If we need to grow, grow to max(new_size, old_size * 1.X)
   1249   //    . Don't shrink unless new_size < old_size * 0.Y
   1250   // X and Y trade-off time for wasted space.  For now we do 1.25 and 0.5.
   1251   const size_t min_growth = min(old_size / 4,
   1252       (std::numeric_limits<size_t>::max)() - old_size);  // Avoid overflow.
   1253   const size_t lower_bound_to_grow = old_size + min_growth;
   1254   const size_t upper_bound_to_shrink = old_size / 2;
   1255   if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
   1256     // Need to reallocate.
   1257     void* new_ptr = NULL;
   1258 
   1259     if (new_size > old_size && new_size < lower_bound_to_grow) {
   1260       new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
   1261     }
   1262     ExcludeMarkFromSize(&new_size);  // do_malloc will add space if needed.
   1263     if (new_ptr == NULL) {
   1264       // Either new_size is not a tiny increment, or last do_malloc failed.
   1265       new_ptr = do_malloc_or_cpp_alloc(new_size);
   1266     }
   1267     if (new_ptr == NULL) {
   1268       return NULL;
   1269     }
   1270     MallocHook::InvokeNewHook(new_ptr, new_size);
   1271     memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
   1272     MallocHook::InvokeDeleteHook(old_ptr);
   1273     // We could use a variant of do_free() that leverages the fact
   1274     // that we already know the sizeclass of old_ptr.  The benefit
   1275     // would be small, so don't bother.
   1276     do_free_with_callback(old_ptr, invalid_free_fn);
   1277     return new_ptr;
   1278   } else {
   1279     // We still need to call hooks to report the updated size:
   1280     MallocHook::InvokeDeleteHook(old_ptr);
   1281     ExcludeMarkFromSize(&new_size);
   1282     MallocHook::InvokeNewHook(old_ptr, new_size);
   1283     return old_ptr;
   1284   }
   1285 }
   1286 
   1287 inline void* do_realloc(void* old_ptr, size_t new_size) {
   1288   return do_realloc_with_callback(old_ptr, new_size,
   1289                                   &InvalidFree, &InvalidGetSizeForRealloc);
   1290 }
   1291 
   1292 // For use by exported routines below that want specific alignments
   1293 //
   1294 // Note: this code can be slow for alignments > 16, and can
   1295 // significantly fragment memory.  The expectation is that
   1296 // memalign/posix_memalign/valloc/pvalloc will not be invoked very
   1297 // often.  This requirement simplifies our implementation and allows
   1298 // us to tune for expected allocation patterns.
   1299 void* do_memalign(size_t align, size_t size) {
   1300   ASSERT((align & (align - 1)) == 0);
   1301   ASSERT(align > 0);
   1302   // Marked in CheckMallocResult(), which is also inside SpanToMallocResult().
   1303   AddRoomForMark(&size);
   1304   if (size + align < size) return NULL;         // Overflow
   1305 
   1306   // Fall back to malloc if we would already align this memory access properly.
   1307   if (align <= AlignmentForSize(size)) {
   1308     void* p = do_malloc(size);
   1309     ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
   1310     return p;
   1311   }
   1312 
   1313   if (Static::pageheap() == NULL) ThreadCache::InitModule();
   1314 
   1315   // Allocate at least one byte to avoid boundary conditions below
   1316   if (size == 0) size = 1;
   1317 
   1318   if (size <= kMaxSize && align < kPageSize) {
   1319     // Search through acceptable size classes looking for one with
   1320     // enough alignment.  This depends on the fact that
   1321     // InitSizeClasses() currently produces several size classes that
   1322     // are aligned at powers of two.  We will waste time and space if
   1323     // we miss in the size class array, but that is deemed acceptable
   1324     // since memalign() should be used rarely.
   1325     int cl = Static::sizemap()->SizeClass(size);
   1326     while (cl < kNumClasses &&
   1327            ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
   1328       cl++;
   1329     }
   1330     if (cl < kNumClasses) {
   1331       ThreadCache* heap = ThreadCache::GetCache();
   1332       size = Static::sizemap()->class_to_size(cl);
   1333       return CheckMallocResult(heap->Allocate(size, cl));
   1334     }
   1335   }
   1336 
   1337   // We will allocate directly from the page heap
   1338   SpinLockHolder h(Static::pageheap_lock());
   1339 
   1340   if (align <= kPageSize) {
   1341     // Any page-level allocation will be fine
   1342     // TODO: We could put the rest of this page in the appropriate
   1343     // TODO: cache but it does not seem worth it.
   1344     Span* span = Static::pageheap()->New(tcmalloc::pages(size));
   1345     return span == NULL ? NULL : SpanToMallocResult(span);
   1346   }
   1347 
   1348   // Allocate extra pages and carve off an aligned portion
   1349   const Length alloc = tcmalloc::pages(size + align);
   1350   Span* span = Static::pageheap()->New(alloc);
   1351   if (span == NULL) return NULL;
   1352 
   1353   // Skip starting portion so that we end up aligned
   1354   Length skip = 0;
   1355   while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
   1356     skip++;
   1357   }
   1358   ASSERT(skip < alloc);
   1359   if (skip > 0) {
   1360     Span* rest = Static::pageheap()->Split(span, skip);
   1361     Static::pageheap()->Delete(span);
   1362     span = rest;
   1363   }
   1364 
   1365   // Skip trailing portion that we do not need to return
   1366   const Length needed = tcmalloc::pages(size);
   1367   ASSERT(span->length >= needed);
   1368   if (span->length > needed) {
   1369     Span* trailer = Static::pageheap()->Split(span, needed);
   1370     Static::pageheap()->Delete(trailer);
   1371   }
   1372   return SpanToMallocResult(span);
   1373 }
   1374 
   1375 // Helpers for use by exported routines below:
   1376 
   1377 inline void do_malloc_stats() {
   1378   PrintStats(1);
   1379 }
   1380 
   1381 inline int do_mallopt(int cmd, int value) {
   1382   return 1;     // Indicates error
   1383 }
   1384 
   1385 #ifdef HAVE_STRUCT_MALLINFO
   1386 inline struct mallinfo do_mallinfo() {
   1387   TCMallocStats stats;
   1388   ExtractStats(&stats, NULL, NULL, NULL);
   1389 
   1390   // Just some of the fields are filled in.
   1391   struct mallinfo info;
   1392   memset(&info, 0, sizeof(info));
   1393 
   1394   // Unfortunately, the struct contains "int" field, so some of the
   1395   // size values will be truncated.
   1396   info.arena     = static_cast<int>(stats.pageheap.system_bytes);
   1397   info.fsmblks   = static_cast<int>(stats.thread_bytes
   1398                                     + stats.central_bytes
   1399                                     + stats.transfer_bytes);
   1400   info.fordblks  = static_cast<int>(stats.pageheap.free_bytes +
   1401                                     stats.pageheap.unmapped_bytes);
   1402   info.uordblks  = static_cast<int>(stats.pageheap.system_bytes
   1403                                     - stats.thread_bytes
   1404                                     - stats.central_bytes
   1405                                     - stats.transfer_bytes
   1406                                     - stats.pageheap.free_bytes
   1407                                     - stats.pageheap.unmapped_bytes);
   1408 
   1409   return info;
   1410 }
   1411 #endif  // HAVE_STRUCT_MALLINFO
   1412 
   1413 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
   1414 
   1415 inline void* cpp_alloc(size_t size, bool nothrow) {
   1416   for (;;) {
   1417     void* p = do_malloc(size);
   1418 #ifdef PREANSINEW
   1419     return p;
   1420 #else
   1421     if (p == NULL) {  // allocation failed
   1422       // Get the current new handler.  NB: this function is not
   1423       // thread-safe.  We make a feeble stab at making it so here, but
   1424       // this lock only protects against tcmalloc interfering with
   1425       // itself, not with other libraries calling set_new_handler.
   1426       std::new_handler nh;
   1427       {
   1428         SpinLockHolder h(&set_new_handler_lock);
   1429         nh = std::set_new_handler(0);
   1430         (void) std::set_new_handler(nh);
   1431       }
   1432 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1433       if (nh) {
   1434         // Since exceptions are disabled, we don't really know if new_handler
   1435         // failed.  Assume it will abort if it fails.
   1436         (*nh)();
   1437         continue;
   1438       }
   1439       return 0;
   1440 #else
   1441       // If no new_handler is established, the allocation failed.
   1442       if (!nh) {
   1443         if (nothrow) return 0;
   1444         throw std::bad_alloc();
   1445       }
   1446       // Otherwise, try the new_handler.  If it returns, retry the
   1447       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1448       // if it throws something else, don't interfere.
   1449       try {
   1450         (*nh)();
   1451       } catch (const std::bad_alloc&) {
   1452         if (!nothrow) throw;
   1453         return p;
   1454       }
   1455 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1456     } else {  // allocation success
   1457       return p;
   1458     }
   1459 #endif  // PREANSINEW
   1460   }
   1461 }
   1462 
   1463 void* cpp_memalign(size_t align, size_t size) {
   1464   for (;;) {
   1465     void* p = do_memalign(align, size);
   1466 #ifdef PREANSINEW
   1467     return p;
   1468 #else
   1469     if (p == NULL) {  // allocation failed
   1470       // Get the current new handler.  NB: this function is not
   1471       // thread-safe.  We make a feeble stab at making it so here, but
   1472       // this lock only protects against tcmalloc interfering with
   1473       // itself, not with other libraries calling set_new_handler.
   1474       std::new_handler nh;
   1475       {
   1476         SpinLockHolder h(&set_new_handler_lock);
   1477         nh = std::set_new_handler(0);
   1478         (void) std::set_new_handler(nh);
   1479       }
   1480 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1481       if (nh) {
   1482         // Since exceptions are disabled, we don't really know if new_handler
   1483         // failed.  Assume it will abort if it fails.
   1484         (*nh)();
   1485         continue;
   1486       }
   1487       return 0;
   1488 #else
   1489       // If no new_handler is established, the allocation failed.
   1490       if (!nh)
   1491         return 0;
   1492 
   1493       // Otherwise, try the new_handler.  If it returns, retry the
   1494       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1495       // if it throws something else, don't interfere.
   1496       try {
   1497         (*nh)();
   1498       } catch (const std::bad_alloc&) {
   1499         return p;
   1500       }
   1501 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1502     } else {  // allocation success
   1503       return p;
   1504     }
   1505 #endif  // PREANSINEW
   1506   }
   1507 }
   1508 
   1509 }  // end unnamed namespace
   1510 
   1511 // As promised, the definition of this function, declared above.
   1512 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
   1513   // Chromium workaround for third-party code calling tc_malloc_size(NULL), see
   1514   // http://code.google.com/p/chromium/issues/detail?id=118087
   1515   // Note: this is consistent with GLIBC's implementation of
   1516   // malloc_usable_size(NULL).
   1517   if (ptr == NULL)
   1518     return 0;
   1519   ASSERT(TCMallocImplementation::GetOwnership(ptr)
   1520          != TCMallocImplementation::kNotOwned);
   1521   return ExcludeSpaceForMark(
   1522       GetSizeWithCallback(ptr, &InvalidGetAllocatedSize));
   1523 }
   1524 
   1525 void TCMallocImplementation::MarkThreadBusy() {
   1526   // Allocate to force the creation of a thread cache, but avoid
   1527   // invoking any hooks.
   1528   do_free(do_malloc(0));
   1529 }
   1530 
   1531 //-------------------------------------------------------------------
   1532 // Exported routines
   1533 //-------------------------------------------------------------------
   1534 
   1535 extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
   1536     int* major, int* minor, const char** patch) __THROW {
   1537   if (major) *major = TC_VERSION_MAJOR;
   1538   if (minor) *minor = TC_VERSION_MINOR;
   1539   if (patch) *patch = TC_VERSION_PATCH;
   1540   return TC_VERSION_STRING;
   1541 }
   1542 
   1543 // This function behaves similarly to MSVC's _set_new_mode.
   1544 // If flag is 0 (default), calls to malloc will behave normally.
   1545 // If flag is 1, calls to malloc will behave like calls to new,
   1546 // and the std_new_handler will be invoked on failure.
   1547 // Returns the previous mode.
   1548 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
   1549   int old_mode = tc_new_mode;
   1550   tc_new_mode = flag;
   1551   return old_mode;
   1552 }
   1553 
   1554 #ifndef TCMALLOC_USING_DEBUGALLOCATION  // debugallocation.cc defines its own
   1555 
   1556 // CAVEAT: The code structure below ensures that MallocHook methods are always
   1557 //         called from the stack frame of the invoked allocation function.
   1558 //         heap-checker.cc depends on this to start a stack trace from
   1559 //         the call to the (de)allocation function.
   1560 
   1561 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
   1562   void* result = do_malloc_or_cpp_alloc(size);
   1563   MallocHook::InvokeNewHook(result, size);
   1564   return result;
   1565 }
   1566 
   1567 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
   1568   MallocHook::InvokeDeleteHook(ptr);
   1569   do_free(ptr);
   1570 }
   1571 
   1572 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
   1573                                               size_t elem_size) __THROW {
   1574   void* result = do_calloc(n, elem_size);
   1575   MallocHook::InvokeNewHook(result, n * elem_size);
   1576   return result;
   1577 }
   1578 
   1579 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
   1580   MallocHook::InvokeDeleteHook(ptr);
   1581   do_free(ptr);
   1582 }
   1583 
   1584 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
   1585                                                size_t new_size) __THROW {
   1586   if (old_ptr == NULL) {
   1587     void* result = do_malloc_or_cpp_alloc(new_size);
   1588     MallocHook::InvokeNewHook(result, new_size);
   1589     return result;
   1590   }
   1591   if (new_size == 0) {
   1592     MallocHook::InvokeDeleteHook(old_ptr);
   1593     do_free(old_ptr);
   1594     return NULL;
   1595   }
   1596   return do_realloc(old_ptr, new_size);
   1597 }
   1598 
   1599 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
   1600   void* p = cpp_alloc(size, false);
   1601   // We keep this next instruction out of cpp_alloc for a reason: when
   1602   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1603   // new call into cpp_alloc, which messes up our whole section-based
   1604   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1605   // isn't the last thing this fn calls, and prevents the folding.
   1606   MallocHook::InvokeNewHook(p, size);
   1607   return p;
   1608 }
   1609 
   1610 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
   1611   void* p = cpp_alloc(size, true);
   1612   MallocHook::InvokeNewHook(p, size);
   1613   return p;
   1614 }
   1615 
   1616 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
   1617   MallocHook::InvokeDeleteHook(p);
   1618   do_free(p);
   1619 }
   1620 
   1621 // Standard C++ library implementations define and use this
   1622 // (via ::operator delete(ptr, nothrow)).
   1623 // But it's really the same as normal delete, so we just do the same thing.
   1624 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
   1625   MallocHook::InvokeDeleteHook(p);
   1626   do_free(p);
   1627 }
   1628 
   1629 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
   1630   void* p = cpp_alloc(size, false);
   1631   // We keep this next instruction out of cpp_alloc for a reason: when
   1632   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1633   // new call into cpp_alloc, which messes up our whole section-based
   1634   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1635   // isn't the last thing this fn calls, and prevents the folding.
   1636   MallocHook::InvokeNewHook(p, size);
   1637   return p;
   1638 }
   1639 
   1640 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
   1641     __THROW {
   1642   void* p = cpp_alloc(size, true);
   1643   MallocHook::InvokeNewHook(p, size);
   1644   return p;
   1645 }
   1646 
   1647 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
   1648   MallocHook::InvokeDeleteHook(p);
   1649   do_free(p);
   1650 }
   1651 
   1652 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
   1653   MallocHook::InvokeDeleteHook(p);
   1654   do_free(p);
   1655 }
   1656 
   1657 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
   1658                                                 size_t size) __THROW {
   1659   void* result = do_memalign_or_cpp_memalign(align, size);
   1660   MallocHook::InvokeNewHook(result, size);
   1661   return result;
   1662 }
   1663 
   1664 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
   1665     void** result_ptr, size_t align, size_t size) __THROW {
   1666   if (((align % sizeof(void*)) != 0) ||
   1667       ((align & (align - 1)) != 0) ||
   1668       (align == 0)) {
   1669     return EINVAL;
   1670   }
   1671 
   1672   void* result = do_memalign_or_cpp_memalign(align, size);
   1673   MallocHook::InvokeNewHook(result, size);
   1674   if (result == NULL) {
   1675     return ENOMEM;
   1676   } else {
   1677     *result_ptr = result;
   1678     return 0;
   1679   }
   1680 }
   1681 
   1682 static size_t pagesize = 0;
   1683 
   1684 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
   1685   // Allocate page-aligned object of length >= size bytes
   1686   if (pagesize == 0) pagesize = getpagesize();
   1687   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1688   MallocHook::InvokeNewHook(result, size);
   1689   return result;
   1690 }
   1691 
   1692 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
   1693   // Round up size to a multiple of pagesize
   1694   if (pagesize == 0) pagesize = getpagesize();
   1695   if (size == 0) {     // pvalloc(0) should allocate one page, according to
   1696     size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
   1697   }
   1698   size = (size + pagesize - 1) & ~(pagesize - 1);
   1699   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1700   MallocHook::InvokeNewHook(result, size);
   1701   return result;
   1702 }
   1703 
   1704 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
   1705   do_malloc_stats();
   1706 }
   1707 
   1708 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
   1709   return do_mallopt(cmd, value);
   1710 }
   1711 
   1712 #ifdef HAVE_STRUCT_MALLINFO
   1713 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
   1714   return do_mallinfo();
   1715 }
   1716 #endif
   1717 
   1718 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
   1719   return MallocExtension::instance()->GetAllocatedSize(ptr);
   1720 }
   1721 
   1722 #endif  // TCMALLOC_USING_DEBUGALLOCATION
   1723 
   1724 // --- Validation implementation with an extra mark ----------------------------
   1725 // We will put a mark at the extreme end of each allocation block.  We make
   1726 // sure that we always allocate enough "extra memory" that we can fit in the
   1727 // mark, and still provide the requested usable region.  If ever that mark is
   1728 // not as expected, then we know that the user is corrupting memory beyond their
   1729 // request size, or that they have called free a second time without having
   1730 // the memory allocated (again).  This allows us to spot most double free()s,
   1731 // but some can "slip by" or confuse our logic if the caller reallocates memory
   1732 // (for a second use) before performing an evil double-free of a first
   1733 // allocation
   1734 
   1735 // This code can be optimized, but for now, it is written to be most easily
   1736 // understood, and flexible (since it is evolving a bit). Potential
   1737 // optimizations include using other calculated data, such as class size, or
   1738 // allocation size, which is known in the code above, but then is recalculated
   1739 // below.  Another potential optimization would be careful manual inlining of
   1740 // code, but I *think* that the compile will probably do this for me, and I've
   1741 // been careful to avoid aliasing issues that might make a compiler back-off.
   1742 
   1743 // Evolution includes experimenting with different marks, to minimize the chance
   1744 // that a mark would be misunderstood (missed corruption).  The marks are meant
   1745 // to be hashed encoding of the location, so that they can't be copied over a
   1746 // different region (by accident) without being detected (most of the time).
   1747 
   1748 // Enable the following define to turn on all the TCMalloc checking.
   1749 // It will cost about 2% in performance, but it will catch double frees (most of
   1750 // the time), and will often catch allocated-buffer overrun errors.  This
   1751 // validation is only active when TCMalloc is used as the allocator.
   1752 #ifndef NDEBUG
   1753 #define TCMALLOC_VALIDATION
   1754 #endif
   1755 
   1756 #if !defined(TCMALLOC_VALIDATION)
   1757 
   1758 static size_t ExcludeSpaceForMark(size_t size) { return size; }
   1759 static void AddRoomForMark(size_t* size) {}
   1760 static void ExcludeMarkFromSize(size_t* new_size) {}
   1761 static void MarkAllocatedRegion(void* ptr) {}
   1762 static void ValidateAllocatedRegion(void* ptr, size_t cl) {}
   1763 
   1764 #else  // TCMALLOC_VALIDATION
   1765 
   1766 static void DieFromDoubleFree() {
   1767   Log(kCrash, __FILE__, __LINE__, "Attempt to double free");
   1768 }
   1769 
   1770 static void DieFromMemoryCorruption() {
   1771   Log(kCrash, __FILE__, __LINE__, "Memory corrupted");
   1772 }
   1773 
   1774 // We can either do byte marking, or whole word marking based on the following
   1775 // define.  char is as small as we can get, and word marking probably provides
   1776 // more than enough bits that we won't miss a corruption. Any sized integral
   1777 // type can be used, but we just define two examples.
   1778 
   1779 //  #define TCMALLOC_SMALL_VALIDATION
   1780 #if defined (TCMALLOC_SMALL_VALIDATION)
   1781 
   1782 typedef char MarkType;  // char saves memory... int is more complete.
   1783 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36);
   1784 
   1785 #else
   1786 
   1787 typedef int MarkType;  // char saves memory... int is more complete.
   1788 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536);
   1789 
   1790 #endif
   1791 
   1792 // TODO(jar): See if use of reference rather than pointer gets better inlining,
   1793 // or if macro is needed.  My fear is that taking address map preclude register
   1794 // allocation :-(.
   1795 inline static void AddRoomForMark(size_t* size) {
   1796   *size += sizeof(kAllocationMarkMask);
   1797 }
   1798 
   1799 inline static void ExcludeMarkFromSize(size_t* new_size) {
   1800   *new_size -= sizeof(kAllocationMarkMask);
   1801 }
   1802 
   1803 inline static size_t ExcludeSpaceForMark(size_t size) {
   1804   return size - sizeof(kAllocationMarkMask);  // Lie about size when asked.
   1805 }
   1806 
   1807 inline static MarkType* GetMarkLocation(void* ptr) {
   1808   size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
   1809   ASSERT(size % sizeof(kAllocationMarkMask) == 0);
   1810   size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1;
   1811   return static_cast<MarkType*>(ptr) + last_index;
   1812 }
   1813 
   1814 // We hash in the mark location plus the pointer so that we effectively mix in
   1815 // the size of the block.  This means that if a span is used for different sizes
   1816 // that the mark will be different. It would be good to hash in the size (which
   1817 // we effectively get by using both mark location and pointer), but even better
   1818 // would be to also include the class, as it concisely contains the entropy
   1819 // found in the size (when we don't have large allocation), and there is less
   1820 // risk of losing those bits to truncation. It would probably be good to combine
   1821 // the high bits of size (capturing info about large blocks) with the class
   1822 // (which is a 6 bit number).
   1823 inline static MarkType GetMarkValue(void* ptr, MarkType* mark) {
   1824   void* ptr2 = static_cast<void*>(mark);
   1825   size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL);
   1826   size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL);
   1827   static const int kInvariantBits = 2;
   1828   ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1);
   1829   // Note: low bits of both offsets are invariants due to alignment.  High bits
   1830   // of both offsets are the same (unless we have a large allocation).  Avoid
   1831   // XORing high bits together, as they will cancel for most small allocations.
   1832 
   1833   MarkType ret = kAllocationMarkMask;
   1834   // Using a little shift, we can safely XOR together both offsets.
   1835   ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^
   1836          static_cast<MarkType>(offset2);
   1837   if (sizeof(ret) == 1) {
   1838     // Try to bring some high level bits into the mix.
   1839     ret += static_cast<MarkType>(offset1 >> 8) ^
   1840            static_cast<MarkType>(offset1 >> 16) ^
   1841            static_cast<MarkType>(offset1 >> 24) ;
   1842   }
   1843   // Hash in high bits on a 64 bit architecture.
   1844   if (sizeof(size_t) == 8 && sizeof(ret) == 4)
   1845     ret += offset1 >> 16;
   1846   if (ret == 0)
   1847     ret = kAllocationMarkMask;  // Avoid common pattern of all zeros.
   1848   return ret;
   1849 }
   1850 
   1851 // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location
   1852 // faster.  The current implementation calls general functions, which have to
   1853 // recalculate this in order to get the Class Size.  This is a slow and wasteful
   1854 // recomputation... but it is much more readable this way (for now).
   1855 static void ValidateAllocatedRegion(void* ptr, size_t cl) {
   1856   if (ptr == NULL) return;
   1857   MarkType* mark = GetMarkLocation(ptr);
   1858   MarkType allocated_mark = GetMarkValue(ptr, mark);
   1859   MarkType current_mark = *mark;
   1860 
   1861   if (current_mark == ~allocated_mark)
   1862     DieFromDoubleFree();
   1863   if (current_mark != allocated_mark)
   1864     DieFromMemoryCorruption();
   1865 #ifndef NDEBUG
   1866   // In debug mode, copy the mark into all the free'd region.
   1867   size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) -
   1868                                           reinterpret_cast<char*>(ptr));
   1869   memset(ptr, static_cast<char>(0x36), class_size);
   1870 #endif
   1871   *mark = ~allocated_mark;  //  Distinctively not allocated.
   1872 }
   1873 
   1874 static void MarkAllocatedRegion(void* ptr) {
   1875   if (ptr == NULL) return;
   1876   MarkType* mark = GetMarkLocation(ptr);
   1877   *mark = GetMarkValue(ptr, mark);
   1878 }
   1879 
   1880 #endif  // TCMALLOC_VALIDATION
   1881