1 //===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file defines ObjC ARC optimizations. ARC stands for Automatic 11 /// Reference Counting and is a system for managing reference counts for objects 12 /// in Objective C. 13 /// 14 /// The optimizations performed include elimination of redundant, partially 15 /// redundant, and inconsequential reference count operations, elimination of 16 /// redundant weak pointer operations, and numerous minor simplifications. 17 /// 18 /// WARNING: This file knows about certain library functions. It recognizes them 19 /// by name, and hardwires knowledge of their semantics. 20 /// 21 /// WARNING: This file knows about how certain Objective-C library functions are 22 /// used. Naive LLVM IR transformations which would otherwise be 23 /// behavior-preserving may break these assumptions. 24 /// 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "objc-arc-opts" 28 #include "ObjCARC.h" 29 #include "ARCRuntimeEntryPoints.h" 30 #include "DependencyAnalysis.h" 31 #include "ObjCARCAliasAnalysis.h" 32 #include "ProvenanceAnalysis.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 44 using namespace llvm; 45 using namespace llvm::objcarc; 46 47 /// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific. 48 /// @{ 49 50 namespace { 51 /// \brief An associative container with fast insertion-order (deterministic) 52 /// iteration over its elements. Plus the special blot operation. 53 template<class KeyT, class ValueT> 54 class MapVector { 55 /// Map keys to indices in Vector. 56 typedef DenseMap<KeyT, size_t> MapTy; 57 MapTy Map; 58 59 typedef std::vector<std::pair<KeyT, ValueT> > VectorTy; 60 /// Keys and values. 61 VectorTy Vector; 62 63 public: 64 typedef typename VectorTy::iterator iterator; 65 typedef typename VectorTy::const_iterator const_iterator; 66 iterator begin() { return Vector.begin(); } 67 iterator end() { return Vector.end(); } 68 const_iterator begin() const { return Vector.begin(); } 69 const_iterator end() const { return Vector.end(); } 70 71 #ifdef XDEBUG 72 ~MapVector() { 73 assert(Vector.size() >= Map.size()); // May differ due to blotting. 74 for (typename MapTy::const_iterator I = Map.begin(), E = Map.end(); 75 I != E; ++I) { 76 assert(I->second < Vector.size()); 77 assert(Vector[I->second].first == I->first); 78 } 79 for (typename VectorTy::const_iterator I = Vector.begin(), 80 E = Vector.end(); I != E; ++I) 81 assert(!I->first || 82 (Map.count(I->first) && 83 Map[I->first] == size_t(I - Vector.begin()))); 84 } 85 #endif 86 87 ValueT &operator[](const KeyT &Arg) { 88 std::pair<typename MapTy::iterator, bool> Pair = 89 Map.insert(std::make_pair(Arg, size_t(0))); 90 if (Pair.second) { 91 size_t Num = Vector.size(); 92 Pair.first->second = Num; 93 Vector.push_back(std::make_pair(Arg, ValueT())); 94 return Vector[Num].second; 95 } 96 return Vector[Pair.first->second].second; 97 } 98 99 std::pair<iterator, bool> 100 insert(const std::pair<KeyT, ValueT> &InsertPair) { 101 std::pair<typename MapTy::iterator, bool> Pair = 102 Map.insert(std::make_pair(InsertPair.first, size_t(0))); 103 if (Pair.second) { 104 size_t Num = Vector.size(); 105 Pair.first->second = Num; 106 Vector.push_back(InsertPair); 107 return std::make_pair(Vector.begin() + Num, true); 108 } 109 return std::make_pair(Vector.begin() + Pair.first->second, false); 110 } 111 112 iterator find(const KeyT &Key) { 113 typename MapTy::iterator It = Map.find(Key); 114 if (It == Map.end()) return Vector.end(); 115 return Vector.begin() + It->second; 116 } 117 118 const_iterator find(const KeyT &Key) const { 119 typename MapTy::const_iterator It = Map.find(Key); 120 if (It == Map.end()) return Vector.end(); 121 return Vector.begin() + It->second; 122 } 123 124 /// This is similar to erase, but instead of removing the element from the 125 /// vector, it just zeros out the key in the vector. This leaves iterators 126 /// intact, but clients must be prepared for zeroed-out keys when iterating. 127 void blot(const KeyT &Key) { 128 typename MapTy::iterator It = Map.find(Key); 129 if (It == Map.end()) return; 130 Vector[It->second].first = KeyT(); 131 Map.erase(It); 132 } 133 134 void clear() { 135 Map.clear(); 136 Vector.clear(); 137 } 138 }; 139 } 140 141 /// @} 142 /// 143 /// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. 144 /// @{ 145 146 /// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon 147 /// as it finds a value with multiple uses. 148 static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { 149 if (Arg->hasOneUse()) { 150 if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) 151 return FindSingleUseIdentifiedObject(BC->getOperand(0)); 152 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) 153 if (GEP->hasAllZeroIndices()) 154 return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); 155 if (IsForwarding(GetBasicInstructionClass(Arg))) 156 return FindSingleUseIdentifiedObject( 157 cast<CallInst>(Arg)->getArgOperand(0)); 158 if (!IsObjCIdentifiedObject(Arg)) 159 return 0; 160 return Arg; 161 } 162 163 // If we found an identifiable object but it has multiple uses, but they are 164 // trivial uses, we can still consider this to be a single-use value. 165 if (IsObjCIdentifiedObject(Arg)) { 166 for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end(); 167 UI != UE; ++UI) { 168 const User *U = *UI; 169 if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg) 170 return 0; 171 } 172 173 return Arg; 174 } 175 176 return 0; 177 } 178 179 /// \brief Test whether the given retainable object pointer escapes. 180 /// 181 /// This differs from regular escape analysis in that a use as an 182 /// argument to a call is not considered an escape. 183 /// 184 static bool DoesRetainableObjPtrEscape(const User *Ptr) { 185 DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Target: " << *Ptr << "\n"); 186 187 // Walk the def-use chains. 188 SmallVector<const Value *, 4> Worklist; 189 Worklist.push_back(Ptr); 190 // If Ptr has any operands add them as well. 191 for (User::const_op_iterator I = Ptr->op_begin(), E = Ptr->op_end(); I != E; 192 ++I) { 193 Worklist.push_back(*I); 194 } 195 196 // Ensure we do not visit any value twice. 197 SmallPtrSet<const Value *, 8> VisitedSet; 198 199 do { 200 const Value *V = Worklist.pop_back_val(); 201 202 DEBUG(dbgs() << "Visiting: " << *V << "\n"); 203 204 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 205 UI != UE; ++UI) { 206 const User *UUser = *UI; 207 208 DEBUG(dbgs() << "User: " << *UUser << "\n"); 209 210 // Special - Use by a call (callee or argument) is not considered 211 // to be an escape. 212 switch (GetBasicInstructionClass(UUser)) { 213 case IC_StoreWeak: 214 case IC_InitWeak: 215 case IC_StoreStrong: 216 case IC_Autorelease: 217 case IC_AutoreleaseRV: { 218 DEBUG(dbgs() << "User copies pointer arguments. Pointer Escapes!\n"); 219 // These special functions make copies of their pointer arguments. 220 return true; 221 } 222 case IC_IntrinsicUser: 223 // Use by the use intrinsic is not an escape. 224 continue; 225 case IC_User: 226 case IC_None: 227 // Use by an instruction which copies the value is an escape if the 228 // result is an escape. 229 if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) || 230 isa<PHINode>(UUser) || isa<SelectInst>(UUser)) { 231 232 if (VisitedSet.insert(UUser)) { 233 DEBUG(dbgs() << "User copies value. Ptr escapes if result escapes." 234 " Adding to list.\n"); 235 Worklist.push_back(UUser); 236 } else { 237 DEBUG(dbgs() << "Already visited node.\n"); 238 } 239 continue; 240 } 241 // Use by a load is not an escape. 242 if (isa<LoadInst>(UUser)) 243 continue; 244 // Use by a store is not an escape if the use is the address. 245 if (const StoreInst *SI = dyn_cast<StoreInst>(UUser)) 246 if (V != SI->getValueOperand()) 247 continue; 248 break; 249 default: 250 // Regular calls and other stuff are not considered escapes. 251 continue; 252 } 253 // Otherwise, conservatively assume an escape. 254 DEBUG(dbgs() << "Assuming ptr escapes.\n"); 255 return true; 256 } 257 } while (!Worklist.empty()); 258 259 // No escapes found. 260 DEBUG(dbgs() << "Ptr does not escape.\n"); 261 return false; 262 } 263 264 /// This is a wrapper around getUnderlyingObjCPtr along the lines of 265 /// GetUnderlyingObjects except that it returns early when it sees the first 266 /// alloca. 267 static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) { 268 SmallPtrSet<const Value *, 4> Visited; 269 SmallVector<const Value *, 4> Worklist; 270 Worklist.push_back(V); 271 do { 272 const Value *P = Worklist.pop_back_val(); 273 P = GetUnderlyingObjCPtr(P); 274 275 if (isa<AllocaInst>(P)) 276 return true; 277 278 if (!Visited.insert(P)) 279 continue; 280 281 if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) { 282 Worklist.push_back(SI->getTrueValue()); 283 Worklist.push_back(SI->getFalseValue()); 284 continue; 285 } 286 287 if (const PHINode *PN = dyn_cast<const PHINode>(P)) { 288 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 289 Worklist.push_back(PN->getIncomingValue(i)); 290 continue; 291 } 292 } while (!Worklist.empty()); 293 294 return false; 295 } 296 297 298 /// @} 299 /// 300 /// \defgroup ARCOpt ARC Optimization. 301 /// @{ 302 303 // TODO: On code like this: 304 // 305 // objc_retain(%x) 306 // stuff_that_cannot_release() 307 // objc_autorelease(%x) 308 // stuff_that_cannot_release() 309 // objc_retain(%x) 310 // stuff_that_cannot_release() 311 // objc_autorelease(%x) 312 // 313 // The second retain and autorelease can be deleted. 314 315 // TODO: It should be possible to delete 316 // objc_autoreleasePoolPush and objc_autoreleasePoolPop 317 // pairs if nothing is actually autoreleased between them. Also, autorelease 318 // calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code 319 // after inlining) can be turned into plain release calls. 320 321 // TODO: Critical-edge splitting. If the optimial insertion point is 322 // a critical edge, the current algorithm has to fail, because it doesn't 323 // know how to split edges. It should be possible to make the optimizer 324 // think in terms of edges, rather than blocks, and then split critical 325 // edges on demand. 326 327 // TODO: OptimizeSequences could generalized to be Interprocedural. 328 329 // TODO: Recognize that a bunch of other objc runtime calls have 330 // non-escaping arguments and non-releasing arguments, and may be 331 // non-autoreleasing. 332 333 // TODO: Sink autorelease calls as far as possible. Unfortunately we 334 // usually can't sink them past other calls, which would be the main 335 // case where it would be useful. 336 337 // TODO: The pointer returned from objc_loadWeakRetained is retained. 338 339 // TODO: Delete release+retain pairs (rare). 340 341 STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); 342 STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); 343 STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); 344 STATISTIC(NumRets, "Number of return value forwarding " 345 "retain+autoreleases eliminated"); 346 STATISTIC(NumRRs, "Number of retain+release paths eliminated"); 347 STATISTIC(NumPeeps, "Number of calls peephole-optimized"); 348 #ifndef NDEBUG 349 STATISTIC(NumRetainsBeforeOpt, 350 "Number of retains before optimization"); 351 STATISTIC(NumReleasesBeforeOpt, 352 "Number of releases before optimization"); 353 STATISTIC(NumRetainsAfterOpt, 354 "Number of retains after optimization"); 355 STATISTIC(NumReleasesAfterOpt, 356 "Number of releases after optimization"); 357 #endif 358 359 namespace { 360 /// \enum Sequence 361 /// 362 /// \brief A sequence of states that a pointer may go through in which an 363 /// objc_retain and objc_release are actually needed. 364 enum Sequence { 365 S_None, 366 S_Retain, ///< objc_retain(x). 367 S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement. 368 S_Use, ///< any use of x. 369 S_Stop, ///< like S_Release, but code motion is stopped. 370 S_Release, ///< objc_release(x). 371 S_MovableRelease ///< objc_release(x), !clang.imprecise_release. 372 }; 373 374 raw_ostream &operator<<(raw_ostream &OS, const Sequence S) 375 LLVM_ATTRIBUTE_UNUSED; 376 raw_ostream &operator<<(raw_ostream &OS, const Sequence S) { 377 switch (S) { 378 case S_None: 379 return OS << "S_None"; 380 case S_Retain: 381 return OS << "S_Retain"; 382 case S_CanRelease: 383 return OS << "S_CanRelease"; 384 case S_Use: 385 return OS << "S_Use"; 386 case S_Release: 387 return OS << "S_Release"; 388 case S_MovableRelease: 389 return OS << "S_MovableRelease"; 390 case S_Stop: 391 return OS << "S_Stop"; 392 } 393 llvm_unreachable("Unknown sequence type."); 394 } 395 } 396 397 static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) { 398 // The easy cases. 399 if (A == B) 400 return A; 401 if (A == S_None || B == S_None) 402 return S_None; 403 404 if (A > B) std::swap(A, B); 405 if (TopDown) { 406 // Choose the side which is further along in the sequence. 407 if ((A == S_Retain || A == S_CanRelease) && 408 (B == S_CanRelease || B == S_Use)) 409 return B; 410 } else { 411 // Choose the side which is further along in the sequence. 412 if ((A == S_Use || A == S_CanRelease) && 413 (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease)) 414 return A; 415 // If both sides are releases, choose the more conservative one. 416 if (A == S_Stop && (B == S_Release || B == S_MovableRelease)) 417 return A; 418 if (A == S_Release && B == S_MovableRelease) 419 return A; 420 } 421 422 return S_None; 423 } 424 425 namespace { 426 /// \brief Unidirectional information about either a 427 /// retain-decrement-use-release sequence or release-use-decrement-retain 428 /// reverse sequence. 429 struct RRInfo { 430 /// After an objc_retain, the reference count of the referenced 431 /// object is known to be positive. Similarly, before an objc_release, the 432 /// reference count of the referenced object is known to be positive. If 433 /// there are retain-release pairs in code regions where the retain count 434 /// is known to be positive, they can be eliminated, regardless of any side 435 /// effects between them. 436 /// 437 /// Also, a retain+release pair nested within another retain+release 438 /// pair all on the known same pointer value can be eliminated, regardless 439 /// of any intervening side effects. 440 /// 441 /// KnownSafe is true when either of these conditions is satisfied. 442 bool KnownSafe; 443 444 /// True of the objc_release calls are all marked with the "tail" keyword. 445 bool IsTailCallRelease; 446 447 /// If the Calls are objc_release calls and they all have a 448 /// clang.imprecise_release tag, this is the metadata tag. 449 MDNode *ReleaseMetadata; 450 451 /// For a top-down sequence, the set of objc_retains or 452 /// objc_retainBlocks. For bottom-up, the set of objc_releases. 453 SmallPtrSet<Instruction *, 2> Calls; 454 455 /// The set of optimal insert positions for moving calls in the opposite 456 /// sequence. 457 SmallPtrSet<Instruction *, 2> ReverseInsertPts; 458 459 /// If this is true, we cannot perform code motion but can still remove 460 /// retain/release pairs. 461 bool CFGHazardAfflicted; 462 463 RRInfo() : 464 KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(0), 465 CFGHazardAfflicted(false) {} 466 467 void clear(); 468 469 /// Conservatively merge the two RRInfo. Returns true if a partial merge has 470 /// occured, false otherwise. 471 bool Merge(const RRInfo &Other); 472 473 }; 474 } 475 476 void RRInfo::clear() { 477 KnownSafe = false; 478 IsTailCallRelease = false; 479 ReleaseMetadata = 0; 480 Calls.clear(); 481 ReverseInsertPts.clear(); 482 CFGHazardAfflicted = false; 483 } 484 485 bool RRInfo::Merge(const RRInfo &Other) { 486 // Conservatively merge the ReleaseMetadata information. 487 if (ReleaseMetadata != Other.ReleaseMetadata) 488 ReleaseMetadata = 0; 489 490 // Conservatively merge the boolean state. 491 KnownSafe &= Other.KnownSafe; 492 IsTailCallRelease &= Other.IsTailCallRelease; 493 CFGHazardAfflicted |= Other.CFGHazardAfflicted; 494 495 // Merge the call sets. 496 Calls.insert(Other.Calls.begin(), Other.Calls.end()); 497 498 // Merge the insert point sets. If there are any differences, 499 // that makes this a partial merge. 500 bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size(); 501 for (SmallPtrSet<Instruction *, 2>::const_iterator 502 I = Other.ReverseInsertPts.begin(), 503 E = Other.ReverseInsertPts.end(); I != E; ++I) 504 Partial |= ReverseInsertPts.insert(*I); 505 return Partial; 506 } 507 508 namespace { 509 /// \brief This class summarizes several per-pointer runtime properties which 510 /// are propogated through the flow graph. 511 class PtrState { 512 /// True if the reference count is known to be incremented. 513 bool KnownPositiveRefCount; 514 515 /// True if we've seen an opportunity for partial RR elimination, such as 516 /// pushing calls into a CFG triangle or into one side of a CFG diamond. 517 bool Partial; 518 519 /// The current position in the sequence. 520 Sequence Seq : 8; 521 522 /// Unidirectional information about the current sequence. 523 RRInfo RRI; 524 525 public: 526 PtrState() : KnownPositiveRefCount(false), Partial(false), 527 Seq(S_None) {} 528 529 530 bool IsKnownSafe() const { 531 return RRI.KnownSafe; 532 } 533 534 void SetKnownSafe(const bool NewValue) { 535 RRI.KnownSafe = NewValue; 536 } 537 538 bool IsTailCallRelease() const { 539 return RRI.IsTailCallRelease; 540 } 541 542 void SetTailCallRelease(const bool NewValue) { 543 RRI.IsTailCallRelease = NewValue; 544 } 545 546 bool IsTrackingImpreciseReleases() const { 547 return RRI.ReleaseMetadata != 0; 548 } 549 550 const MDNode *GetReleaseMetadata() const { 551 return RRI.ReleaseMetadata; 552 } 553 554 void SetReleaseMetadata(MDNode *NewValue) { 555 RRI.ReleaseMetadata = NewValue; 556 } 557 558 bool IsCFGHazardAfflicted() const { 559 return RRI.CFGHazardAfflicted; 560 } 561 562 void SetCFGHazardAfflicted(const bool NewValue) { 563 RRI.CFGHazardAfflicted = NewValue; 564 } 565 566 void SetKnownPositiveRefCount() { 567 DEBUG(dbgs() << "Setting Known Positive.\n"); 568 KnownPositiveRefCount = true; 569 } 570 571 void ClearKnownPositiveRefCount() { 572 DEBUG(dbgs() << "Clearing Known Positive.\n"); 573 KnownPositiveRefCount = false; 574 } 575 576 bool HasKnownPositiveRefCount() const { 577 return KnownPositiveRefCount; 578 } 579 580 void SetSeq(Sequence NewSeq) { 581 DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n"); 582 Seq = NewSeq; 583 } 584 585 Sequence GetSeq() const { 586 return Seq; 587 } 588 589 void ClearSequenceProgress() { 590 ResetSequenceProgress(S_None); 591 } 592 593 void ResetSequenceProgress(Sequence NewSeq) { 594 DEBUG(dbgs() << "Resetting sequence progress.\n"); 595 SetSeq(NewSeq); 596 Partial = false; 597 RRI.clear(); 598 } 599 600 void Merge(const PtrState &Other, bool TopDown); 601 602 void InsertCall(Instruction *I) { 603 RRI.Calls.insert(I); 604 } 605 606 void InsertReverseInsertPt(Instruction *I) { 607 RRI.ReverseInsertPts.insert(I); 608 } 609 610 void ClearReverseInsertPts() { 611 RRI.ReverseInsertPts.clear(); 612 } 613 614 bool HasReverseInsertPts() const { 615 return !RRI.ReverseInsertPts.empty(); 616 } 617 618 const RRInfo &GetRRInfo() const { 619 return RRI; 620 } 621 }; 622 } 623 624 void 625 PtrState::Merge(const PtrState &Other, bool TopDown) { 626 Seq = MergeSeqs(Seq, Other.Seq, TopDown); 627 KnownPositiveRefCount &= Other.KnownPositiveRefCount; 628 629 // If we're not in a sequence (anymore), drop all associated state. 630 if (Seq == S_None) { 631 Partial = false; 632 RRI.clear(); 633 } else if (Partial || Other.Partial) { 634 // If we're doing a merge on a path that's previously seen a partial 635 // merge, conservatively drop the sequence, to avoid doing partial 636 // RR elimination. If the branch predicates for the two merge differ, 637 // mixing them is unsafe. 638 ClearSequenceProgress(); 639 } else { 640 // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this 641 // point, we know that currently we are not partial. Stash whether or not 642 // the merge operation caused us to undergo a partial merging of reverse 643 // insertion points. 644 Partial = RRI.Merge(Other.RRI); 645 } 646 } 647 648 namespace { 649 /// \brief Per-BasicBlock state. 650 class BBState { 651 /// The number of unique control paths from the entry which can reach this 652 /// block. 653 unsigned TopDownPathCount; 654 655 /// The number of unique control paths to exits from this block. 656 unsigned BottomUpPathCount; 657 658 /// A type for PerPtrTopDown and PerPtrBottomUp. 659 typedef MapVector<const Value *, PtrState> MapTy; 660 661 /// The top-down traversal uses this to record information known about a 662 /// pointer at the bottom of each block. 663 MapTy PerPtrTopDown; 664 665 /// The bottom-up traversal uses this to record information known about a 666 /// pointer at the top of each block. 667 MapTy PerPtrBottomUp; 668 669 /// Effective predecessors of the current block ignoring ignorable edges and 670 /// ignored backedges. 671 SmallVector<BasicBlock *, 2> Preds; 672 /// Effective successors of the current block ignoring ignorable edges and 673 /// ignored backedges. 674 SmallVector<BasicBlock *, 2> Succs; 675 676 public: 677 BBState() : TopDownPathCount(0), BottomUpPathCount(0) {} 678 679 typedef MapTy::iterator ptr_iterator; 680 typedef MapTy::const_iterator ptr_const_iterator; 681 682 ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } 683 ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } 684 ptr_const_iterator top_down_ptr_begin() const { 685 return PerPtrTopDown.begin(); 686 } 687 ptr_const_iterator top_down_ptr_end() const { 688 return PerPtrTopDown.end(); 689 } 690 691 ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); } 692 ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } 693 ptr_const_iterator bottom_up_ptr_begin() const { 694 return PerPtrBottomUp.begin(); 695 } 696 ptr_const_iterator bottom_up_ptr_end() const { 697 return PerPtrBottomUp.end(); 698 } 699 700 /// Mark this block as being an entry block, which has one path from the 701 /// entry by definition. 702 void SetAsEntry() { TopDownPathCount = 1; } 703 704 /// Mark this block as being an exit block, which has one path to an exit by 705 /// definition. 706 void SetAsExit() { BottomUpPathCount = 1; } 707 708 /// Attempt to find the PtrState object describing the top down state for 709 /// pointer Arg. Return a new initialized PtrState describing the top down 710 /// state for Arg if we do not find one. 711 PtrState &getPtrTopDownState(const Value *Arg) { 712 return PerPtrTopDown[Arg]; 713 } 714 715 /// Attempt to find the PtrState object describing the bottom up state for 716 /// pointer Arg. Return a new initialized PtrState describing the bottom up 717 /// state for Arg if we do not find one. 718 PtrState &getPtrBottomUpState(const Value *Arg) { 719 return PerPtrBottomUp[Arg]; 720 } 721 722 /// Attempt to find the PtrState object describing the bottom up state for 723 /// pointer Arg. 724 ptr_iterator findPtrBottomUpState(const Value *Arg) { 725 return PerPtrBottomUp.find(Arg); 726 } 727 728 void clearBottomUpPointers() { 729 PerPtrBottomUp.clear(); 730 } 731 732 void clearTopDownPointers() { 733 PerPtrTopDown.clear(); 734 } 735 736 void InitFromPred(const BBState &Other); 737 void InitFromSucc(const BBState &Other); 738 void MergePred(const BBState &Other); 739 void MergeSucc(const BBState &Other); 740 741 /// Compute the number of possible unique paths from an entry to an exit 742 /// which pass through this block. This is only valid after both the 743 /// top-down and bottom-up traversals are complete. 744 /// 745 /// Returns true if overflow occured. Returns false if overflow did not 746 /// occur. 747 bool GetAllPathCountWithOverflow(unsigned &PathCount) const { 748 assert(TopDownPathCount != 0); 749 assert(BottomUpPathCount != 0); 750 unsigned long long Product = 751 (unsigned long long)TopDownPathCount*BottomUpPathCount; 752 PathCount = Product; 753 // Overflow occured if any of the upper bits of Product are set. 754 return Product >> 32; 755 } 756 757 // Specialized CFG utilities. 758 typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator; 759 edge_iterator pred_begin() { return Preds.begin(); } 760 edge_iterator pred_end() { return Preds.end(); } 761 edge_iterator succ_begin() { return Succs.begin(); } 762 edge_iterator succ_end() { return Succs.end(); } 763 764 void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } 765 void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } 766 767 bool isExit() const { return Succs.empty(); } 768 }; 769 } 770 771 void BBState::InitFromPred(const BBState &Other) { 772 PerPtrTopDown = Other.PerPtrTopDown; 773 TopDownPathCount = Other.TopDownPathCount; 774 } 775 776 void BBState::InitFromSucc(const BBState &Other) { 777 PerPtrBottomUp = Other.PerPtrBottomUp; 778 BottomUpPathCount = Other.BottomUpPathCount; 779 } 780 781 /// The top-down traversal uses this to merge information about predecessors to 782 /// form the initial state for a new block. 783 void BBState::MergePred(const BBState &Other) { 784 // Other.TopDownPathCount can be 0, in which case it is either dead or a 785 // loop backedge. Loop backedges are special. 786 TopDownPathCount += Other.TopDownPathCount; 787 788 // Check for overflow. If we have overflow, fall back to conservative 789 // behavior. 790 if (TopDownPathCount < Other.TopDownPathCount) { 791 clearTopDownPointers(); 792 return; 793 } 794 795 // For each entry in the other set, if our set has an entry with the same key, 796 // merge the entries. Otherwise, copy the entry and merge it with an empty 797 // entry. 798 for (ptr_const_iterator MI = Other.top_down_ptr_begin(), 799 ME = Other.top_down_ptr_end(); MI != ME; ++MI) { 800 std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI); 801 Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, 802 /*TopDown=*/true); 803 } 804 805 // For each entry in our set, if the other set doesn't have an entry with the 806 // same key, force it to merge with an empty entry. 807 for (ptr_iterator MI = top_down_ptr_begin(), 808 ME = top_down_ptr_end(); MI != ME; ++MI) 809 if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) 810 MI->second.Merge(PtrState(), /*TopDown=*/true); 811 } 812 813 /// The bottom-up traversal uses this to merge information about successors to 814 /// form the initial state for a new block. 815 void BBState::MergeSucc(const BBState &Other) { 816 // Other.BottomUpPathCount can be 0, in which case it is either dead or a 817 // loop backedge. Loop backedges are special. 818 BottomUpPathCount += Other.BottomUpPathCount; 819 820 // Check for overflow. If we have overflow, fall back to conservative 821 // behavior. 822 if (BottomUpPathCount < Other.BottomUpPathCount) { 823 clearBottomUpPointers(); 824 return; 825 } 826 827 // For each entry in the other set, if our set has an entry with the 828 // same key, merge the entries. Otherwise, copy the entry and merge 829 // it with an empty entry. 830 for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(), 831 ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) { 832 std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI); 833 Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, 834 /*TopDown=*/false); 835 } 836 837 // For each entry in our set, if the other set doesn't have an entry 838 // with the same key, force it to merge with an empty entry. 839 for (ptr_iterator MI = bottom_up_ptr_begin(), 840 ME = bottom_up_ptr_end(); MI != ME; ++MI) 841 if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) 842 MI->second.Merge(PtrState(), /*TopDown=*/false); 843 } 844 845 // Only enable ARC Annotations if we are building a debug version of 846 // libObjCARCOpts. 847 #ifndef NDEBUG 848 #define ARC_ANNOTATIONS 849 #endif 850 851 // Define some macros along the lines of DEBUG and some helper functions to make 852 // it cleaner to create annotations in the source code and to no-op when not 853 // building in debug mode. 854 #ifdef ARC_ANNOTATIONS 855 856 #include "llvm/Support/CommandLine.h" 857 858 /// Enable/disable ARC sequence annotations. 859 static cl::opt<bool> 860 EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false), 861 cl::desc("Enable emission of arc data flow analysis " 862 "annotations")); 863 static cl::opt<bool> 864 DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false), 865 cl::desc("Disable check for cfg hazards when " 866 "annotating")); 867 static cl::opt<std::string> 868 ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier", 869 cl::init(""), 870 cl::desc("filter out all data flow annotations " 871 "but those that apply to the given " 872 "target llvm identifier.")); 873 874 /// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an 875 /// instruction so that we can track backwards when post processing via the llvm 876 /// arc annotation processor tool. If the function is an 877 static MDString *AppendMDNodeToSourcePtr(unsigned NodeId, 878 Value *Ptr) { 879 MDString *Hash = 0; 880 881 // If pointer is a result of an instruction and it does not have a source 882 // MDNode it, attach a new MDNode onto it. If pointer is a result of 883 // an instruction and does have a source MDNode attached to it, return a 884 // reference to said Node. Otherwise just return 0. 885 if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) { 886 MDNode *Node; 887 if (!(Node = Inst->getMetadata(NodeId))) { 888 // We do not have any node. Generate and attatch the hash MDString to the 889 // instruction. 890 891 // We just use an MDString to ensure that this metadata gets written out 892 // of line at the module level and to provide a very simple format 893 // encoding the information herein. Both of these makes it simpler to 894 // parse the annotations by a simple external program. 895 std::string Str; 896 raw_string_ostream os(Str); 897 os << "(" << Inst->getParent()->getParent()->getName() << ",%" 898 << Inst->getName() << ")"; 899 900 Hash = MDString::get(Inst->getContext(), os.str()); 901 Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash)); 902 } else { 903 // We have a node. Grab its hash and return it. 904 assert(Node->getNumOperands() == 1 && 905 "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand."); 906 Hash = cast<MDString>(Node->getOperand(0)); 907 } 908 } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) { 909 std::string str; 910 raw_string_ostream os(str); 911 os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName() 912 << ")"; 913 Hash = MDString::get(Arg->getContext(), os.str()); 914 } 915 916 return Hash; 917 } 918 919 static std::string SequenceToString(Sequence A) { 920 std::string str; 921 raw_string_ostream os(str); 922 os << A; 923 return os.str(); 924 } 925 926 /// Helper function to change a Sequence into a String object using our overload 927 /// for raw_ostream so we only have printing code in one location. 928 static MDString *SequenceToMDString(LLVMContext &Context, 929 Sequence A) { 930 return MDString::get(Context, SequenceToString(A)); 931 } 932 933 /// A simple function to generate a MDNode which describes the change in state 934 /// for Value *Ptr caused by Instruction *Inst. 935 static void AppendMDNodeToInstForPtr(unsigned NodeId, 936 Instruction *Inst, 937 Value *Ptr, 938 MDString *PtrSourceMDNodeID, 939 Sequence OldSeq, 940 Sequence NewSeq) { 941 MDNode *Node = 0; 942 Value *tmp[3] = {PtrSourceMDNodeID, 943 SequenceToMDString(Inst->getContext(), 944 OldSeq), 945 SequenceToMDString(Inst->getContext(), 946 NewSeq)}; 947 Node = MDNode::get(Inst->getContext(), 948 ArrayRef<Value*>(tmp, 3)); 949 950 Inst->setMetadata(NodeId, Node); 951 } 952 953 /// Add to the beginning of the basic block llvm.ptr.annotations which show the 954 /// state of a pointer at the entrance to a basic block. 955 static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB, 956 Value *Ptr, Sequence Seq) { 957 // If we have a target identifier, make sure that we match it before 958 // continuing. 959 if(!ARCAnnotationTargetIdentifier.empty() && 960 !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) 961 return; 962 963 Module *M = BB->getParent()->getParent(); 964 LLVMContext &C = M->getContext(); 965 Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); 966 Type *I8XX = PointerType::getUnqual(I8X); 967 Type *Params[] = {I8XX, I8XX}; 968 FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), 969 ArrayRef<Type*>(Params, 2), 970 /*isVarArg=*/false); 971 Constant *Callee = M->getOrInsertFunction(Name, FTy); 972 973 IRBuilder<> Builder(BB, BB->getFirstInsertionPt()); 974 975 Value *PtrName; 976 StringRef Tmp = Ptr->getName(); 977 if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) { 978 Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp, 979 Tmp + "_STR"); 980 PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, 981 cast<Constant>(ActualPtrName), Tmp); 982 } 983 984 Value *S; 985 std::string SeqStr = SequenceToString(Seq); 986 if (0 == (S = M->getGlobalVariable(SeqStr, true))) { 987 Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr, 988 SeqStr + "_STR"); 989 S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, 990 cast<Constant>(ActualPtrName), SeqStr); 991 } 992 993 Builder.CreateCall2(Callee, PtrName, S); 994 } 995 996 /// Add to the end of the basic block llvm.ptr.annotations which show the state 997 /// of the pointer at the bottom of the basic block. 998 static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB, 999 Value *Ptr, Sequence Seq) { 1000 // If we have a target identifier, make sure that we match it before emitting 1001 // an annotation. 1002 if(!ARCAnnotationTargetIdentifier.empty() && 1003 !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) 1004 return; 1005 1006 Module *M = BB->getParent()->getParent(); 1007 LLVMContext &C = M->getContext(); 1008 Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); 1009 Type *I8XX = PointerType::getUnqual(I8X); 1010 Type *Params[] = {I8XX, I8XX}; 1011 FunctionType *FTy = FunctionType::get(Type::getVoidTy(C), 1012 ArrayRef<Type*>(Params, 2), 1013 /*isVarArg=*/false); 1014 Constant *Callee = M->getOrInsertFunction(Name, FTy); 1015 1016 IRBuilder<> Builder(BB, llvm::prior(BB->end())); 1017 1018 Value *PtrName; 1019 StringRef Tmp = Ptr->getName(); 1020 if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) { 1021 Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp, 1022 Tmp + "_STR"); 1023 PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, 1024 cast<Constant>(ActualPtrName), Tmp); 1025 } 1026 1027 Value *S; 1028 std::string SeqStr = SequenceToString(Seq); 1029 if (0 == (S = M->getGlobalVariable(SeqStr, true))) { 1030 Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr, 1031 SeqStr + "_STR"); 1032 S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage, 1033 cast<Constant>(ActualPtrName), SeqStr); 1034 } 1035 Builder.CreateCall2(Callee, PtrName, S); 1036 } 1037 1038 /// Adds a source annotation to pointer and a state change annotation to Inst 1039 /// referencing the source annotation and the old/new state of pointer. 1040 static void GenerateARCAnnotation(unsigned InstMDId, 1041 unsigned PtrMDId, 1042 Instruction *Inst, 1043 Value *Ptr, 1044 Sequence OldSeq, 1045 Sequence NewSeq) { 1046 if (EnableARCAnnotations) { 1047 // If we have a target identifier, make sure that we match it before 1048 // emitting an annotation. 1049 if(!ARCAnnotationTargetIdentifier.empty() && 1050 !Ptr->getName().equals(ARCAnnotationTargetIdentifier)) 1051 return; 1052 1053 // First generate the source annotation on our pointer. This will return an 1054 // MDString* if Ptr actually comes from an instruction implying we can put 1055 // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL), 1056 // then we know that our pointer is from an Argument so we put a reference 1057 // to the argument number. 1058 // 1059 // The point of this is to make it easy for the 1060 // llvm-arc-annotation-processor tool to cross reference where the source 1061 // pointer is in the LLVM IR since the LLVM IR parser does not submit such 1062 // information via debug info for backends to use (since why would anyone 1063 // need such a thing from LLVM IR besides in non standard cases 1064 // [i.e. this]). 1065 MDString *SourcePtrMDNode = 1066 AppendMDNodeToSourcePtr(PtrMDId, Ptr); 1067 AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq, 1068 NewSeq); 1069 } 1070 } 1071 1072 // The actual interface for accessing the above functionality is defined via 1073 // some simple macros which are defined below. We do this so that the user does 1074 // not need to pass in what metadata id is needed resulting in cleaner code and 1075 // additionally since it provides an easy way to conditionally no-op all 1076 // annotation support in a non-debug build. 1077 1078 /// Use this macro to annotate a sequence state change when processing 1079 /// instructions bottom up, 1080 #define ANNOTATE_BOTTOMUP(inst, ptr, old, new) \ 1081 GenerateARCAnnotation(ARCAnnotationBottomUpMDKind, \ 1082 ARCAnnotationProvenanceSourceMDKind, (inst), \ 1083 const_cast<Value*>(ptr), (old), (new)) 1084 /// Use this macro to annotate a sequence state change when processing 1085 /// instructions top down. 1086 #define ANNOTATE_TOPDOWN(inst, ptr, old, new) \ 1087 GenerateARCAnnotation(ARCAnnotationTopDownMDKind, \ 1088 ARCAnnotationProvenanceSourceMDKind, (inst), \ 1089 const_cast<Value*>(ptr), (old), (new)) 1090 1091 #define ANNOTATE_BB(_states, _bb, _name, _type, _direction) \ 1092 do { \ 1093 if (EnableARCAnnotations) { \ 1094 for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \ 1095 E = (_states)._direction##_ptr_end(); I != E; ++I) { \ 1096 Value *Ptr = const_cast<Value*>(I->first); \ 1097 Sequence Seq = I->second.GetSeq(); \ 1098 GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq); \ 1099 } \ 1100 } \ 1101 } while (0) 1102 1103 #define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock) \ 1104 ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \ 1105 Entrance, bottom_up) 1106 #define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock) \ 1107 ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend", \ 1108 Terminator, bottom_up) 1109 #define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock) \ 1110 ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart", \ 1111 Entrance, top_down) 1112 #define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock) \ 1113 ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend", \ 1114 Terminator, top_down) 1115 1116 #else // !ARC_ANNOTATION 1117 // If annotations are off, noop. 1118 #define ANNOTATE_BOTTOMUP(inst, ptr, old, new) 1119 #define ANNOTATE_TOPDOWN(inst, ptr, old, new) 1120 #define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock) 1121 #define ANNOTATE_BOTTOMUP_BBEND(states, basicblock) 1122 #define ANNOTATE_TOPDOWN_BBSTART(states, basicblock) 1123 #define ANNOTATE_TOPDOWN_BBEND(states, basicblock) 1124 #endif // !ARC_ANNOTATION 1125 1126 namespace { 1127 /// \brief The main ARC optimization pass. 1128 class ObjCARCOpt : public FunctionPass { 1129 bool Changed; 1130 ProvenanceAnalysis PA; 1131 ARCRuntimeEntryPoints EP; 1132 1133 // This is used to track if a pointer is stored into an alloca. 1134 DenseSet<const Value *> MultiOwnersSet; 1135 1136 /// A flag indicating whether this optimization pass should run. 1137 bool Run; 1138 1139 /// Flags which determine whether each of the interesting runtine functions 1140 /// is in fact used in the current function. 1141 unsigned UsedInThisFunction; 1142 1143 /// The Metadata Kind for clang.imprecise_release metadata. 1144 unsigned ImpreciseReleaseMDKind; 1145 1146 /// The Metadata Kind for clang.arc.copy_on_escape metadata. 1147 unsigned CopyOnEscapeMDKind; 1148 1149 /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata. 1150 unsigned NoObjCARCExceptionsMDKind; 1151 1152 #ifdef ARC_ANNOTATIONS 1153 /// The Metadata Kind for llvm.arc.annotation.bottomup metadata. 1154 unsigned ARCAnnotationBottomUpMDKind; 1155 /// The Metadata Kind for llvm.arc.annotation.topdown metadata. 1156 unsigned ARCAnnotationTopDownMDKind; 1157 /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata. 1158 unsigned ARCAnnotationProvenanceSourceMDKind; 1159 #endif // ARC_ANNOATIONS 1160 1161 bool IsRetainBlockOptimizable(const Instruction *Inst); 1162 1163 bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); 1164 void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, 1165 InstructionClass &Class); 1166 bool OptimizeRetainBlockCall(Function &F, Instruction *RetainBlock, 1167 InstructionClass &Class); 1168 void OptimizeIndividualCalls(Function &F); 1169 1170 void CheckForCFGHazards(const BasicBlock *BB, 1171 DenseMap<const BasicBlock *, BBState> &BBStates, 1172 BBState &MyStates) const; 1173 bool VisitInstructionBottomUp(Instruction *Inst, 1174 BasicBlock *BB, 1175 MapVector<Value *, RRInfo> &Retains, 1176 BBState &MyStates); 1177 bool VisitBottomUp(BasicBlock *BB, 1178 DenseMap<const BasicBlock *, BBState> &BBStates, 1179 MapVector<Value *, RRInfo> &Retains); 1180 bool VisitInstructionTopDown(Instruction *Inst, 1181 DenseMap<Value *, RRInfo> &Releases, 1182 BBState &MyStates); 1183 bool VisitTopDown(BasicBlock *BB, 1184 DenseMap<const BasicBlock *, BBState> &BBStates, 1185 DenseMap<Value *, RRInfo> &Releases); 1186 bool Visit(Function &F, 1187 DenseMap<const BasicBlock *, BBState> &BBStates, 1188 MapVector<Value *, RRInfo> &Retains, 1189 DenseMap<Value *, RRInfo> &Releases); 1190 1191 void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, 1192 MapVector<Value *, RRInfo> &Retains, 1193 DenseMap<Value *, RRInfo> &Releases, 1194 SmallVectorImpl<Instruction *> &DeadInsts, 1195 Module *M); 1196 1197 bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates, 1198 MapVector<Value *, RRInfo> &Retains, 1199 DenseMap<Value *, RRInfo> &Releases, 1200 Module *M, 1201 SmallVectorImpl<Instruction *> &NewRetains, 1202 SmallVectorImpl<Instruction *> &NewReleases, 1203 SmallVectorImpl<Instruction *> &DeadInsts, 1204 RRInfo &RetainsToMove, 1205 RRInfo &ReleasesToMove, 1206 Value *Arg, 1207 bool KnownSafe, 1208 bool &AnyPairsCompletelyEliminated); 1209 1210 bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, 1211 MapVector<Value *, RRInfo> &Retains, 1212 DenseMap<Value *, RRInfo> &Releases, 1213 Module *M); 1214 1215 void OptimizeWeakCalls(Function &F); 1216 1217 bool OptimizeSequences(Function &F); 1218 1219 void OptimizeReturns(Function &F); 1220 1221 #ifndef NDEBUG 1222 void GatherStatistics(Function &F, bool AfterOptimization = false); 1223 #endif 1224 1225 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 1226 virtual bool doInitialization(Module &M); 1227 virtual bool runOnFunction(Function &F); 1228 virtual void releaseMemory(); 1229 1230 public: 1231 static char ID; 1232 ObjCARCOpt() : FunctionPass(ID) { 1233 initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); 1234 } 1235 }; 1236 } 1237 1238 char ObjCARCOpt::ID = 0; 1239 INITIALIZE_PASS_BEGIN(ObjCARCOpt, 1240 "objc-arc", "ObjC ARC optimization", false, false) 1241 INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis) 1242 INITIALIZE_PASS_END(ObjCARCOpt, 1243 "objc-arc", "ObjC ARC optimization", false, false) 1244 1245 Pass *llvm::createObjCARCOptPass() { 1246 return new ObjCARCOpt(); 1247 } 1248 1249 void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { 1250 AU.addRequired<ObjCARCAliasAnalysis>(); 1251 AU.addRequired<AliasAnalysis>(); 1252 // ARC optimization doesn't currently split critical edges. 1253 AU.setPreservesCFG(); 1254 } 1255 1256 bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) { 1257 // Without the magic metadata tag, we have to assume this might be an 1258 // objc_retainBlock call inserted to convert a block pointer to an id, 1259 // in which case it really is needed. 1260 if (!Inst->getMetadata(CopyOnEscapeMDKind)) 1261 return false; 1262 1263 // If the pointer "escapes" (not including being used in a call), 1264 // the copy may be needed. 1265 if (DoesRetainableObjPtrEscape(Inst)) 1266 return false; 1267 1268 // Otherwise, it's not needed. 1269 return true; 1270 } 1271 1272 /// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is 1273 /// not a return value. Or, if it can be paired with an 1274 /// objc_autoreleaseReturnValue, delete the pair and return true. 1275 bool 1276 ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { 1277 // Check for the argument being from an immediately preceding call or invoke. 1278 const Value *Arg = GetObjCArg(RetainRV); 1279 ImmutableCallSite CS(Arg); 1280 if (const Instruction *Call = CS.getInstruction()) { 1281 if (Call->getParent() == RetainRV->getParent()) { 1282 BasicBlock::const_iterator I = Call; 1283 ++I; 1284 while (IsNoopInstruction(I)) ++I; 1285 if (&*I == RetainRV) 1286 return false; 1287 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { 1288 BasicBlock *RetainRVParent = RetainRV->getParent(); 1289 if (II->getNormalDest() == RetainRVParent) { 1290 BasicBlock::const_iterator I = RetainRVParent->begin(); 1291 while (IsNoopInstruction(I)) ++I; 1292 if (&*I == RetainRV) 1293 return false; 1294 } 1295 } 1296 } 1297 1298 // Check for being preceded by an objc_autoreleaseReturnValue on the same 1299 // pointer. In this case, we can delete the pair. 1300 BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin(); 1301 if (I != Begin) { 1302 do --I; while (I != Begin && IsNoopInstruction(I)); 1303 if (GetBasicInstructionClass(I) == IC_AutoreleaseRV && 1304 GetObjCArg(I) == Arg) { 1305 Changed = true; 1306 ++NumPeeps; 1307 1308 DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n" 1309 << "Erasing " << *RetainRV << "\n"); 1310 1311 EraseInstruction(I); 1312 EraseInstruction(RetainRV); 1313 return true; 1314 } 1315 } 1316 1317 // Turn it to a plain objc_retain. 1318 Changed = true; 1319 ++NumPeeps; 1320 1321 DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => " 1322 "objc_retain since the operand is not a return value.\n" 1323 "Old = " << *RetainRV << "\n"); 1324 1325 Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); 1326 cast<CallInst>(RetainRV)->setCalledFunction(NewDecl); 1327 1328 DEBUG(dbgs() << "New = " << *RetainRV << "\n"); 1329 1330 return false; 1331 } 1332 1333 /// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not 1334 /// used as a return value. 1335 void 1336 ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, 1337 InstructionClass &Class) { 1338 // Check for a return of the pointer value. 1339 const Value *Ptr = GetObjCArg(AutoreleaseRV); 1340 SmallVector<const Value *, 2> Users; 1341 Users.push_back(Ptr); 1342 do { 1343 Ptr = Users.pop_back_val(); 1344 for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); 1345 UI != UE; ++UI) { 1346 const User *I = *UI; 1347 if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV) 1348 return; 1349 if (isa<BitCastInst>(I)) 1350 Users.push_back(I); 1351 } 1352 } while (!Users.empty()); 1353 1354 Changed = true; 1355 ++NumPeeps; 1356 1357 DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => " 1358 "objc_autorelease since its operand is not used as a return " 1359 "value.\n" 1360 "Old = " << *AutoreleaseRV << "\n"); 1361 1362 CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); 1363 Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease); 1364 AutoreleaseRVCI->setCalledFunction(NewDecl); 1365 AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. 1366 Class = IC_Autorelease; 1367 1368 DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n"); 1369 1370 } 1371 1372 // \brief Attempt to strength reduce objc_retainBlock calls to objc_retain 1373 // calls. 1374 // 1375 // Specifically: If an objc_retainBlock call has the copy_on_escape metadata and 1376 // does not escape (following the rules of block escaping), strength reduce the 1377 // objc_retainBlock to an objc_retain. 1378 // 1379 // TODO: If an objc_retainBlock call is dominated period by a previous 1380 // objc_retainBlock call, strength reduce the objc_retainBlock to an 1381 // objc_retain. 1382 bool 1383 ObjCARCOpt::OptimizeRetainBlockCall(Function &F, Instruction *Inst, 1384 InstructionClass &Class) { 1385 assert(GetBasicInstructionClass(Inst) == Class); 1386 assert(IC_RetainBlock == Class); 1387 1388 // If we can not optimize Inst, return false. 1389 if (!IsRetainBlockOptimizable(Inst)) 1390 return false; 1391 1392 Changed = true; 1393 ++NumPeeps; 1394 1395 DEBUG(dbgs() << "Strength reduced retainBlock => retain.\n"); 1396 DEBUG(dbgs() << "Old: " << *Inst << "\n"); 1397 CallInst *RetainBlock = cast<CallInst>(Inst); 1398 Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); 1399 RetainBlock->setCalledFunction(NewDecl); 1400 // Remove copy_on_escape metadata. 1401 RetainBlock->setMetadata(CopyOnEscapeMDKind, 0); 1402 Class = IC_Retain; 1403 DEBUG(dbgs() << "New: " << *Inst << "\n"); 1404 return true; 1405 } 1406 1407 /// Visit each call, one at a time, and make simplifications without doing any 1408 /// additional analysis. 1409 void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { 1410 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n"); 1411 // Reset all the flags in preparation for recomputing them. 1412 UsedInThisFunction = 0; 1413 1414 // Visit all objc_* calls in F. 1415 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 1416 Instruction *Inst = &*I++; 1417 1418 InstructionClass Class = GetBasicInstructionClass(Inst); 1419 1420 DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n"); 1421 1422 switch (Class) { 1423 default: break; 1424 1425 // Delete no-op casts. These function calls have special semantics, but 1426 // the semantics are entirely implemented via lowering in the front-end, 1427 // so by the time they reach the optimizer, they are just no-op calls 1428 // which return their argument. 1429 // 1430 // There are gray areas here, as the ability to cast reference-counted 1431 // pointers to raw void* and back allows code to break ARC assumptions, 1432 // however these are currently considered to be unimportant. 1433 case IC_NoopCast: 1434 Changed = true; 1435 ++NumNoops; 1436 DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n"); 1437 EraseInstruction(Inst); 1438 continue; 1439 1440 // If the pointer-to-weak-pointer is null, it's undefined behavior. 1441 case IC_StoreWeak: 1442 case IC_LoadWeak: 1443 case IC_LoadWeakRetained: 1444 case IC_InitWeak: 1445 case IC_DestroyWeak: { 1446 CallInst *CI = cast<CallInst>(Inst); 1447 if (IsNullOrUndef(CI->getArgOperand(0))) { 1448 Changed = true; 1449 Type *Ty = CI->getArgOperand(0)->getType(); 1450 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), 1451 Constant::getNullValue(Ty), 1452 CI); 1453 llvm::Value *NewValue = UndefValue::get(CI->getType()); 1454 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." 1455 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); 1456 CI->replaceAllUsesWith(NewValue); 1457 CI->eraseFromParent(); 1458 continue; 1459 } 1460 break; 1461 } 1462 case IC_CopyWeak: 1463 case IC_MoveWeak: { 1464 CallInst *CI = cast<CallInst>(Inst); 1465 if (IsNullOrUndef(CI->getArgOperand(0)) || 1466 IsNullOrUndef(CI->getArgOperand(1))) { 1467 Changed = true; 1468 Type *Ty = CI->getArgOperand(0)->getType(); 1469 new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), 1470 Constant::getNullValue(Ty), 1471 CI); 1472 1473 llvm::Value *NewValue = UndefValue::get(CI->getType()); 1474 DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior." 1475 "\nOld = " << *CI << "\nNew = " << *NewValue << "\n"); 1476 1477 CI->replaceAllUsesWith(NewValue); 1478 CI->eraseFromParent(); 1479 continue; 1480 } 1481 break; 1482 } 1483 case IC_RetainBlock: 1484 // If we strength reduce an objc_retainBlock to an objc_retain, continue 1485 // onto the objc_retain peephole optimizations. Otherwise break. 1486 OptimizeRetainBlockCall(F, Inst, Class); 1487 break; 1488 case IC_RetainRV: 1489 if (OptimizeRetainRVCall(F, Inst)) 1490 continue; 1491 break; 1492 case IC_AutoreleaseRV: 1493 OptimizeAutoreleaseRVCall(F, Inst, Class); 1494 break; 1495 } 1496 1497 // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. 1498 if (IsAutorelease(Class) && Inst->use_empty()) { 1499 CallInst *Call = cast<CallInst>(Inst); 1500 const Value *Arg = Call->getArgOperand(0); 1501 Arg = FindSingleUseIdentifiedObject(Arg); 1502 if (Arg) { 1503 Changed = true; 1504 ++NumAutoreleases; 1505 1506 // Create the declaration lazily. 1507 LLVMContext &C = Inst->getContext(); 1508 1509 Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release); 1510 CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "", 1511 Call); 1512 NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None)); 1513 1514 DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) " 1515 "since x is otherwise unused.\nOld: " << *Call << "\nNew: " 1516 << *NewCall << "\n"); 1517 1518 EraseInstruction(Call); 1519 Inst = NewCall; 1520 Class = IC_Release; 1521 } 1522 } 1523 1524 // For functions which can never be passed stack arguments, add 1525 // a tail keyword. 1526 if (IsAlwaysTail(Class)) { 1527 Changed = true; 1528 DEBUG(dbgs() << "Adding tail keyword to function since it can never be " 1529 "passed stack args: " << *Inst << "\n"); 1530 cast<CallInst>(Inst)->setTailCall(); 1531 } 1532 1533 // Ensure that functions that can never have a "tail" keyword due to the 1534 // semantics of ARC truly do not do so. 1535 if (IsNeverTail(Class)) { 1536 Changed = true; 1537 DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst << 1538 "\n"); 1539 cast<CallInst>(Inst)->setTailCall(false); 1540 } 1541 1542 // Set nounwind as needed. 1543 if (IsNoThrow(Class)) { 1544 Changed = true; 1545 DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst 1546 << "\n"); 1547 cast<CallInst>(Inst)->setDoesNotThrow(); 1548 } 1549 1550 if (!IsNoopOnNull(Class)) { 1551 UsedInThisFunction |= 1 << Class; 1552 continue; 1553 } 1554 1555 const Value *Arg = GetObjCArg(Inst); 1556 1557 // ARC calls with null are no-ops. Delete them. 1558 if (IsNullOrUndef(Arg)) { 1559 Changed = true; 1560 ++NumNoops; 1561 DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst 1562 << "\n"); 1563 EraseInstruction(Inst); 1564 continue; 1565 } 1566 1567 // Keep track of which of retain, release, autorelease, and retain_block 1568 // are actually present in this function. 1569 UsedInThisFunction |= 1 << Class; 1570 1571 // If Arg is a PHI, and one or more incoming values to the 1572 // PHI are null, and the call is control-equivalent to the PHI, and there 1573 // are no relevant side effects between the PHI and the call, the call 1574 // could be pushed up to just those paths with non-null incoming values. 1575 // For now, don't bother splitting critical edges for this. 1576 SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; 1577 Worklist.push_back(std::make_pair(Inst, Arg)); 1578 do { 1579 std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); 1580 Inst = Pair.first; 1581 Arg = Pair.second; 1582 1583 const PHINode *PN = dyn_cast<PHINode>(Arg); 1584 if (!PN) continue; 1585 1586 // Determine if the PHI has any null operands, or any incoming 1587 // critical edges. 1588 bool HasNull = false; 1589 bool HasCriticalEdges = false; 1590 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1591 Value *Incoming = 1592 StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); 1593 if (IsNullOrUndef(Incoming)) 1594 HasNull = true; 1595 else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back()) 1596 .getNumSuccessors() != 1) { 1597 HasCriticalEdges = true; 1598 break; 1599 } 1600 } 1601 // If we have null operands and no critical edges, optimize. 1602 if (!HasCriticalEdges && HasNull) { 1603 SmallPtrSet<Instruction *, 4> DependingInstructions; 1604 SmallPtrSet<const BasicBlock *, 4> Visited; 1605 1606 // Check that there is nothing that cares about the reference 1607 // count between the call and the phi. 1608 switch (Class) { 1609 case IC_Retain: 1610 case IC_RetainBlock: 1611 // These can always be moved up. 1612 break; 1613 case IC_Release: 1614 // These can't be moved across things that care about the retain 1615 // count. 1616 FindDependencies(NeedsPositiveRetainCount, Arg, 1617 Inst->getParent(), Inst, 1618 DependingInstructions, Visited, PA); 1619 break; 1620 case IC_Autorelease: 1621 // These can't be moved across autorelease pool scope boundaries. 1622 FindDependencies(AutoreleasePoolBoundary, Arg, 1623 Inst->getParent(), Inst, 1624 DependingInstructions, Visited, PA); 1625 break; 1626 case IC_RetainRV: 1627 case IC_AutoreleaseRV: 1628 // Don't move these; the RV optimization depends on the autoreleaseRV 1629 // being tail called, and the retainRV being immediately after a call 1630 // (which might still happen if we get lucky with codegen layout, but 1631 // it's not worth taking the chance). 1632 continue; 1633 default: 1634 llvm_unreachable("Invalid dependence flavor"); 1635 } 1636 1637 if (DependingInstructions.size() == 1 && 1638 *DependingInstructions.begin() == PN) { 1639 Changed = true; 1640 ++NumPartialNoops; 1641 // Clone the call into each predecessor that has a non-null value. 1642 CallInst *CInst = cast<CallInst>(Inst); 1643 Type *ParamTy = CInst->getArgOperand(0)->getType(); 1644 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1645 Value *Incoming = 1646 StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); 1647 if (!IsNullOrUndef(Incoming)) { 1648 CallInst *Clone = cast<CallInst>(CInst->clone()); 1649 Value *Op = PN->getIncomingValue(i); 1650 Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); 1651 if (Op->getType() != ParamTy) 1652 Op = new BitCastInst(Op, ParamTy, "", InsertPos); 1653 Clone->setArgOperand(0, Op); 1654 Clone->insertBefore(InsertPos); 1655 1656 DEBUG(dbgs() << "Cloning " 1657 << *CInst << "\n" 1658 "And inserting clone at " << *InsertPos << "\n"); 1659 Worklist.push_back(std::make_pair(Clone, Incoming)); 1660 } 1661 } 1662 // Erase the original call. 1663 DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); 1664 EraseInstruction(CInst); 1665 continue; 1666 } 1667 } 1668 } while (!Worklist.empty()); 1669 } 1670 } 1671 1672 /// If we have a top down pointer in the S_Use state, make sure that there are 1673 /// no CFG hazards by checking the states of various bottom up pointers. 1674 static void CheckForUseCFGHazard(const Sequence SuccSSeq, 1675 const bool SuccSRRIKnownSafe, 1676 PtrState &S, 1677 bool &SomeSuccHasSame, 1678 bool &AllSuccsHaveSame, 1679 bool &NotAllSeqEqualButKnownSafe, 1680 bool &ShouldContinue) { 1681 switch (SuccSSeq) { 1682 case S_CanRelease: { 1683 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) { 1684 S.ClearSequenceProgress(); 1685 break; 1686 } 1687 S.SetCFGHazardAfflicted(true); 1688 ShouldContinue = true; 1689 break; 1690 } 1691 case S_Use: 1692 SomeSuccHasSame = true; 1693 break; 1694 case S_Stop: 1695 case S_Release: 1696 case S_MovableRelease: 1697 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) 1698 AllSuccsHaveSame = false; 1699 else 1700 NotAllSeqEqualButKnownSafe = true; 1701 break; 1702 case S_Retain: 1703 llvm_unreachable("bottom-up pointer in retain state!"); 1704 case S_None: 1705 llvm_unreachable("This should have been handled earlier."); 1706 } 1707 } 1708 1709 /// If we have a Top Down pointer in the S_CanRelease state, make sure that 1710 /// there are no CFG hazards by checking the states of various bottom up 1711 /// pointers. 1712 static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq, 1713 const bool SuccSRRIKnownSafe, 1714 PtrState &S, 1715 bool &SomeSuccHasSame, 1716 bool &AllSuccsHaveSame, 1717 bool &NotAllSeqEqualButKnownSafe) { 1718 switch (SuccSSeq) { 1719 case S_CanRelease: 1720 SomeSuccHasSame = true; 1721 break; 1722 case S_Stop: 1723 case S_Release: 1724 case S_MovableRelease: 1725 case S_Use: 1726 if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) 1727 AllSuccsHaveSame = false; 1728 else 1729 NotAllSeqEqualButKnownSafe = true; 1730 break; 1731 case S_Retain: 1732 llvm_unreachable("bottom-up pointer in retain state!"); 1733 case S_None: 1734 llvm_unreachable("This should have been handled earlier."); 1735 } 1736 } 1737 1738 /// Check for critical edges, loop boundaries, irreducible control flow, or 1739 /// other CFG structures where moving code across the edge would result in it 1740 /// being executed more. 1741 void 1742 ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, 1743 DenseMap<const BasicBlock *, BBState> &BBStates, 1744 BBState &MyStates) const { 1745 // If any top-down local-use or possible-dec has a succ which is earlier in 1746 // the sequence, forget it. 1747 for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(), 1748 E = MyStates.top_down_ptr_end(); I != E; ++I) { 1749 PtrState &S = I->second; 1750 const Sequence Seq = I->second.GetSeq(); 1751 1752 // We only care about S_Retain, S_CanRelease, and S_Use. 1753 if (Seq == S_None) 1754 continue; 1755 1756 // Make sure that if extra top down states are added in the future that this 1757 // code is updated to handle it. 1758 assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) && 1759 "Unknown top down sequence state."); 1760 1761 const Value *Arg = I->first; 1762 const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); 1763 bool SomeSuccHasSame = false; 1764 bool AllSuccsHaveSame = true; 1765 bool NotAllSeqEqualButKnownSafe = false; 1766 1767 succ_const_iterator SI(TI), SE(TI, false); 1768 1769 for (; SI != SE; ++SI) { 1770 // If VisitBottomUp has pointer information for this successor, take 1771 // what we know about it. 1772 const DenseMap<const BasicBlock *, BBState>::iterator BBI = 1773 BBStates.find(*SI); 1774 assert(BBI != BBStates.end()); 1775 const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); 1776 const Sequence SuccSSeq = SuccS.GetSeq(); 1777 1778 // If bottom up, the pointer is in an S_None state, clear the sequence 1779 // progress since the sequence in the bottom up state finished 1780 // suggesting a mismatch in between retains/releases. This is true for 1781 // all three cases that we are handling here: S_Retain, S_Use, and 1782 // S_CanRelease. 1783 if (SuccSSeq == S_None) { 1784 S.ClearSequenceProgress(); 1785 continue; 1786 } 1787 1788 // If we have S_Use or S_CanRelease, perform our check for cfg hazard 1789 // checks. 1790 const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe(); 1791 1792 // *NOTE* We do not use Seq from above here since we are allowing for 1793 // S.GetSeq() to change while we are visiting basic blocks. 1794 switch(S.GetSeq()) { 1795 case S_Use: { 1796 bool ShouldContinue = false; 1797 CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame, 1798 AllSuccsHaveSame, NotAllSeqEqualButKnownSafe, 1799 ShouldContinue); 1800 if (ShouldContinue) 1801 continue; 1802 break; 1803 } 1804 case S_CanRelease: { 1805 CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, 1806 SomeSuccHasSame, AllSuccsHaveSame, 1807 NotAllSeqEqualButKnownSafe); 1808 break; 1809 } 1810 case S_Retain: 1811 case S_None: 1812 case S_Stop: 1813 case S_Release: 1814 case S_MovableRelease: 1815 break; 1816 } 1817 } 1818 1819 // If the state at the other end of any of the successor edges 1820 // matches the current state, require all edges to match. This 1821 // guards against loops in the middle of a sequence. 1822 if (SomeSuccHasSame && !AllSuccsHaveSame) { 1823 S.ClearSequenceProgress(); 1824 } else if (NotAllSeqEqualButKnownSafe) { 1825 // If we would have cleared the state foregoing the fact that we are known 1826 // safe, stop code motion. This is because whether or not it is safe to 1827 // remove RR pairs via KnownSafe is an orthogonal concept to whether we 1828 // are allowed to perform code motion. 1829 S.SetCFGHazardAfflicted(true); 1830 } 1831 } 1832 } 1833 1834 bool 1835 ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst, 1836 BasicBlock *BB, 1837 MapVector<Value *, RRInfo> &Retains, 1838 BBState &MyStates) { 1839 bool NestingDetected = false; 1840 InstructionClass Class = GetInstructionClass(Inst); 1841 const Value *Arg = 0; 1842 1843 DEBUG(dbgs() << "Class: " << Class << "\n"); 1844 1845 switch (Class) { 1846 case IC_Release: { 1847 Arg = GetObjCArg(Inst); 1848 1849 PtrState &S = MyStates.getPtrBottomUpState(Arg); 1850 1851 // If we see two releases in a row on the same pointer. If so, make 1852 // a note, and we'll cicle back to revisit it after we've 1853 // hopefully eliminated the second release, which may allow us to 1854 // eliminate the first release too. 1855 // Theoretically we could implement removal of nested retain+release 1856 // pairs by making PtrState hold a stack of states, but this is 1857 // simple and avoids adding overhead for the non-nested case. 1858 if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) { 1859 DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n"); 1860 NestingDetected = true; 1861 } 1862 1863 MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); 1864 Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release; 1865 ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq); 1866 S.ResetSequenceProgress(NewSeq); 1867 S.SetReleaseMetadata(ReleaseMetadata); 1868 S.SetKnownSafe(S.HasKnownPositiveRefCount()); 1869 S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall()); 1870 S.InsertCall(Inst); 1871 S.SetKnownPositiveRefCount(); 1872 break; 1873 } 1874 case IC_RetainBlock: 1875 // In OptimizeIndividualCalls, we have strength reduced all optimizable 1876 // objc_retainBlocks to objc_retains. Thus at this point any 1877 // objc_retainBlocks that we see are not optimizable. 1878 break; 1879 case IC_Retain: 1880 case IC_RetainRV: { 1881 Arg = GetObjCArg(Inst); 1882 1883 PtrState &S = MyStates.getPtrBottomUpState(Arg); 1884 S.SetKnownPositiveRefCount(); 1885 1886 Sequence OldSeq = S.GetSeq(); 1887 switch (OldSeq) { 1888 case S_Stop: 1889 case S_Release: 1890 case S_MovableRelease: 1891 case S_Use: 1892 // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an 1893 // imprecise release, clear our reverse insertion points. 1894 if (OldSeq != S_Use || S.IsTrackingImpreciseReleases()) 1895 S.ClearReverseInsertPts(); 1896 // FALL THROUGH 1897 case S_CanRelease: 1898 // Don't do retain+release tracking for IC_RetainRV, because it's 1899 // better to let it remain as the first instruction after a call. 1900 if (Class != IC_RetainRV) 1901 Retains[Inst] = S.GetRRInfo(); 1902 S.ClearSequenceProgress(); 1903 break; 1904 case S_None: 1905 break; 1906 case S_Retain: 1907 llvm_unreachable("bottom-up pointer in retain state!"); 1908 } 1909 ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq()); 1910 // A retain moving bottom up can be a use. 1911 break; 1912 } 1913 case IC_AutoreleasepoolPop: 1914 // Conservatively, clear MyStates for all known pointers. 1915 MyStates.clearBottomUpPointers(); 1916 return NestingDetected; 1917 case IC_AutoreleasepoolPush: 1918 case IC_None: 1919 // These are irrelevant. 1920 return NestingDetected; 1921 case IC_User: 1922 // If we have a store into an alloca of a pointer we are tracking, the 1923 // pointer has multiple owners implying that we must be more conservative. 1924 // 1925 // This comes up in the context of a pointer being ``KnownSafe''. In the 1926 // presense of a block being initialized, the frontend will emit the 1927 // objc_retain on the original pointer and the release on the pointer loaded 1928 // from the alloca. The optimizer will through the provenance analysis 1929 // realize that the two are related, but since we only require KnownSafe in 1930 // one direction, will match the inner retain on the original pointer with 1931 // the guard release on the original pointer. This is fixed by ensuring that 1932 // in the presense of allocas we only unconditionally remove pointers if 1933 // both our retain and our release are KnownSafe. 1934 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1935 if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) { 1936 BBState::ptr_iterator I = MyStates.findPtrBottomUpState( 1937 StripPointerCastsAndObjCCalls(SI->getValueOperand())); 1938 if (I != MyStates.bottom_up_ptr_end()) 1939 MultiOwnersSet.insert(I->first); 1940 } 1941 } 1942 break; 1943 default: 1944 break; 1945 } 1946 1947 // Consider any other possible effects of this instruction on each 1948 // pointer being tracked. 1949 for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), 1950 ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { 1951 const Value *Ptr = MI->first; 1952 if (Ptr == Arg) 1953 continue; // Handled above. 1954 PtrState &S = MI->second; 1955 Sequence Seq = S.GetSeq(); 1956 1957 // Check for possible releases. 1958 if (CanAlterRefCount(Inst, Ptr, PA, Class)) { 1959 DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr 1960 << "\n"); 1961 S.ClearKnownPositiveRefCount(); 1962 switch (Seq) { 1963 case S_Use: 1964 S.SetSeq(S_CanRelease); 1965 ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq()); 1966 continue; 1967 case S_CanRelease: 1968 case S_Release: 1969 case S_MovableRelease: 1970 case S_Stop: 1971 case S_None: 1972 break; 1973 case S_Retain: 1974 llvm_unreachable("bottom-up pointer in retain state!"); 1975 } 1976 } 1977 1978 // Check for possible direct uses. 1979 switch (Seq) { 1980 case S_Release: 1981 case S_MovableRelease: 1982 if (CanUse(Inst, Ptr, PA, Class)) { 1983 DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr 1984 << "\n"); 1985 assert(!S.HasReverseInsertPts()); 1986 // If this is an invoke instruction, we're scanning it as part of 1987 // one of its successor blocks, since we can't insert code after it 1988 // in its own block, and we don't want to split critical edges. 1989 if (isa<InvokeInst>(Inst)) 1990 S.InsertReverseInsertPt(BB->getFirstInsertionPt()); 1991 else 1992 S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst))); 1993 S.SetSeq(S_Use); 1994 ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use); 1995 } else if (Seq == S_Release && IsUser(Class)) { 1996 DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr 1997 << "\n"); 1998 // Non-movable releases depend on any possible objc pointer use. 1999 S.SetSeq(S_Stop); 2000 ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop); 2001 assert(!S.HasReverseInsertPts()); 2002 // As above; handle invoke specially. 2003 if (isa<InvokeInst>(Inst)) 2004 S.InsertReverseInsertPt(BB->getFirstInsertionPt()); 2005 else 2006 S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst))); 2007 } 2008 break; 2009 case S_Stop: 2010 if (CanUse(Inst, Ptr, PA, Class)) { 2011 DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr 2012 << "\n"); 2013 S.SetSeq(S_Use); 2014 ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use); 2015 } 2016 break; 2017 case S_CanRelease: 2018 case S_Use: 2019 case S_None: 2020 break; 2021 case S_Retain: 2022 llvm_unreachable("bottom-up pointer in retain state!"); 2023 } 2024 } 2025 2026 return NestingDetected; 2027 } 2028 2029 bool 2030 ObjCARCOpt::VisitBottomUp(BasicBlock *BB, 2031 DenseMap<const BasicBlock *, BBState> &BBStates, 2032 MapVector<Value *, RRInfo> &Retains) { 2033 2034 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n"); 2035 2036 bool NestingDetected = false; 2037 BBState &MyStates = BBStates[BB]; 2038 2039 // Merge the states from each successor to compute the initial state 2040 // for the current block. 2041 BBState::edge_iterator SI(MyStates.succ_begin()), 2042 SE(MyStates.succ_end()); 2043 if (SI != SE) { 2044 const BasicBlock *Succ = *SI; 2045 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); 2046 assert(I != BBStates.end()); 2047 MyStates.InitFromSucc(I->second); 2048 ++SI; 2049 for (; SI != SE; ++SI) { 2050 Succ = *SI; 2051 I = BBStates.find(Succ); 2052 assert(I != BBStates.end()); 2053 MyStates.MergeSucc(I->second); 2054 } 2055 } 2056 2057 // If ARC Annotations are enabled, output the current state of pointers at the 2058 // bottom of the basic block. 2059 ANNOTATE_BOTTOMUP_BBEND(MyStates, BB); 2060 2061 // Visit all the instructions, bottom-up. 2062 for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { 2063 Instruction *Inst = llvm::prior(I); 2064 2065 // Invoke instructions are visited as part of their successors (below). 2066 if (isa<InvokeInst>(Inst)) 2067 continue; 2068 2069 DEBUG(dbgs() << "Visiting " << *Inst << "\n"); 2070 2071 NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); 2072 } 2073 2074 // If there's a predecessor with an invoke, visit the invoke as if it were 2075 // part of this block, since we can't insert code after an invoke in its own 2076 // block, and we don't want to split critical edges. 2077 for (BBState::edge_iterator PI(MyStates.pred_begin()), 2078 PE(MyStates.pred_end()); PI != PE; ++PI) { 2079 BasicBlock *Pred = *PI; 2080 if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) 2081 NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); 2082 } 2083 2084 // If ARC Annotations are enabled, output the current state of pointers at the 2085 // top of the basic block. 2086 ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB); 2087 2088 return NestingDetected; 2089 } 2090 2091 bool 2092 ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, 2093 DenseMap<Value *, RRInfo> &Releases, 2094 BBState &MyStates) { 2095 bool NestingDetected = false; 2096 InstructionClass Class = GetInstructionClass(Inst); 2097 const Value *Arg = 0; 2098 2099 switch (Class) { 2100 case IC_RetainBlock: 2101 // In OptimizeIndividualCalls, we have strength reduced all optimizable 2102 // objc_retainBlocks to objc_retains. Thus at this point any 2103 // objc_retainBlocks that we see are not optimizable. 2104 break; 2105 case IC_Retain: 2106 case IC_RetainRV: { 2107 Arg = GetObjCArg(Inst); 2108 2109 PtrState &S = MyStates.getPtrTopDownState(Arg); 2110 2111 // Don't do retain+release tracking for IC_RetainRV, because it's 2112 // better to let it remain as the first instruction after a call. 2113 if (Class != IC_RetainRV) { 2114 // If we see two retains in a row on the same pointer. If so, make 2115 // a note, and we'll cicle back to revisit it after we've 2116 // hopefully eliminated the second retain, which may allow us to 2117 // eliminate the first retain too. 2118 // Theoretically we could implement removal of nested retain+release 2119 // pairs by making PtrState hold a stack of states, but this is 2120 // simple and avoids adding overhead for the non-nested case. 2121 if (S.GetSeq() == S_Retain) 2122 NestingDetected = true; 2123 2124 ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain); 2125 S.ResetSequenceProgress(S_Retain); 2126 S.SetKnownSafe(S.HasKnownPositiveRefCount()); 2127 S.InsertCall(Inst); 2128 } 2129 2130 S.SetKnownPositiveRefCount(); 2131 2132 // A retain can be a potential use; procede to the generic checking 2133 // code below. 2134 break; 2135 } 2136 case IC_Release: { 2137 Arg = GetObjCArg(Inst); 2138 2139 PtrState &S = MyStates.getPtrTopDownState(Arg); 2140 S.ClearKnownPositiveRefCount(); 2141 2142 Sequence OldSeq = S.GetSeq(); 2143 2144 MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); 2145 2146 switch (OldSeq) { 2147 case S_Retain: 2148 case S_CanRelease: 2149 if (OldSeq == S_Retain || ReleaseMetadata != 0) 2150 S.ClearReverseInsertPts(); 2151 // FALL THROUGH 2152 case S_Use: 2153 S.SetReleaseMetadata(ReleaseMetadata); 2154 S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall()); 2155 Releases[Inst] = S.GetRRInfo(); 2156 ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None); 2157 S.ClearSequenceProgress(); 2158 break; 2159 case S_None: 2160 break; 2161 case S_Stop: 2162 case S_Release: 2163 case S_MovableRelease: 2164 llvm_unreachable("top-down pointer in release state!"); 2165 } 2166 break; 2167 } 2168 case IC_AutoreleasepoolPop: 2169 // Conservatively, clear MyStates for all known pointers. 2170 MyStates.clearTopDownPointers(); 2171 return NestingDetected; 2172 case IC_AutoreleasepoolPush: 2173 case IC_None: 2174 // These are irrelevant. 2175 return NestingDetected; 2176 default: 2177 break; 2178 } 2179 2180 // Consider any other possible effects of this instruction on each 2181 // pointer being tracked. 2182 for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), 2183 ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { 2184 const Value *Ptr = MI->first; 2185 if (Ptr == Arg) 2186 continue; // Handled above. 2187 PtrState &S = MI->second; 2188 Sequence Seq = S.GetSeq(); 2189 2190 // Check for possible releases. 2191 if (CanAlterRefCount(Inst, Ptr, PA, Class)) { 2192 DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr 2193 << "\n"); 2194 S.ClearKnownPositiveRefCount(); 2195 switch (Seq) { 2196 case S_Retain: 2197 S.SetSeq(S_CanRelease); 2198 ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease); 2199 assert(!S.HasReverseInsertPts()); 2200 S.InsertReverseInsertPt(Inst); 2201 2202 // One call can't cause a transition from S_Retain to S_CanRelease 2203 // and S_CanRelease to S_Use. If we've made the first transition, 2204 // we're done. 2205 continue; 2206 case S_Use: 2207 case S_CanRelease: 2208 case S_None: 2209 break; 2210 case S_Stop: 2211 case S_Release: 2212 case S_MovableRelease: 2213 llvm_unreachable("top-down pointer in release state!"); 2214 } 2215 } 2216 2217 // Check for possible direct uses. 2218 switch (Seq) { 2219 case S_CanRelease: 2220 if (CanUse(Inst, Ptr, PA, Class)) { 2221 DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr 2222 << "\n"); 2223 S.SetSeq(S_Use); 2224 ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use); 2225 } 2226 break; 2227 case S_Retain: 2228 case S_Use: 2229 case S_None: 2230 break; 2231 case S_Stop: 2232 case S_Release: 2233 case S_MovableRelease: 2234 llvm_unreachable("top-down pointer in release state!"); 2235 } 2236 } 2237 2238 return NestingDetected; 2239 } 2240 2241 bool 2242 ObjCARCOpt::VisitTopDown(BasicBlock *BB, 2243 DenseMap<const BasicBlock *, BBState> &BBStates, 2244 DenseMap<Value *, RRInfo> &Releases) { 2245 DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n"); 2246 bool NestingDetected = false; 2247 BBState &MyStates = BBStates[BB]; 2248 2249 // Merge the states from each predecessor to compute the initial state 2250 // for the current block. 2251 BBState::edge_iterator PI(MyStates.pred_begin()), 2252 PE(MyStates.pred_end()); 2253 if (PI != PE) { 2254 const BasicBlock *Pred = *PI; 2255 DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); 2256 assert(I != BBStates.end()); 2257 MyStates.InitFromPred(I->second); 2258 ++PI; 2259 for (; PI != PE; ++PI) { 2260 Pred = *PI; 2261 I = BBStates.find(Pred); 2262 assert(I != BBStates.end()); 2263 MyStates.MergePred(I->second); 2264 } 2265 } 2266 2267 // If ARC Annotations are enabled, output the current state of pointers at the 2268 // top of the basic block. 2269 ANNOTATE_TOPDOWN_BBSTART(MyStates, BB); 2270 2271 // Visit all the instructions, top-down. 2272 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 2273 Instruction *Inst = I; 2274 2275 DEBUG(dbgs() << "Visiting " << *Inst << "\n"); 2276 2277 NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates); 2278 } 2279 2280 // If ARC Annotations are enabled, output the current state of pointers at the 2281 // bottom of the basic block. 2282 ANNOTATE_TOPDOWN_BBEND(MyStates, BB); 2283 2284 #ifdef ARC_ANNOTATIONS 2285 if (!(EnableARCAnnotations && DisableCheckForCFGHazards)) 2286 #endif 2287 CheckForCFGHazards(BB, BBStates, MyStates); 2288 return NestingDetected; 2289 } 2290 2291 static void 2292 ComputePostOrders(Function &F, 2293 SmallVectorImpl<BasicBlock *> &PostOrder, 2294 SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, 2295 unsigned NoObjCARCExceptionsMDKind, 2296 DenseMap<const BasicBlock *, BBState> &BBStates) { 2297 /// The visited set, for doing DFS walks. 2298 SmallPtrSet<BasicBlock *, 16> Visited; 2299 2300 // Do DFS, computing the PostOrder. 2301 SmallPtrSet<BasicBlock *, 16> OnStack; 2302 SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; 2303 2304 // Functions always have exactly one entry block, and we don't have 2305 // any other block that we treat like an entry block. 2306 BasicBlock *EntryBB = &F.getEntryBlock(); 2307 BBState &MyStates = BBStates[EntryBB]; 2308 MyStates.SetAsEntry(); 2309 TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back()); 2310 SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); 2311 Visited.insert(EntryBB); 2312 OnStack.insert(EntryBB); 2313 do { 2314 dfs_next_succ: 2315 BasicBlock *CurrBB = SuccStack.back().first; 2316 TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back()); 2317 succ_iterator SE(TI, false); 2318 2319 while (SuccStack.back().second != SE) { 2320 BasicBlock *SuccBB = *SuccStack.back().second++; 2321 if (Visited.insert(SuccBB)) { 2322 TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back()); 2323 SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); 2324 BBStates[CurrBB].addSucc(SuccBB); 2325 BBState &SuccStates = BBStates[SuccBB]; 2326 SuccStates.addPred(CurrBB); 2327 OnStack.insert(SuccBB); 2328 goto dfs_next_succ; 2329 } 2330 2331 if (!OnStack.count(SuccBB)) { 2332 BBStates[CurrBB].addSucc(SuccBB); 2333 BBStates[SuccBB].addPred(CurrBB); 2334 } 2335 } 2336 OnStack.erase(CurrBB); 2337 PostOrder.push_back(CurrBB); 2338 SuccStack.pop_back(); 2339 } while (!SuccStack.empty()); 2340 2341 Visited.clear(); 2342 2343 // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. 2344 // Functions may have many exits, and there also blocks which we treat 2345 // as exits due to ignored edges. 2346 SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; 2347 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 2348 BasicBlock *ExitBB = I; 2349 BBState &MyStates = BBStates[ExitBB]; 2350 if (!MyStates.isExit()) 2351 continue; 2352 2353 MyStates.SetAsExit(); 2354 2355 PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin())); 2356 Visited.insert(ExitBB); 2357 while (!PredStack.empty()) { 2358 reverse_dfs_next_succ: 2359 BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); 2360 while (PredStack.back().second != PE) { 2361 BasicBlock *BB = *PredStack.back().second++; 2362 if (Visited.insert(BB)) { 2363 PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); 2364 goto reverse_dfs_next_succ; 2365 } 2366 } 2367 ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); 2368 } 2369 } 2370 } 2371 2372 // Visit the function both top-down and bottom-up. 2373 bool 2374 ObjCARCOpt::Visit(Function &F, 2375 DenseMap<const BasicBlock *, BBState> &BBStates, 2376 MapVector<Value *, RRInfo> &Retains, 2377 DenseMap<Value *, RRInfo> &Releases) { 2378 2379 // Use reverse-postorder traversals, because we magically know that loops 2380 // will be well behaved, i.e. they won't repeatedly call retain on a single 2381 // pointer without doing a release. We can't use the ReversePostOrderTraversal 2382 // class here because we want the reverse-CFG postorder to consider each 2383 // function exit point, and we want to ignore selected cycle edges. 2384 SmallVector<BasicBlock *, 16> PostOrder; 2385 SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; 2386 ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, 2387 NoObjCARCExceptionsMDKind, 2388 BBStates); 2389 2390 // Use reverse-postorder on the reverse CFG for bottom-up. 2391 bool BottomUpNestingDetected = false; 2392 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = 2393 ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend(); 2394 I != E; ++I) 2395 BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains); 2396 2397 // Use reverse-postorder for top-down. 2398 bool TopDownNestingDetected = false; 2399 for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = 2400 PostOrder.rbegin(), E = PostOrder.rend(); 2401 I != E; ++I) 2402 TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases); 2403 2404 return TopDownNestingDetected && BottomUpNestingDetected; 2405 } 2406 2407 /// Move the calls in RetainsToMove and ReleasesToMove. 2408 void ObjCARCOpt::MoveCalls(Value *Arg, 2409 RRInfo &RetainsToMove, 2410 RRInfo &ReleasesToMove, 2411 MapVector<Value *, RRInfo> &Retains, 2412 DenseMap<Value *, RRInfo> &Releases, 2413 SmallVectorImpl<Instruction *> &DeadInsts, 2414 Module *M) { 2415 Type *ArgTy = Arg->getType(); 2416 Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); 2417 2418 DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n"); 2419 2420 // Insert the new retain and release calls. 2421 for (SmallPtrSet<Instruction *, 2>::const_iterator 2422 PI = ReleasesToMove.ReverseInsertPts.begin(), 2423 PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) { 2424 Instruction *InsertPt = *PI; 2425 Value *MyArg = ArgTy == ParamTy ? Arg : 2426 new BitCastInst(Arg, ParamTy, "", InsertPt); 2427 Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); 2428 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); 2429 Call->setDoesNotThrow(); 2430 Call->setTailCall(); 2431 2432 DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n" 2433 "At insertion point: " << *InsertPt << "\n"); 2434 } 2435 for (SmallPtrSet<Instruction *, 2>::const_iterator 2436 PI = RetainsToMove.ReverseInsertPts.begin(), 2437 PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) { 2438 Instruction *InsertPt = *PI; 2439 Value *MyArg = ArgTy == ParamTy ? Arg : 2440 new BitCastInst(Arg, ParamTy, "", InsertPt); 2441 Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release); 2442 CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt); 2443 // Attach a clang.imprecise_release metadata tag, if appropriate. 2444 if (MDNode *M = ReleasesToMove.ReleaseMetadata) 2445 Call->setMetadata(ImpreciseReleaseMDKind, M); 2446 Call->setDoesNotThrow(); 2447 if (ReleasesToMove.IsTailCallRelease) 2448 Call->setTailCall(); 2449 2450 DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n" 2451 "At insertion point: " << *InsertPt << "\n"); 2452 } 2453 2454 // Delete the original retain and release calls. 2455 for (SmallPtrSet<Instruction *, 2>::const_iterator 2456 AI = RetainsToMove.Calls.begin(), 2457 AE = RetainsToMove.Calls.end(); AI != AE; ++AI) { 2458 Instruction *OrigRetain = *AI; 2459 Retains.blot(OrigRetain); 2460 DeadInsts.push_back(OrigRetain); 2461 DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n"); 2462 } 2463 for (SmallPtrSet<Instruction *, 2>::const_iterator 2464 AI = ReleasesToMove.Calls.begin(), 2465 AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) { 2466 Instruction *OrigRelease = *AI; 2467 Releases.erase(OrigRelease); 2468 DeadInsts.push_back(OrigRelease); 2469 DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n"); 2470 } 2471 2472 } 2473 2474 bool 2475 ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> 2476 &BBStates, 2477 MapVector<Value *, RRInfo> &Retains, 2478 DenseMap<Value *, RRInfo> &Releases, 2479 Module *M, 2480 SmallVectorImpl<Instruction *> &NewRetains, 2481 SmallVectorImpl<Instruction *> &NewReleases, 2482 SmallVectorImpl<Instruction *> &DeadInsts, 2483 RRInfo &RetainsToMove, 2484 RRInfo &ReleasesToMove, 2485 Value *Arg, 2486 bool KnownSafe, 2487 bool &AnyPairsCompletelyEliminated) { 2488 // If a pair happens in a region where it is known that the reference count 2489 // is already incremented, we can similarly ignore possible decrements unless 2490 // we are dealing with a retainable object with multiple provenance sources. 2491 bool KnownSafeTD = true, KnownSafeBU = true; 2492 bool MultipleOwners = false; 2493 bool CFGHazardAfflicted = false; 2494 2495 // Connect the dots between the top-down-collected RetainsToMove and 2496 // bottom-up-collected ReleasesToMove to form sets of related calls. 2497 // This is an iterative process so that we connect multiple releases 2498 // to multiple retains if needed. 2499 unsigned OldDelta = 0; 2500 unsigned NewDelta = 0; 2501 unsigned OldCount = 0; 2502 unsigned NewCount = 0; 2503 bool FirstRelease = true; 2504 for (;;) { 2505 for (SmallVectorImpl<Instruction *>::const_iterator 2506 NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) { 2507 Instruction *NewRetain = *NI; 2508 MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain); 2509 assert(It != Retains.end()); 2510 const RRInfo &NewRetainRRI = It->second; 2511 KnownSafeTD &= NewRetainRRI.KnownSafe; 2512 MultipleOwners = 2513 MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain)); 2514 for (SmallPtrSet<Instruction *, 2>::const_iterator 2515 LI = NewRetainRRI.Calls.begin(), 2516 LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) { 2517 Instruction *NewRetainRelease = *LI; 2518 DenseMap<Value *, RRInfo>::const_iterator Jt = 2519 Releases.find(NewRetainRelease); 2520 if (Jt == Releases.end()) 2521 return false; 2522 const RRInfo &NewRetainReleaseRRI = Jt->second; 2523 assert(NewRetainReleaseRRI.Calls.count(NewRetain)); 2524 if (ReleasesToMove.Calls.insert(NewRetainRelease)) { 2525 2526 // If we overflow when we compute the path count, don't remove/move 2527 // anything. 2528 const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()]; 2529 unsigned PathCount; 2530 if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) 2531 return false; 2532 OldDelta -= PathCount; 2533 2534 // Merge the ReleaseMetadata and IsTailCallRelease values. 2535 if (FirstRelease) { 2536 ReleasesToMove.ReleaseMetadata = 2537 NewRetainReleaseRRI.ReleaseMetadata; 2538 ReleasesToMove.IsTailCallRelease = 2539 NewRetainReleaseRRI.IsTailCallRelease; 2540 FirstRelease = false; 2541 } else { 2542 if (ReleasesToMove.ReleaseMetadata != 2543 NewRetainReleaseRRI.ReleaseMetadata) 2544 ReleasesToMove.ReleaseMetadata = 0; 2545 if (ReleasesToMove.IsTailCallRelease != 2546 NewRetainReleaseRRI.IsTailCallRelease) 2547 ReleasesToMove.IsTailCallRelease = false; 2548 } 2549 2550 // Collect the optimal insertion points. 2551 if (!KnownSafe) 2552 for (SmallPtrSet<Instruction *, 2>::const_iterator 2553 RI = NewRetainReleaseRRI.ReverseInsertPts.begin(), 2554 RE = NewRetainReleaseRRI.ReverseInsertPts.end(); 2555 RI != RE; ++RI) { 2556 Instruction *RIP = *RI; 2557 if (ReleasesToMove.ReverseInsertPts.insert(RIP)) { 2558 // If we overflow when we compute the path count, don't 2559 // remove/move anything. 2560 const BBState &RIPBBState = BBStates[RIP->getParent()]; 2561 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) 2562 return false; 2563 NewDelta -= PathCount; 2564 } 2565 } 2566 NewReleases.push_back(NewRetainRelease); 2567 } 2568 } 2569 } 2570 NewRetains.clear(); 2571 if (NewReleases.empty()) break; 2572 2573 // Back the other way. 2574 for (SmallVectorImpl<Instruction *>::const_iterator 2575 NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) { 2576 Instruction *NewRelease = *NI; 2577 DenseMap<Value *, RRInfo>::const_iterator It = 2578 Releases.find(NewRelease); 2579 assert(It != Releases.end()); 2580 const RRInfo &NewReleaseRRI = It->second; 2581 KnownSafeBU &= NewReleaseRRI.KnownSafe; 2582 CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted; 2583 for (SmallPtrSet<Instruction *, 2>::const_iterator 2584 LI = NewReleaseRRI.Calls.begin(), 2585 LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) { 2586 Instruction *NewReleaseRetain = *LI; 2587 MapVector<Value *, RRInfo>::const_iterator Jt = 2588 Retains.find(NewReleaseRetain); 2589 if (Jt == Retains.end()) 2590 return false; 2591 const RRInfo &NewReleaseRetainRRI = Jt->second; 2592 assert(NewReleaseRetainRRI.Calls.count(NewRelease)); 2593 if (RetainsToMove.Calls.insert(NewReleaseRetain)) { 2594 2595 // If we overflow when we compute the path count, don't remove/move 2596 // anything. 2597 const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()]; 2598 unsigned PathCount; 2599 if (NRRBBState.GetAllPathCountWithOverflow(PathCount)) 2600 return false; 2601 OldDelta += PathCount; 2602 OldCount += PathCount; 2603 2604 // Collect the optimal insertion points. 2605 if (!KnownSafe) 2606 for (SmallPtrSet<Instruction *, 2>::const_iterator 2607 RI = NewReleaseRetainRRI.ReverseInsertPts.begin(), 2608 RE = NewReleaseRetainRRI.ReverseInsertPts.end(); 2609 RI != RE; ++RI) { 2610 Instruction *RIP = *RI; 2611 if (RetainsToMove.ReverseInsertPts.insert(RIP)) { 2612 // If we overflow when we compute the path count, don't 2613 // remove/move anything. 2614 const BBState &RIPBBState = BBStates[RIP->getParent()]; 2615 if (RIPBBState.GetAllPathCountWithOverflow(PathCount)) 2616 return false; 2617 NewDelta += PathCount; 2618 NewCount += PathCount; 2619 } 2620 } 2621 NewRetains.push_back(NewReleaseRetain); 2622 } 2623 } 2624 } 2625 NewReleases.clear(); 2626 if (NewRetains.empty()) break; 2627 } 2628 2629 // If the pointer is known incremented in 1 direction and we do not have 2630 // MultipleOwners, we can safely remove the retain/releases. Otherwise we need 2631 // to be known safe in both directions. 2632 bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) || 2633 ((KnownSafeTD || KnownSafeBU) && !MultipleOwners); 2634 if (UnconditionallySafe) { 2635 RetainsToMove.ReverseInsertPts.clear(); 2636 ReleasesToMove.ReverseInsertPts.clear(); 2637 NewCount = 0; 2638 } else { 2639 // Determine whether the new insertion points we computed preserve the 2640 // balance of retain and release calls through the program. 2641 // TODO: If the fully aggressive solution isn't valid, try to find a 2642 // less aggressive solution which is. 2643 if (NewDelta != 0) 2644 return false; 2645 2646 // At this point, we are not going to remove any RR pairs, but we still are 2647 // able to move RR pairs. If one of our pointers is afflicted with 2648 // CFGHazards, we cannot perform such code motion so exit early. 2649 const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() || 2650 ReleasesToMove.ReverseInsertPts.size(); 2651 if (CFGHazardAfflicted && WillPerformCodeMotion) 2652 return false; 2653 } 2654 2655 // Determine whether the original call points are balanced in the retain and 2656 // release calls through the program. If not, conservatively don't touch 2657 // them. 2658 // TODO: It's theoretically possible to do code motion in this case, as 2659 // long as the existing imbalances are maintained. 2660 if (OldDelta != 0) 2661 return false; 2662 2663 #ifdef ARC_ANNOTATIONS 2664 // Do not move calls if ARC annotations are requested. 2665 if (EnableARCAnnotations) 2666 return false; 2667 #endif // ARC_ANNOTATIONS 2668 2669 Changed = true; 2670 assert(OldCount != 0 && "Unreachable code?"); 2671 NumRRs += OldCount - NewCount; 2672 // Set to true if we completely removed any RR pairs. 2673 AnyPairsCompletelyEliminated = NewCount == 0; 2674 2675 // We can move calls! 2676 return true; 2677 } 2678 2679 /// Identify pairings between the retains and releases, and delete and/or move 2680 /// them. 2681 bool 2682 ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState> 2683 &BBStates, 2684 MapVector<Value *, RRInfo> &Retains, 2685 DenseMap<Value *, RRInfo> &Releases, 2686 Module *M) { 2687 DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n"); 2688 2689 bool AnyPairsCompletelyEliminated = false; 2690 RRInfo RetainsToMove; 2691 RRInfo ReleasesToMove; 2692 SmallVector<Instruction *, 4> NewRetains; 2693 SmallVector<Instruction *, 4> NewReleases; 2694 SmallVector<Instruction *, 8> DeadInsts; 2695 2696 // Visit each retain. 2697 for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), 2698 E = Retains.end(); I != E; ++I) { 2699 Value *V = I->first; 2700 if (!V) continue; // blotted 2701 2702 Instruction *Retain = cast<Instruction>(V); 2703 2704 DEBUG(dbgs() << "Visiting: " << *Retain << "\n"); 2705 2706 Value *Arg = GetObjCArg(Retain); 2707 2708 // If the object being released is in static or stack storage, we know it's 2709 // not being managed by ObjC reference counting, so we can delete pairs 2710 // regardless of what possible decrements or uses lie between them. 2711 bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); 2712 2713 // A constant pointer can't be pointing to an object on the heap. It may 2714 // be reference-counted, but it won't be deleted. 2715 if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) 2716 if (const GlobalVariable *GV = 2717 dyn_cast<GlobalVariable>( 2718 StripPointerCastsAndObjCCalls(LI->getPointerOperand()))) 2719 if (GV->isConstant()) 2720 KnownSafe = true; 2721 2722 // Connect the dots between the top-down-collected RetainsToMove and 2723 // bottom-up-collected ReleasesToMove to form sets of related calls. 2724 NewRetains.push_back(Retain); 2725 bool PerformMoveCalls = 2726 ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains, 2727 NewReleases, DeadInsts, RetainsToMove, 2728 ReleasesToMove, Arg, KnownSafe, 2729 AnyPairsCompletelyEliminated); 2730 2731 if (PerformMoveCalls) { 2732 // Ok, everything checks out and we're all set. Let's move/delete some 2733 // code! 2734 MoveCalls(Arg, RetainsToMove, ReleasesToMove, 2735 Retains, Releases, DeadInsts, M); 2736 } 2737 2738 // Clean up state for next retain. 2739 NewReleases.clear(); 2740 NewRetains.clear(); 2741 RetainsToMove.clear(); 2742 ReleasesToMove.clear(); 2743 } 2744 2745 // Now that we're done moving everything, we can delete the newly dead 2746 // instructions, as we no longer need them as insert points. 2747 while (!DeadInsts.empty()) 2748 EraseInstruction(DeadInsts.pop_back_val()); 2749 2750 return AnyPairsCompletelyEliminated; 2751 } 2752 2753 /// Weak pointer optimizations. 2754 void ObjCARCOpt::OptimizeWeakCalls(Function &F) { 2755 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n"); 2756 2757 // First, do memdep-style RLE and S2L optimizations. We can't use memdep 2758 // itself because it uses AliasAnalysis and we need to do provenance 2759 // queries instead. 2760 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 2761 Instruction *Inst = &*I++; 2762 2763 DEBUG(dbgs() << "Visiting: " << *Inst << "\n"); 2764 2765 InstructionClass Class = GetBasicInstructionClass(Inst); 2766 if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained) 2767 continue; 2768 2769 // Delete objc_loadWeak calls with no users. 2770 if (Class == IC_LoadWeak && Inst->use_empty()) { 2771 Inst->eraseFromParent(); 2772 continue; 2773 } 2774 2775 // TODO: For now, just look for an earlier available version of this value 2776 // within the same block. Theoretically, we could do memdep-style non-local 2777 // analysis too, but that would want caching. A better approach would be to 2778 // use the technique that EarlyCSE uses. 2779 inst_iterator Current = llvm::prior(I); 2780 BasicBlock *CurrentBB = Current.getBasicBlockIterator(); 2781 for (BasicBlock::iterator B = CurrentBB->begin(), 2782 J = Current.getInstructionIterator(); 2783 J != B; --J) { 2784 Instruction *EarlierInst = &*llvm::prior(J); 2785 InstructionClass EarlierClass = GetInstructionClass(EarlierInst); 2786 switch (EarlierClass) { 2787 case IC_LoadWeak: 2788 case IC_LoadWeakRetained: { 2789 // If this is loading from the same pointer, replace this load's value 2790 // with that one. 2791 CallInst *Call = cast<CallInst>(Inst); 2792 CallInst *EarlierCall = cast<CallInst>(EarlierInst); 2793 Value *Arg = Call->getArgOperand(0); 2794 Value *EarlierArg = EarlierCall->getArgOperand(0); 2795 switch (PA.getAA()->alias(Arg, EarlierArg)) { 2796 case AliasAnalysis::MustAlias: 2797 Changed = true; 2798 // If the load has a builtin retain, insert a plain retain for it. 2799 if (Class == IC_LoadWeakRetained) { 2800 Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); 2801 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); 2802 CI->setTailCall(); 2803 } 2804 // Zap the fully redundant load. 2805 Call->replaceAllUsesWith(EarlierCall); 2806 Call->eraseFromParent(); 2807 goto clobbered; 2808 case AliasAnalysis::MayAlias: 2809 case AliasAnalysis::PartialAlias: 2810 goto clobbered; 2811 case AliasAnalysis::NoAlias: 2812 break; 2813 } 2814 break; 2815 } 2816 case IC_StoreWeak: 2817 case IC_InitWeak: { 2818 // If this is storing to the same pointer and has the same size etc. 2819 // replace this load's value with the stored value. 2820 CallInst *Call = cast<CallInst>(Inst); 2821 CallInst *EarlierCall = cast<CallInst>(EarlierInst); 2822 Value *Arg = Call->getArgOperand(0); 2823 Value *EarlierArg = EarlierCall->getArgOperand(0); 2824 switch (PA.getAA()->alias(Arg, EarlierArg)) { 2825 case AliasAnalysis::MustAlias: 2826 Changed = true; 2827 // If the load has a builtin retain, insert a plain retain for it. 2828 if (Class == IC_LoadWeakRetained) { 2829 Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain); 2830 CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call); 2831 CI->setTailCall(); 2832 } 2833 // Zap the fully redundant load. 2834 Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); 2835 Call->eraseFromParent(); 2836 goto clobbered; 2837 case AliasAnalysis::MayAlias: 2838 case AliasAnalysis::PartialAlias: 2839 goto clobbered; 2840 case AliasAnalysis::NoAlias: 2841 break; 2842 } 2843 break; 2844 } 2845 case IC_MoveWeak: 2846 case IC_CopyWeak: 2847 // TOOD: Grab the copied value. 2848 goto clobbered; 2849 case IC_AutoreleasepoolPush: 2850 case IC_None: 2851 case IC_IntrinsicUser: 2852 case IC_User: 2853 // Weak pointers are only modified through the weak entry points 2854 // (and arbitrary calls, which could call the weak entry points). 2855 break; 2856 default: 2857 // Anything else could modify the weak pointer. 2858 goto clobbered; 2859 } 2860 } 2861 clobbered:; 2862 } 2863 2864 // Then, for each destroyWeak with an alloca operand, check to see if 2865 // the alloca and all its users can be zapped. 2866 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 2867 Instruction *Inst = &*I++; 2868 InstructionClass Class = GetBasicInstructionClass(Inst); 2869 if (Class != IC_DestroyWeak) 2870 continue; 2871 2872 CallInst *Call = cast<CallInst>(Inst); 2873 Value *Arg = Call->getArgOperand(0); 2874 if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { 2875 for (Value::use_iterator UI = Alloca->use_begin(), 2876 UE = Alloca->use_end(); UI != UE; ++UI) { 2877 const Instruction *UserInst = cast<Instruction>(*UI); 2878 switch (GetBasicInstructionClass(UserInst)) { 2879 case IC_InitWeak: 2880 case IC_StoreWeak: 2881 case IC_DestroyWeak: 2882 continue; 2883 default: 2884 goto done; 2885 } 2886 } 2887 Changed = true; 2888 for (Value::use_iterator UI = Alloca->use_begin(), 2889 UE = Alloca->use_end(); UI != UE; ) { 2890 CallInst *UserInst = cast<CallInst>(*UI++); 2891 switch (GetBasicInstructionClass(UserInst)) { 2892 case IC_InitWeak: 2893 case IC_StoreWeak: 2894 // These functions return their second argument. 2895 UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); 2896 break; 2897 case IC_DestroyWeak: 2898 // No return value. 2899 break; 2900 default: 2901 llvm_unreachable("alloca really is used!"); 2902 } 2903 UserInst->eraseFromParent(); 2904 } 2905 Alloca->eraseFromParent(); 2906 done:; 2907 } 2908 } 2909 } 2910 2911 /// Identify program paths which execute sequences of retains and releases which 2912 /// can be eliminated. 2913 bool ObjCARCOpt::OptimizeSequences(Function &F) { 2914 // Releases, Retains - These are used to store the results of the main flow 2915 // analysis. These use Value* as the key instead of Instruction* so that the 2916 // map stays valid when we get around to rewriting code and calls get 2917 // replaced by arguments. 2918 DenseMap<Value *, RRInfo> Releases; 2919 MapVector<Value *, RRInfo> Retains; 2920 2921 // This is used during the traversal of the function to track the 2922 // states for each identified object at each block. 2923 DenseMap<const BasicBlock *, BBState> BBStates; 2924 2925 // Analyze the CFG of the function, and all instructions. 2926 bool NestingDetected = Visit(F, BBStates, Retains, Releases); 2927 2928 // Transform. 2929 bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains, 2930 Releases, 2931 F.getParent()); 2932 2933 // Cleanup. 2934 MultiOwnersSet.clear(); 2935 2936 return AnyPairsCompletelyEliminated && NestingDetected; 2937 } 2938 2939 /// Check if there is a dependent call earlier that does not have anything in 2940 /// between the Retain and the call that can affect the reference count of their 2941 /// shared pointer argument. Note that Retain need not be in BB. 2942 static bool 2943 HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain, 2944 SmallPtrSet<Instruction *, 4> &DepInsts, 2945 SmallPtrSet<const BasicBlock *, 4> &Visited, 2946 ProvenanceAnalysis &PA) { 2947 FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, 2948 DepInsts, Visited, PA); 2949 if (DepInsts.size() != 1) 2950 return false; 2951 2952 CallInst *Call = 2953 dyn_cast_or_null<CallInst>(*DepInsts.begin()); 2954 2955 // Check that the pointer is the return value of the call. 2956 if (!Call || Arg != Call) 2957 return false; 2958 2959 // Check that the call is a regular call. 2960 InstructionClass Class = GetBasicInstructionClass(Call); 2961 if (Class != IC_CallOrUser && Class != IC_Call) 2962 return false; 2963 2964 return true; 2965 } 2966 2967 /// Find a dependent retain that precedes the given autorelease for which there 2968 /// is nothing in between the two instructions that can affect the ref count of 2969 /// Arg. 2970 static CallInst * 2971 FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB, 2972 Instruction *Autorelease, 2973 SmallPtrSet<Instruction *, 4> &DepInsts, 2974 SmallPtrSet<const BasicBlock *, 4> &Visited, 2975 ProvenanceAnalysis &PA) { 2976 FindDependencies(CanChangeRetainCount, Arg, 2977 BB, Autorelease, DepInsts, Visited, PA); 2978 if (DepInsts.size() != 1) 2979 return 0; 2980 2981 CallInst *Retain = 2982 dyn_cast_or_null<CallInst>(*DepInsts.begin()); 2983 2984 // Check that we found a retain with the same argument. 2985 if (!Retain || 2986 !IsRetain(GetBasicInstructionClass(Retain)) || 2987 GetObjCArg(Retain) != Arg) { 2988 return 0; 2989 } 2990 2991 return Retain; 2992 } 2993 2994 /// Look for an ``autorelease'' instruction dependent on Arg such that there are 2995 /// no instructions dependent on Arg that need a positive ref count in between 2996 /// the autorelease and the ret. 2997 static CallInst * 2998 FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB, 2999 ReturnInst *Ret, 3000 SmallPtrSet<Instruction *, 4> &DepInsts, 3001 SmallPtrSet<const BasicBlock *, 4> &V, 3002 ProvenanceAnalysis &PA) { 3003 FindDependencies(NeedsPositiveRetainCount, Arg, 3004 BB, Ret, DepInsts, V, PA); 3005 if (DepInsts.size() != 1) 3006 return 0; 3007 3008 CallInst *Autorelease = 3009 dyn_cast_or_null<CallInst>(*DepInsts.begin()); 3010 if (!Autorelease) 3011 return 0; 3012 InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease); 3013 if (!IsAutorelease(AutoreleaseClass)) 3014 return 0; 3015 if (GetObjCArg(Autorelease) != Arg) 3016 return 0; 3017 3018 return Autorelease; 3019 } 3020 3021 /// Look for this pattern: 3022 /// \code 3023 /// %call = call i8* @something(...) 3024 /// %2 = call i8* @objc_retain(i8* %call) 3025 /// %3 = call i8* @objc_autorelease(i8* %2) 3026 /// ret i8* %3 3027 /// \endcode 3028 /// And delete the retain and autorelease. 3029 void ObjCARCOpt::OptimizeReturns(Function &F) { 3030 if (!F.getReturnType()->isPointerTy()) 3031 return; 3032 3033 DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n"); 3034 3035 SmallPtrSet<Instruction *, 4> DependingInstructions; 3036 SmallPtrSet<const BasicBlock *, 4> Visited; 3037 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 3038 BasicBlock *BB = FI; 3039 ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back()); 3040 3041 DEBUG(dbgs() << "Visiting: " << *Ret << "\n"); 3042 3043 if (!Ret) 3044 continue; 3045 3046 const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0)); 3047 3048 // Look for an ``autorelease'' instruction that is a predecessor of Ret and 3049 // dependent on Arg such that there are no instructions dependent on Arg 3050 // that need a positive ref count in between the autorelease and Ret. 3051 CallInst *Autorelease = 3052 FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret, 3053 DependingInstructions, Visited, 3054 PA); 3055 DependingInstructions.clear(); 3056 Visited.clear(); 3057 3058 if (!Autorelease) 3059 continue; 3060 3061 CallInst *Retain = 3062 FindPredecessorRetainWithSafePath(Arg, BB, Autorelease, 3063 DependingInstructions, Visited, PA); 3064 DependingInstructions.clear(); 3065 Visited.clear(); 3066 3067 if (!Retain) 3068 continue; 3069 3070 // Check that there is nothing that can affect the reference count 3071 // between the retain and the call. Note that Retain need not be in BB. 3072 bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain, 3073 DependingInstructions, 3074 Visited, PA); 3075 DependingInstructions.clear(); 3076 Visited.clear(); 3077 3078 if (!HasSafePathToCall) 3079 continue; 3080 3081 // If so, we can zap the retain and autorelease. 3082 Changed = true; 3083 ++NumRets; 3084 DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: " 3085 << *Autorelease << "\n"); 3086 EraseInstruction(Retain); 3087 EraseInstruction(Autorelease); 3088 } 3089 } 3090 3091 #ifndef NDEBUG 3092 void 3093 ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) { 3094 llvm::Statistic &NumRetains = 3095 AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt; 3096 llvm::Statistic &NumReleases = 3097 AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt; 3098 3099 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { 3100 Instruction *Inst = &*I++; 3101 switch (GetBasicInstructionClass(Inst)) { 3102 default: 3103 break; 3104 case IC_Retain: 3105 ++NumRetains; 3106 break; 3107 case IC_Release: 3108 ++NumReleases; 3109 break; 3110 } 3111 } 3112 } 3113 #endif 3114 3115 bool ObjCARCOpt::doInitialization(Module &M) { 3116 if (!EnableARCOpts) 3117 return false; 3118 3119 // If nothing in the Module uses ARC, don't do anything. 3120 Run = ModuleHasARC(M); 3121 if (!Run) 3122 return false; 3123 3124 // Identify the imprecise release metadata kind. 3125 ImpreciseReleaseMDKind = 3126 M.getContext().getMDKindID("clang.imprecise_release"); 3127 CopyOnEscapeMDKind = 3128 M.getContext().getMDKindID("clang.arc.copy_on_escape"); 3129 NoObjCARCExceptionsMDKind = 3130 M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions"); 3131 #ifdef ARC_ANNOTATIONS 3132 ARCAnnotationBottomUpMDKind = 3133 M.getContext().getMDKindID("llvm.arc.annotation.bottomup"); 3134 ARCAnnotationTopDownMDKind = 3135 M.getContext().getMDKindID("llvm.arc.annotation.topdown"); 3136 ARCAnnotationProvenanceSourceMDKind = 3137 M.getContext().getMDKindID("llvm.arc.annotation.provenancesource"); 3138 #endif // ARC_ANNOTATIONS 3139 3140 // Intuitively, objc_retain and others are nocapture, however in practice 3141 // they are not, because they return their argument value. And objc_release 3142 // calls finalizers which can have arbitrary side effects. 3143 3144 // Initialize our runtime entry point cache. 3145 EP.Initialize(&M); 3146 3147 return false; 3148 } 3149 3150 bool ObjCARCOpt::runOnFunction(Function &F) { 3151 if (!EnableARCOpts) 3152 return false; 3153 3154 // If nothing in the Module uses ARC, don't do anything. 3155 if (!Run) 3156 return false; 3157 3158 Changed = false; 3159 3160 DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>" 3161 "\n"); 3162 3163 PA.setAA(&getAnalysis<AliasAnalysis>()); 3164 3165 #ifndef NDEBUG 3166 if (AreStatisticsEnabled()) { 3167 GatherStatistics(F, false); 3168 } 3169 #endif 3170 3171 // This pass performs several distinct transformations. As a compile-time aid 3172 // when compiling code that isn't ObjC, skip these if the relevant ObjC 3173 // library functions aren't declared. 3174 3175 // Preliminary optimizations. This also computes UsedInThisFunction. 3176 OptimizeIndividualCalls(F); 3177 3178 // Optimizations for weak pointers. 3179 if (UsedInThisFunction & ((1 << IC_LoadWeak) | 3180 (1 << IC_LoadWeakRetained) | 3181 (1 << IC_StoreWeak) | 3182 (1 << IC_InitWeak) | 3183 (1 << IC_CopyWeak) | 3184 (1 << IC_MoveWeak) | 3185 (1 << IC_DestroyWeak))) 3186 OptimizeWeakCalls(F); 3187 3188 // Optimizations for retain+release pairs. 3189 if (UsedInThisFunction & ((1 << IC_Retain) | 3190 (1 << IC_RetainRV) | 3191 (1 << IC_RetainBlock))) 3192 if (UsedInThisFunction & (1 << IC_Release)) 3193 // Run OptimizeSequences until it either stops making changes or 3194 // no retain+release pair nesting is detected. 3195 while (OptimizeSequences(F)) {} 3196 3197 // Optimizations if objc_autorelease is used. 3198 if (UsedInThisFunction & ((1 << IC_Autorelease) | 3199 (1 << IC_AutoreleaseRV))) 3200 OptimizeReturns(F); 3201 3202 // Gather statistics after optimization. 3203 #ifndef NDEBUG 3204 if (AreStatisticsEnabled()) { 3205 GatherStatistics(F, true); 3206 } 3207 #endif 3208 3209 DEBUG(dbgs() << "\n"); 3210 3211 return Changed; 3212 } 3213 3214 void ObjCARCOpt::releaseMemory() { 3215 PA.clear(); 3216 } 3217 3218 /// @} 3219 /// 3220