Home | History | Annotate | Download | only in gmock
      1 // Copyright 2007, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 
     32 // Google Mock - a framework for writing C++ mock classes.
     33 //
     34 // This file implements some commonly used actions.
     35 
     36 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     37 #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
     38 
     39 #include <algorithm>
     40 #include <string>
     41 
     42 #ifndef _WIN32_WCE
     43 # include <errno.h>
     44 #endif
     45 
     46 #include "gmock/internal/gmock-internal-utils.h"
     47 #include "gmock/internal/gmock-port.h"
     48 
     49 namespace testing {
     50 
     51 // To implement an action Foo, define:
     52 //   1. a class FooAction that implements the ActionInterface interface, and
     53 //   2. a factory function that creates an Action object from a
     54 //      const FooAction*.
     55 //
     56 // The two-level delegation design follows that of Matcher, providing
     57 // consistency for extension developers.  It also eases ownership
     58 // management as Action objects can now be copied like plain values.
     59 
     60 namespace internal {
     61 
     62 template <typename F1, typename F2>
     63 class ActionAdaptor;
     64 
     65 // BuiltInDefaultValue<T>::Get() returns the "built-in" default
     66 // value for type T, which is NULL when T is a pointer type, 0 when T
     67 // is a numeric type, false when T is bool, or "" when T is string or
     68 // std::string.  For any other type T, this value is undefined and the
     69 // function will abort the process.
     70 template <typename T>
     71 class BuiltInDefaultValue {
     72  public:
     73   // This function returns true iff type T has a built-in default value.
     74   static bool Exists() { return false; }
     75   static T Get() {
     76     Assert(false, __FILE__, __LINE__,
     77            "Default action undefined for the function return type.");
     78     return internal::Invalid<T>();
     79     // The above statement will never be reached, but is required in
     80     // order for this function to compile.
     81   }
     82 };
     83 
     84 // This partial specialization says that we use the same built-in
     85 // default value for T and const T.
     86 template <typename T>
     87 class BuiltInDefaultValue<const T> {
     88  public:
     89   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
     90   static T Get() { return BuiltInDefaultValue<T>::Get(); }
     91 };
     92 
     93 // This partial specialization defines the default values for pointer
     94 // types.
     95 template <typename T>
     96 class BuiltInDefaultValue<T*> {
     97  public:
     98   static bool Exists() { return true; }
     99   static T* Get() { return NULL; }
    100 };
    101 
    102 // The following specializations define the default values for
    103 // specific types we care about.
    104 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
    105   template <> \
    106   class BuiltInDefaultValue<type> { \
    107    public: \
    108     static bool Exists() { return true; } \
    109     static type Get() { return value; } \
    110   }
    111 
    112 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
    113 #if GTEST_HAS_GLOBAL_STRING
    114 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
    115 #endif  // GTEST_HAS_GLOBAL_STRING
    116 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
    117 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
    118 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
    119 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
    120 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
    121 
    122 // There's no need for a default action for signed wchar_t, as that
    123 // type is the same as wchar_t for gcc, and invalid for MSVC.
    124 //
    125 // There's also no need for a default action for unsigned wchar_t, as
    126 // that type is the same as unsigned int for gcc, and invalid for
    127 // MSVC.
    128 #if GMOCK_WCHAR_T_IS_NATIVE_
    129 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
    130 #endif
    131 
    132 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
    133 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
    134 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
    135 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
    136 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
    137 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
    138 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
    139 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
    140 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
    141 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
    142 
    143 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
    144 
    145 }  // namespace internal
    146 
    147 // When an unexpected function call is encountered, Google Mock will
    148 // let it return a default value if the user has specified one for its
    149 // return type, or if the return type has a built-in default value;
    150 // otherwise Google Mock won't know what value to return and will have
    151 // to abort the process.
    152 //
    153 // The DefaultValue<T> class allows a user to specify the
    154 // default value for a type T that is both copyable and publicly
    155 // destructible (i.e. anything that can be used as a function return
    156 // type).  The usage is:
    157 //
    158 //   // Sets the default value for type T to be foo.
    159 //   DefaultValue<T>::Set(foo);
    160 template <typename T>
    161 class DefaultValue {
    162  public:
    163   // Sets the default value for type T; requires T to be
    164   // copy-constructable and have a public destructor.
    165   static void Set(T x) {
    166     delete value_;
    167     value_ = new T(x);
    168   }
    169 
    170   // Unsets the default value for type T.
    171   static void Clear() {
    172     delete value_;
    173     value_ = NULL;
    174   }
    175 
    176   // Returns true iff the user has set the default value for type T.
    177   static bool IsSet() { return value_ != NULL; }
    178 
    179   // Returns true if T has a default return value set by the user or there
    180   // exists a built-in default value.
    181   static bool Exists() {
    182     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
    183   }
    184 
    185   // Returns the default value for type T if the user has set one;
    186   // otherwise returns the built-in default value if there is one;
    187   // otherwise aborts the process.
    188   static T Get() {
    189     return value_ == NULL ?
    190         internal::BuiltInDefaultValue<T>::Get() : *value_;
    191   }
    192  private:
    193   static const T* value_;
    194 };
    195 
    196 // This partial specialization allows a user to set default values for
    197 // reference types.
    198 template <typename T>
    199 class DefaultValue<T&> {
    200  public:
    201   // Sets the default value for type T&.
    202   static void Set(T& x) {  // NOLINT
    203     address_ = &x;
    204   }
    205 
    206   // Unsets the default value for type T&.
    207   static void Clear() {
    208     address_ = NULL;
    209   }
    210 
    211   // Returns true iff the user has set the default value for type T&.
    212   static bool IsSet() { return address_ != NULL; }
    213 
    214   // Returns true if T has a default return value set by the user or there
    215   // exists a built-in default value.
    216   static bool Exists() {
    217     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
    218   }
    219 
    220   // Returns the default value for type T& if the user has set one;
    221   // otherwise returns the built-in default value if there is one;
    222   // otherwise aborts the process.
    223   static T& Get() {
    224     return address_ == NULL ?
    225         internal::BuiltInDefaultValue<T&>::Get() : *address_;
    226   }
    227  private:
    228   static T* address_;
    229 };
    230 
    231 // This specialization allows DefaultValue<void>::Get() to
    232 // compile.
    233 template <>
    234 class DefaultValue<void> {
    235  public:
    236   static bool Exists() { return true; }
    237   static void Get() {}
    238 };
    239 
    240 // Points to the user-set default value for type T.
    241 template <typename T>
    242 const T* DefaultValue<T>::value_ = NULL;
    243 
    244 // Points to the user-set default value for type T&.
    245 template <typename T>
    246 T* DefaultValue<T&>::address_ = NULL;
    247 
    248 // Implement this interface to define an action for function type F.
    249 template <typename F>
    250 class ActionInterface {
    251  public:
    252   typedef typename internal::Function<F>::Result Result;
    253   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    254 
    255   ActionInterface() {}
    256   virtual ~ActionInterface() {}
    257 
    258   // Performs the action.  This method is not const, as in general an
    259   // action can have side effects and be stateful.  For example, a
    260   // get-the-next-element-from-the-collection action will need to
    261   // remember the current element.
    262   virtual Result Perform(const ArgumentTuple& args) = 0;
    263 
    264  private:
    265   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
    266 };
    267 
    268 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
    269 // object that represents an action to be taken when a mock function
    270 // of type F is called.  The implementation of Action<T> is just a
    271 // linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
    272 // Don't inherit from Action!
    273 //
    274 // You can view an object implementing ActionInterface<F> as a
    275 // concrete action (including its current state), and an Action<F>
    276 // object as a handle to it.
    277 template <typename F>
    278 class Action {
    279  public:
    280   typedef typename internal::Function<F>::Result Result;
    281   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    282 
    283   // Constructs a null Action.  Needed for storing Action objects in
    284   // STL containers.
    285   Action() : impl_(NULL) {}
    286 
    287   // Constructs an Action from its implementation.  A NULL impl is
    288   // used to represent the "do-default" action.
    289   explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
    290 
    291   // Copy constructor.
    292   Action(const Action& action) : impl_(action.impl_) {}
    293 
    294   // This constructor allows us to turn an Action<Func> object into an
    295   // Action<F>, as long as F's arguments can be implicitly converted
    296   // to Func's and Func's return type can be implicitly converted to
    297   // F's.
    298   template <typename Func>
    299   explicit Action(const Action<Func>& action);
    300 
    301   // Returns true iff this is the DoDefault() action.
    302   bool IsDoDefault() const { return impl_.get() == NULL; }
    303 
    304   // Performs the action.  Note that this method is const even though
    305   // the corresponding method in ActionInterface is not.  The reason
    306   // is that a const Action<F> means that it cannot be re-bound to
    307   // another concrete action, not that the concrete action it binds to
    308   // cannot change state.  (Think of the difference between a const
    309   // pointer and a pointer to const.)
    310   Result Perform(const ArgumentTuple& args) const {
    311     internal::Assert(
    312         !IsDoDefault(), __FILE__, __LINE__,
    313         "You are using DoDefault() inside a composite action like "
    314         "DoAll() or WithArgs().  This is not supported for technical "
    315         "reasons.  Please instead spell out the default action, or "
    316         "assign the default action to an Action variable and use "
    317         "the variable in various places.");
    318     return impl_->Perform(args);
    319   }
    320 
    321  private:
    322   template <typename F1, typename F2>
    323   friend class internal::ActionAdaptor;
    324 
    325   internal::linked_ptr<ActionInterface<F> > impl_;
    326 };
    327 
    328 // The PolymorphicAction class template makes it easy to implement a
    329 // polymorphic action (i.e. an action that can be used in mock
    330 // functions of than one type, e.g. Return()).
    331 //
    332 // To define a polymorphic action, a user first provides a COPYABLE
    333 // implementation class that has a Perform() method template:
    334 //
    335 //   class FooAction {
    336 //    public:
    337 //     template <typename Result, typename ArgumentTuple>
    338 //     Result Perform(const ArgumentTuple& args) const {
    339 //       // Processes the arguments and returns a result, using
    340 //       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
    341 //     }
    342 //     ...
    343 //   };
    344 //
    345 // Then the user creates the polymorphic action using
    346 // MakePolymorphicAction(object) where object has type FooAction.  See
    347 // the definition of Return(void) and SetArgumentPointee<N>(value) for
    348 // complete examples.
    349 template <typename Impl>
    350 class PolymorphicAction {
    351  public:
    352   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
    353 
    354   template <typename F>
    355   operator Action<F>() const {
    356     return Action<F>(new MonomorphicImpl<F>(impl_));
    357   }
    358 
    359  private:
    360   template <typename F>
    361   class MonomorphicImpl : public ActionInterface<F> {
    362    public:
    363     typedef typename internal::Function<F>::Result Result;
    364     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    365 
    366     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
    367 
    368     virtual Result Perform(const ArgumentTuple& args) {
    369       return impl_.template Perform<Result>(args);
    370     }
    371 
    372    private:
    373     Impl impl_;
    374 
    375     GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
    376   };
    377 
    378   Impl impl_;
    379 
    380   GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
    381 };
    382 
    383 // Creates an Action from its implementation and returns it.  The
    384 // created Action object owns the implementation.
    385 template <typename F>
    386 Action<F> MakeAction(ActionInterface<F>* impl) {
    387   return Action<F>(impl);
    388 }
    389 
    390 // Creates a polymorphic action from its implementation.  This is
    391 // easier to use than the PolymorphicAction<Impl> constructor as it
    392 // doesn't require you to explicitly write the template argument, e.g.
    393 //
    394 //   MakePolymorphicAction(foo);
    395 // vs
    396 //   PolymorphicAction<TypeOfFoo>(foo);
    397 template <typename Impl>
    398 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
    399   return PolymorphicAction<Impl>(impl);
    400 }
    401 
    402 namespace internal {
    403 
    404 // Allows an Action<F2> object to pose as an Action<F1>, as long as F2
    405 // and F1 are compatible.
    406 template <typename F1, typename F2>
    407 class ActionAdaptor : public ActionInterface<F1> {
    408  public:
    409   typedef typename internal::Function<F1>::Result Result;
    410   typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
    411 
    412   explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
    413 
    414   virtual Result Perform(const ArgumentTuple& args) {
    415     return impl_->Perform(args);
    416   }
    417 
    418  private:
    419   const internal::linked_ptr<ActionInterface<F2> > impl_;
    420 
    421   GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
    422 };
    423 
    424 // Implements the polymorphic Return(x) action, which can be used in
    425 // any function that returns the type of x, regardless of the argument
    426 // types.
    427 //
    428 // Note: The value passed into Return must be converted into
    429 // Function<F>::Result when this action is cast to Action<F> rather than
    430 // when that action is performed. This is important in scenarios like
    431 //
    432 // MOCK_METHOD1(Method, T(U));
    433 // ...
    434 // {
    435 //   Foo foo;
    436 //   X x(&foo);
    437 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
    438 // }
    439 //
    440 // In the example above the variable x holds reference to foo which leaves
    441 // scope and gets destroyed.  If copying X just copies a reference to foo,
    442 // that copy will be left with a hanging reference.  If conversion to T
    443 // makes a copy of foo, the above code is safe. To support that scenario, we
    444 // need to make sure that the type conversion happens inside the EXPECT_CALL
    445 // statement, and conversion of the result of Return to Action<T(U)> is a
    446 // good place for that.
    447 //
    448 template <typename R>
    449 class ReturnAction {
    450  public:
    451   // Constructs a ReturnAction object from the value to be returned.
    452   // 'value' is passed by value instead of by const reference in order
    453   // to allow Return("string literal") to compile.
    454   explicit ReturnAction(R value) : value_(value) {}
    455 
    456   // This template type conversion operator allows Return(x) to be
    457   // used in ANY function that returns x's type.
    458   template <typename F>
    459   operator Action<F>() const {
    460     // Assert statement belongs here because this is the best place to verify
    461     // conditions on F. It produces the clearest error messages
    462     // in most compilers.
    463     // Impl really belongs in this scope as a local class but can't
    464     // because MSVC produces duplicate symbols in different translation units
    465     // in this case. Until MS fixes that bug we put Impl into the class scope
    466     // and put the typedef both here (for use in assert statement) and
    467     // in the Impl class. But both definitions must be the same.
    468     typedef typename Function<F>::Result Result;
    469     GTEST_COMPILE_ASSERT_(
    470         !internal::is_reference<Result>::value,
    471         use_ReturnRef_instead_of_Return_to_return_a_reference);
    472     return Action<F>(new Impl<F>(value_));
    473   }
    474 
    475  private:
    476   // Implements the Return(x) action for a particular function type F.
    477   template <typename F>
    478   class Impl : public ActionInterface<F> {
    479    public:
    480     typedef typename Function<F>::Result Result;
    481     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    482 
    483     // The implicit cast is necessary when Result has more than one
    484     // single-argument constructor (e.g. Result is std::vector<int>) and R
    485     // has a type conversion operator template.  In that case, value_(value)
    486     // won't compile as the compiler doesn't known which constructor of
    487     // Result to call.  ImplicitCast_ forces the compiler to convert R to
    488     // Result without considering explicit constructors, thus resolving the
    489     // ambiguity. value_ is then initialized using its copy constructor.
    490     explicit Impl(R value)
    491         : value_(::testing::internal::ImplicitCast_<Result>(value)) {}
    492 
    493     virtual Result Perform(const ArgumentTuple&) { return value_; }
    494 
    495    private:
    496     GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
    497                           Result_cannot_be_a_reference_type);
    498     Result value_;
    499 
    500     GTEST_DISALLOW_ASSIGN_(Impl);
    501   };
    502 
    503   R value_;
    504 
    505   GTEST_DISALLOW_ASSIGN_(ReturnAction);
    506 };
    507 
    508 // Implements the ReturnNull() action.
    509 class ReturnNullAction {
    510  public:
    511   // Allows ReturnNull() to be used in any pointer-returning function.
    512   template <typename Result, typename ArgumentTuple>
    513   static Result Perform(const ArgumentTuple&) {
    514     GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
    515                           ReturnNull_can_be_used_to_return_a_pointer_only);
    516     return NULL;
    517   }
    518 };
    519 
    520 // Implements the Return() action.
    521 class ReturnVoidAction {
    522  public:
    523   // Allows Return() to be used in any void-returning function.
    524   template <typename Result, typename ArgumentTuple>
    525   static void Perform(const ArgumentTuple&) {
    526     CompileAssertTypesEqual<void, Result>();
    527   }
    528 };
    529 
    530 // Implements the polymorphic ReturnRef(x) action, which can be used
    531 // in any function that returns a reference to the type of x,
    532 // regardless of the argument types.
    533 template <typename T>
    534 class ReturnRefAction {
    535  public:
    536   // Constructs a ReturnRefAction object from the reference to be returned.
    537   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
    538 
    539   // This template type conversion operator allows ReturnRef(x) to be
    540   // used in ANY function that returns a reference to x's type.
    541   template <typename F>
    542   operator Action<F>() const {
    543     typedef typename Function<F>::Result Result;
    544     // Asserts that the function return type is a reference.  This
    545     // catches the user error of using ReturnRef(x) when Return(x)
    546     // should be used, and generates some helpful error message.
    547     GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
    548                           use_Return_instead_of_ReturnRef_to_return_a_value);
    549     return Action<F>(new Impl<F>(ref_));
    550   }
    551 
    552  private:
    553   // Implements the ReturnRef(x) action for a particular function type F.
    554   template <typename F>
    555   class Impl : public ActionInterface<F> {
    556    public:
    557     typedef typename Function<F>::Result Result;
    558     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    559 
    560     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
    561 
    562     virtual Result Perform(const ArgumentTuple&) {
    563       return ref_;
    564     }
    565 
    566    private:
    567     T& ref_;
    568 
    569     GTEST_DISALLOW_ASSIGN_(Impl);
    570   };
    571 
    572   T& ref_;
    573 
    574   GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
    575 };
    576 
    577 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
    578 // used in any function that returns a reference to the type of x,
    579 // regardless of the argument types.
    580 template <typename T>
    581 class ReturnRefOfCopyAction {
    582  public:
    583   // Constructs a ReturnRefOfCopyAction object from the reference to
    584   // be returned.
    585   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
    586 
    587   // This template type conversion operator allows ReturnRefOfCopy(x) to be
    588   // used in ANY function that returns a reference to x's type.
    589   template <typename F>
    590   operator Action<F>() const {
    591     typedef typename Function<F>::Result Result;
    592     // Asserts that the function return type is a reference.  This
    593     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
    594     // should be used, and generates some helpful error message.
    595     GTEST_COMPILE_ASSERT_(
    596         internal::is_reference<Result>::value,
    597         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
    598     return Action<F>(new Impl<F>(value_));
    599   }
    600 
    601  private:
    602   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
    603   template <typename F>
    604   class Impl : public ActionInterface<F> {
    605    public:
    606     typedef typename Function<F>::Result Result;
    607     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    608 
    609     explicit Impl(const T& value) : value_(value) {}  // NOLINT
    610 
    611     virtual Result Perform(const ArgumentTuple&) {
    612       return value_;
    613     }
    614 
    615    private:
    616     T value_;
    617 
    618     GTEST_DISALLOW_ASSIGN_(Impl);
    619   };
    620 
    621   const T value_;
    622 
    623   GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
    624 };
    625 
    626 // Implements the polymorphic DoDefault() action.
    627 class DoDefaultAction {
    628  public:
    629   // This template type conversion operator allows DoDefault() to be
    630   // used in any function.
    631   template <typename F>
    632   operator Action<F>() const { return Action<F>(NULL); }
    633 };
    634 
    635 // Implements the Assign action to set a given pointer referent to a
    636 // particular value.
    637 template <typename T1, typename T2>
    638 class AssignAction {
    639  public:
    640   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
    641 
    642   template <typename Result, typename ArgumentTuple>
    643   void Perform(const ArgumentTuple& /* args */) const {
    644     *ptr_ = value_;
    645   }
    646 
    647  private:
    648   T1* const ptr_;
    649   const T2 value_;
    650 
    651   GTEST_DISALLOW_ASSIGN_(AssignAction);
    652 };
    653 
    654 #if !GTEST_OS_WINDOWS_MOBILE
    655 
    656 // Implements the SetErrnoAndReturn action to simulate return from
    657 // various system calls and libc functions.
    658 template <typename T>
    659 class SetErrnoAndReturnAction {
    660  public:
    661   SetErrnoAndReturnAction(int errno_value, T result)
    662       : errno_(errno_value),
    663         result_(result) {}
    664   template <typename Result, typename ArgumentTuple>
    665   Result Perform(const ArgumentTuple& /* args */) const {
    666     errno = errno_;
    667     return result_;
    668   }
    669 
    670  private:
    671   const int errno_;
    672   const T result_;
    673 
    674   GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
    675 };
    676 
    677 #endif  // !GTEST_OS_WINDOWS_MOBILE
    678 
    679 // Implements the SetArgumentPointee<N>(x) action for any function
    680 // whose N-th argument (0-based) is a pointer to x's type.  The
    681 // template parameter kIsProto is true iff type A is ProtocolMessage,
    682 // proto2::Message, or a sub-class of those.
    683 template <size_t N, typename A, bool kIsProto>
    684 class SetArgumentPointeeAction {
    685  public:
    686   // Constructs an action that sets the variable pointed to by the
    687   // N-th function argument to 'value'.
    688   explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
    689 
    690   template <typename Result, typename ArgumentTuple>
    691   void Perform(const ArgumentTuple& args) const {
    692     CompileAssertTypesEqual<void, Result>();
    693     *::std::tr1::get<N>(args) = value_;
    694   }
    695 
    696  private:
    697   const A value_;
    698 
    699   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    700 };
    701 
    702 template <size_t N, typename Proto>
    703 class SetArgumentPointeeAction<N, Proto, true> {
    704  public:
    705   // Constructs an action that sets the variable pointed to by the
    706   // N-th function argument to 'proto'.  Both ProtocolMessage and
    707   // proto2::Message have the CopyFrom() method, so the same
    708   // implementation works for both.
    709   explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
    710     proto_->CopyFrom(proto);
    711   }
    712 
    713   template <typename Result, typename ArgumentTuple>
    714   void Perform(const ArgumentTuple& args) const {
    715     CompileAssertTypesEqual<void, Result>();
    716     ::std::tr1::get<N>(args)->CopyFrom(*proto_);
    717   }
    718 
    719  private:
    720   const internal::linked_ptr<Proto> proto_;
    721 
    722   GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
    723 };
    724 
    725 // Implements the InvokeWithoutArgs(f) action.  The template argument
    726 // FunctionImpl is the implementation type of f, which can be either a
    727 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
    728 // Action<F> as long as f's type is compatible with F (i.e. f can be
    729 // assigned to a tr1::function<F>).
    730 template <typename FunctionImpl>
    731 class InvokeWithoutArgsAction {
    732  public:
    733   // The c'tor makes a copy of function_impl (either a function
    734   // pointer or a functor).
    735   explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
    736       : function_impl_(function_impl) {}
    737 
    738   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
    739   // compatible with f.
    740   template <typename Result, typename ArgumentTuple>
    741   Result Perform(const ArgumentTuple&) { return function_impl_(); }
    742 
    743  private:
    744   FunctionImpl function_impl_;
    745 
    746   GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
    747 };
    748 
    749 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
    750 template <class Class, typename MethodPtr>
    751 class InvokeMethodWithoutArgsAction {
    752  public:
    753   InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
    754       : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
    755 
    756   template <typename Result, typename ArgumentTuple>
    757   Result Perform(const ArgumentTuple&) const {
    758     return (obj_ptr_->*method_ptr_)();
    759   }
    760 
    761  private:
    762   Class* const obj_ptr_;
    763   const MethodPtr method_ptr_;
    764 
    765   GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
    766 };
    767 
    768 // Implements the IgnoreResult(action) action.
    769 template <typename A>
    770 class IgnoreResultAction {
    771  public:
    772   explicit IgnoreResultAction(const A& action) : action_(action) {}
    773 
    774   template <typename F>
    775   operator Action<F>() const {
    776     // Assert statement belongs here because this is the best place to verify
    777     // conditions on F. It produces the clearest error messages
    778     // in most compilers.
    779     // Impl really belongs in this scope as a local class but can't
    780     // because MSVC produces duplicate symbols in different translation units
    781     // in this case. Until MS fixes that bug we put Impl into the class scope
    782     // and put the typedef both here (for use in assert statement) and
    783     // in the Impl class. But both definitions must be the same.
    784     typedef typename internal::Function<F>::Result Result;
    785 
    786     // Asserts at compile time that F returns void.
    787     CompileAssertTypesEqual<void, Result>();
    788 
    789     return Action<F>(new Impl<F>(action_));
    790   }
    791 
    792  private:
    793   template <typename F>
    794   class Impl : public ActionInterface<F> {
    795    public:
    796     typedef typename internal::Function<F>::Result Result;
    797     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
    798 
    799     explicit Impl(const A& action) : action_(action) {}
    800 
    801     virtual void Perform(const ArgumentTuple& args) {
    802       // Performs the action and ignores its result.
    803       action_.Perform(args);
    804     }
    805 
    806    private:
    807     // Type OriginalFunction is the same as F except that its return
    808     // type is IgnoredValue.
    809     typedef typename internal::Function<F>::MakeResultIgnoredValue
    810         OriginalFunction;
    811 
    812     const Action<OriginalFunction> action_;
    813 
    814     GTEST_DISALLOW_ASSIGN_(Impl);
    815   };
    816 
    817   const A action_;
    818 
    819   GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
    820 };
    821 
    822 // A ReferenceWrapper<T> object represents a reference to type T,
    823 // which can be either const or not.  It can be explicitly converted
    824 // from, and implicitly converted to, a T&.  Unlike a reference,
    825 // ReferenceWrapper<T> can be copied and can survive template type
    826 // inference.  This is used to support by-reference arguments in the
    827 // InvokeArgument<N>(...) action.  The idea was from "reference
    828 // wrappers" in tr1, which we don't have in our source tree yet.
    829 template <typename T>
    830 class ReferenceWrapper {
    831  public:
    832   // Constructs a ReferenceWrapper<T> object from a T&.
    833   explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
    834 
    835   // Allows a ReferenceWrapper<T> object to be implicitly converted to
    836   // a T&.
    837   operator T&() const { return *pointer_; }
    838  private:
    839   T* pointer_;
    840 };
    841 
    842 // Allows the expression ByRef(x) to be printed as a reference to x.
    843 template <typename T>
    844 void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
    845   T& value = ref;
    846   UniversalPrinter<T&>::Print(value, os);
    847 }
    848 
    849 // Does two actions sequentially.  Used for implementing the DoAll(a1,
    850 // a2, ...) action.
    851 template <typename Action1, typename Action2>
    852 class DoBothAction {
    853  public:
    854   DoBothAction(Action1 action1, Action2 action2)
    855       : action1_(action1), action2_(action2) {}
    856 
    857   // This template type conversion operator allows DoAll(a1, ..., a_n)
    858   // to be used in ANY function of compatible type.
    859   template <typename F>
    860   operator Action<F>() const {
    861     return Action<F>(new Impl<F>(action1_, action2_));
    862   }
    863 
    864  private:
    865   // Implements the DoAll(...) action for a particular function type F.
    866   template <typename F>
    867   class Impl : public ActionInterface<F> {
    868    public:
    869     typedef typename Function<F>::Result Result;
    870     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
    871     typedef typename Function<F>::MakeResultVoid VoidResult;
    872 
    873     Impl(const Action<VoidResult>& action1, const Action<F>& action2)
    874         : action1_(action1), action2_(action2) {}
    875 
    876     virtual Result Perform(const ArgumentTuple& args) {
    877       action1_.Perform(args);
    878       return action2_.Perform(args);
    879     }
    880 
    881    private:
    882     const Action<VoidResult> action1_;
    883     const Action<F> action2_;
    884 
    885     GTEST_DISALLOW_ASSIGN_(Impl);
    886   };
    887 
    888   Action1 action1_;
    889   Action2 action2_;
    890 
    891   GTEST_DISALLOW_ASSIGN_(DoBothAction);
    892 };
    893 
    894 }  // namespace internal
    895 
    896 // An Unused object can be implicitly constructed from ANY value.
    897 // This is handy when defining actions that ignore some or all of the
    898 // mock function arguments.  For example, given
    899 //
    900 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
    901 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
    902 //
    903 // instead of
    904 //
    905 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
    906 //     return sqrt(x*x + y*y);
    907 //   }
    908 //   double DistanceToOriginWithIndex(int index, double x, double y) {
    909 //     return sqrt(x*x + y*y);
    910 //   }
    911 //   ...
    912 //   EXEPCT_CALL(mock, Foo("abc", _, _))
    913 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
    914 //   EXEPCT_CALL(mock, Bar(5, _, _))
    915 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
    916 //
    917 // you could write
    918 //
    919 //   // We can declare any uninteresting argument as Unused.
    920 //   double DistanceToOrigin(Unused, double x, double y) {
    921 //     return sqrt(x*x + y*y);
    922 //   }
    923 //   ...
    924 //   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
    925 //   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
    926 typedef internal::IgnoredValue Unused;
    927 
    928 // This constructor allows us to turn an Action<From> object into an
    929 // Action<To>, as long as To's arguments can be implicitly converted
    930 // to From's and From's return type cann be implicitly converted to
    931 // To's.
    932 template <typename To>
    933 template <typename From>
    934 Action<To>::Action(const Action<From>& from)
    935     : impl_(new internal::ActionAdaptor<To, From>(from)) {}
    936 
    937 // Creates an action that returns 'value'.  'value' is passed by value
    938 // instead of const reference - otherwise Return("string literal")
    939 // will trigger a compiler error about using array as initializer.
    940 template <typename R>
    941 internal::ReturnAction<R> Return(R value) {
    942   return internal::ReturnAction<R>(value);
    943 }
    944 
    945 // Creates an action that returns NULL.
    946 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
    947   return MakePolymorphicAction(internal::ReturnNullAction());
    948 }
    949 
    950 // Creates an action that returns from a void function.
    951 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
    952   return MakePolymorphicAction(internal::ReturnVoidAction());
    953 }
    954 
    955 // Creates an action that returns the reference to a variable.
    956 template <typename R>
    957 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
    958   return internal::ReturnRefAction<R>(x);
    959 }
    960 
    961 // Creates an action that returns the reference to a copy of the
    962 // argument.  The copy is created when the action is constructed and
    963 // lives as long as the action.
    964 template <typename R>
    965 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
    966   return internal::ReturnRefOfCopyAction<R>(x);
    967 }
    968 
    969 // Creates an action that does the default action for the give mock function.
    970 inline internal::DoDefaultAction DoDefault() {
    971   return internal::DoDefaultAction();
    972 }
    973 
    974 // Creates an action that sets the variable pointed by the N-th
    975 // (0-based) function argument to 'value'.
    976 template <size_t N, typename T>
    977 PolymorphicAction<
    978   internal::SetArgumentPointeeAction<
    979     N, T, internal::IsAProtocolMessage<T>::value> >
    980 SetArgPointee(const T& x) {
    981   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
    982       N, T, internal::IsAProtocolMessage<T>::value>(x));
    983 }
    984 
    985 #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
    986 // This overload allows SetArgPointee() to accept a string literal.
    987 // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
    988 // this overload from the templated version and emit a compile error.
    989 template <size_t N>
    990 PolymorphicAction<
    991   internal::SetArgumentPointeeAction<N, const char*, false> >
    992 SetArgPointee(const char* p) {
    993   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
    994       N, const char*, false>(p));
    995 }
    996 
    997 template <size_t N>
    998 PolymorphicAction<
    999   internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
   1000 SetArgPointee(const wchar_t* p) {
   1001   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1002       N, const wchar_t*, false>(p));
   1003 }
   1004 #endif
   1005 
   1006 // The following version is DEPRECATED.
   1007 template <size_t N, typename T>
   1008 PolymorphicAction<
   1009   internal::SetArgumentPointeeAction<
   1010     N, T, internal::IsAProtocolMessage<T>::value> >
   1011 SetArgumentPointee(const T& x) {
   1012   return MakePolymorphicAction(internal::SetArgumentPointeeAction<
   1013       N, T, internal::IsAProtocolMessage<T>::value>(x));
   1014 }
   1015 
   1016 // Creates an action that sets a pointer referent to a given value.
   1017 template <typename T1, typename T2>
   1018 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
   1019   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
   1020 }
   1021 
   1022 #if !GTEST_OS_WINDOWS_MOBILE
   1023 
   1024 // Creates an action that sets errno and returns the appropriate error.
   1025 template <typename T>
   1026 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
   1027 SetErrnoAndReturn(int errval, T result) {
   1028   return MakePolymorphicAction(
   1029       internal::SetErrnoAndReturnAction<T>(errval, result));
   1030 }
   1031 
   1032 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1033 
   1034 // Various overloads for InvokeWithoutArgs().
   1035 
   1036 // Creates an action that invokes 'function_impl' with no argument.
   1037 template <typename FunctionImpl>
   1038 PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
   1039 InvokeWithoutArgs(FunctionImpl function_impl) {
   1040   return MakePolymorphicAction(
   1041       internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
   1042 }
   1043 
   1044 // Creates an action that invokes the given method on the given object
   1045 // with no argument.
   1046 template <class Class, typename MethodPtr>
   1047 PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
   1048 InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
   1049   return MakePolymorphicAction(
   1050       internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
   1051           obj_ptr, method_ptr));
   1052 }
   1053 
   1054 // Creates an action that performs an_action and throws away its
   1055 // result.  In other words, it changes the return type of an_action to
   1056 // void.  an_action MUST NOT return void, or the code won't compile.
   1057 template <typename A>
   1058 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
   1059   return internal::IgnoreResultAction<A>(an_action);
   1060 }
   1061 
   1062 // Creates a reference wrapper for the given L-value.  If necessary,
   1063 // you can explicitly specify the type of the reference.  For example,
   1064 // suppose 'derived' is an object of type Derived, ByRef(derived)
   1065 // would wrap a Derived&.  If you want to wrap a const Base& instead,
   1066 // where Base is a base class of Derived, just write:
   1067 //
   1068 //   ByRef<const Base>(derived)
   1069 template <typename T>
   1070 inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
   1071   return internal::ReferenceWrapper<T>(l_value);
   1072 }
   1073 
   1074 }  // namespace testing
   1075 
   1076 #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
   1077