Home | History | Annotate | Download | only in target-arm
      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 #include <string.h>
      4 
      5 #include "cpu.h"
      6 #include "exec-all.h"
      7 #include "gdbstub.h"
      8 #include "helper.h"
      9 #include "qemu-common.h"
     10 #include "host-utils.h"
     11 #if !defined(CONFIG_USER_ONLY)
     12 //#include "hw/loader.h"
     13 #ifdef CONFIG_TRACE
     14 #include "android-trace.h"
     15 #endif
     16 #endif
     17 
     18 static uint32_t cortexa9_cp15_c0_c1[8] =
     19 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
     20 
     21 static uint32_t cortexa9_cp15_c0_c2[8] =
     22 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
     23 
     24 static uint32_t cortexa8_cp15_c0_c1[8] =
     25 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
     26 
     27 static uint32_t cortexa8_cp15_c0_c2[8] =
     28 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
     29 
     30 static uint32_t cortexa8r2_cp15_c0_c2[8] =
     31 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00011142, 0, 0, 0 };
     32 
     33 static uint32_t mpcore_cp15_c0_c1[8] =
     34 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
     35 
     36 static uint32_t mpcore_cp15_c0_c2[8] =
     37 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
     38 
     39 static uint32_t arm1136_cp15_c0_c1[8] =
     40 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
     41 
     42 static uint32_t arm1136_cp15_c0_c2[8] =
     43 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
     44 
     45 static uint32_t cpu_arm_find_by_name(const char *name);
     46 
     47 static inline void set_feature(CPUARMState *env, int feature)
     48 {
     49     env->features |= 1u << feature;
     50 }
     51 
     52 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
     53 {
     54     env->cp15.c0_cpuid = id;
     55     switch (id) {
     56     case ARM_CPUID_ARM926:
     57         set_feature(env, ARM_FEATURE_V4T);
     58         set_feature(env, ARM_FEATURE_V5);
     59         set_feature(env, ARM_FEATURE_VFP);
     60         env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
     61         env->cp15.c0_cachetype = 0x1dd20d2;
     62         env->cp15.c1_sys = 0x00090078;
     63         break;
     64     case ARM_CPUID_ARM946:
     65         set_feature(env, ARM_FEATURE_V4T);
     66         set_feature(env, ARM_FEATURE_V5);
     67         set_feature(env, ARM_FEATURE_MPU);
     68         env->cp15.c0_cachetype = 0x0f004006;
     69         env->cp15.c1_sys = 0x00000078;
     70         break;
     71     case ARM_CPUID_ARM1026:
     72         set_feature(env, ARM_FEATURE_V4T);
     73         set_feature(env, ARM_FEATURE_V5);
     74         set_feature(env, ARM_FEATURE_VFP);
     75         set_feature(env, ARM_FEATURE_AUXCR);
     76         env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
     77         env->cp15.c0_cachetype = 0x1dd20d2;
     78         env->cp15.c1_sys = 0x00090078;
     79         break;
     80     case ARM_CPUID_ARM1136_R2:
     81     case ARM_CPUID_ARM1136:
     82         set_feature(env, ARM_FEATURE_V4T);
     83         set_feature(env, ARM_FEATURE_V5);
     84         set_feature(env, ARM_FEATURE_V6);
     85         set_feature(env, ARM_FEATURE_VFP);
     86         set_feature(env, ARM_FEATURE_AUXCR);
     87         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
     88         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
     89         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
     90         memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
     91         memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
     92         env->cp15.c0_cachetype = 0x1dd20d2;
     93         env->cp15.c1_sys = 0x00050078;
     94         break;
     95     case ARM_CPUID_ARM11MPCORE:
     96         set_feature(env, ARM_FEATURE_V4T);
     97         set_feature(env, ARM_FEATURE_V5);
     98         set_feature(env, ARM_FEATURE_V6);
     99         set_feature(env, ARM_FEATURE_V6K);
    100         set_feature(env, ARM_FEATURE_VFP);
    101         set_feature(env, ARM_FEATURE_AUXCR);
    102         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
    103         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
    104         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
    105         memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
    106         memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
    107         env->cp15.c0_cachetype = 0x1dd20d2;
    108         break;
    109     case ARM_CPUID_CORTEXA8:
    110         set_feature(env, ARM_FEATURE_V4T);
    111         set_feature(env, ARM_FEATURE_V5);
    112         set_feature(env, ARM_FEATURE_V6);
    113         set_feature(env, ARM_FEATURE_V6K);
    114         set_feature(env, ARM_FEATURE_V7);
    115         set_feature(env, ARM_FEATURE_AUXCR);
    116         set_feature(env, ARM_FEATURE_THUMB2);
    117         set_feature(env, ARM_FEATURE_VFP);
    118         set_feature(env, ARM_FEATURE_VFP3);
    119         set_feature(env, ARM_FEATURE_NEON);
    120         set_feature(env, ARM_FEATURE_THUMB2EE);
    121         set_feature(env, ARM_FEATURE_TRUSTZONE);
    122         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
    123         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    124         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
    125         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
    126         memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
    127         env->cp15.c0_cachetype = 0x82048004;
    128         env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
    129         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
    130         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
    131         env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
    132         env->cp15.c1_sys = 0x00c50078;
    133         break;
    134     case ARM_CPUID_CORTEXA8_R2:
    135         set_feature(env, ARM_FEATURE_V4T);
    136         set_feature(env, ARM_FEATURE_V5);
    137         set_feature(env, ARM_FEATURE_V6);
    138         set_feature(env, ARM_FEATURE_V6K);
    139         set_feature(env, ARM_FEATURE_V7);
    140         set_feature(env, ARM_FEATURE_AUXCR);
    141         set_feature(env, ARM_FEATURE_THUMB2);
    142         set_feature(env, ARM_FEATURE_VFP);
    143         set_feature(env, ARM_FEATURE_VFP3);
    144         set_feature(env, ARM_FEATURE_NEON);
    145         set_feature(env, ARM_FEATURE_THUMB2EE);
    146         set_feature(env, ARM_FEATURE_TRUSTZONE);
    147         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c2;
    148         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    149         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011111;
    150         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
    151         memcpy(env->cp15.c0_c2, cortexa8r2_cp15_c0_c2, 8 * sizeof(uint32_t));
    152         env->cp15.c0_cachetype = 0x82048004;
    153         env->cp15.c0_clid = (1 << 27) | (2 << 24) | (4 << 3) | 3;
    154         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
    155         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
    156         env->cp15.c0_ccsid[2] = 0xf03fe03a; /* 256k L2 cache. */
    157         env->cp15.c1_sys = 0x00c50078;
    158         break;
    159     case ARM_CPUID_CORTEXA9:
    160         set_feature(env, ARM_FEATURE_V4T);
    161         set_feature(env, ARM_FEATURE_V5);
    162         set_feature(env, ARM_FEATURE_V6);
    163         set_feature(env, ARM_FEATURE_V6K);
    164         set_feature(env, ARM_FEATURE_V7);
    165         set_feature(env, ARM_FEATURE_AUXCR);
    166         set_feature(env, ARM_FEATURE_THUMB2);
    167         set_feature(env, ARM_FEATURE_VFP);
    168         set_feature(env, ARM_FEATURE_VFP3);
    169         set_feature(env, ARM_FEATURE_VFP_FP16);
    170         set_feature(env, ARM_FEATURE_NEON);
    171         set_feature(env, ARM_FEATURE_THUMB2EE);
    172         /* Note that A9 supports the MP extensions even for
    173          * A9UP and single-core A9MP (which are both different
    174          * and valid configurations; we don't model A9UP).
    175          */
    176         set_feature(env, ARM_FEATURE_V7MP);
    177         set_feature(env, ARM_FEATURE_TRUSTZONE);
    178         env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
    179         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
    180         env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
    181         memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
    182         memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
    183         env->cp15.c0_cachetype = 0x80038003;
    184         env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
    185         env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
    186         env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
    187         env->cp15.c1_sys = 0x00c50078;
    188         break;
    189     case ARM_CPUID_CORTEXM3:
    190         set_feature(env, ARM_FEATURE_V4T);
    191         set_feature(env, ARM_FEATURE_V5);
    192         set_feature(env, ARM_FEATURE_V6);
    193         set_feature(env, ARM_FEATURE_THUMB2);
    194         set_feature(env, ARM_FEATURE_V7);
    195         set_feature(env, ARM_FEATURE_M);
    196         set_feature(env, ARM_FEATURE_DIV);
    197         break;
    198     case ARM_CPUID_ANY: /* For userspace emulation.  */
    199         set_feature(env, ARM_FEATURE_V4T);
    200         set_feature(env, ARM_FEATURE_V5);
    201         set_feature(env, ARM_FEATURE_V6);
    202         set_feature(env, ARM_FEATURE_V6K);
    203         set_feature(env, ARM_FEATURE_V7);
    204         set_feature(env, ARM_FEATURE_THUMB2);
    205         set_feature(env, ARM_FEATURE_VFP);
    206         set_feature(env, ARM_FEATURE_VFP3);
    207         set_feature(env, ARM_FEATURE_VFP_FP16);
    208         set_feature(env, ARM_FEATURE_NEON);
    209         set_feature(env, ARM_FEATURE_THUMB2EE);
    210         set_feature(env, ARM_FEATURE_DIV);
    211         set_feature(env, ARM_FEATURE_V7MP);
    212         break;
    213     case ARM_CPUID_TI915T:
    214     case ARM_CPUID_TI925T:
    215         set_feature(env, ARM_FEATURE_V4T);
    216         set_feature(env, ARM_FEATURE_OMAPCP);
    217         env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
    218         env->cp15.c0_cachetype = 0x5109149;
    219         env->cp15.c1_sys = 0x00000070;
    220         env->cp15.c15_i_max = 0x000;
    221         env->cp15.c15_i_min = 0xff0;
    222         break;
    223     case ARM_CPUID_PXA250:
    224     case ARM_CPUID_PXA255:
    225     case ARM_CPUID_PXA260:
    226     case ARM_CPUID_PXA261:
    227     case ARM_CPUID_PXA262:
    228         set_feature(env, ARM_FEATURE_V4T);
    229         set_feature(env, ARM_FEATURE_V5);
    230         set_feature(env, ARM_FEATURE_XSCALE);
    231         /* JTAG_ID is ((id << 28) | 0x09265013) */
    232         env->cp15.c0_cachetype = 0xd172172;
    233         env->cp15.c1_sys = 0x00000078;
    234         break;
    235     case ARM_CPUID_PXA270_A0:
    236     case ARM_CPUID_PXA270_A1:
    237     case ARM_CPUID_PXA270_B0:
    238     case ARM_CPUID_PXA270_B1:
    239     case ARM_CPUID_PXA270_C0:
    240     case ARM_CPUID_PXA270_C5:
    241         set_feature(env, ARM_FEATURE_V4T);
    242         set_feature(env, ARM_FEATURE_V5);
    243         set_feature(env, ARM_FEATURE_XSCALE);
    244         /* JTAG_ID is ((id << 28) | 0x09265013) */
    245         set_feature(env, ARM_FEATURE_IWMMXT);
    246         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
    247         env->cp15.c0_cachetype = 0xd172172;
    248         env->cp15.c1_sys = 0x00000078;
    249         break;
    250     case ARM_CPUID_SA1100:
    251     case ARM_CPUID_SA1110:
    252         set_feature(env, ARM_FEATURE_STRONGARM);
    253         env->cp15.c1_sys = 0x00000070;
    254         break;
    255     default:
    256         cpu_abort(env, "Bad CPU ID: %x\n", id);
    257         break;
    258     }
    259 }
    260 
    261 void cpu_reset(CPUARMState *env)
    262 {
    263     uint32_t id;
    264 
    265     if (qemu_loglevel_mask(CPU_LOG_RESET)) {
    266         qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
    267         log_cpu_state(env, 0);
    268     }
    269 
    270     id = env->cp15.c0_cpuid;
    271     memset(env, 0, offsetof(CPUARMState, breakpoints));
    272     if (id)
    273         cpu_reset_model_id(env, id);
    274     /* DBGDIDR : we implement nothing, and just mirror the main ID
    275      * register's Variant and Revision fields.
    276      */
    277     env->cp14_dbgdidr = (id >> 16 & 0xf0) | 0xf;
    278 #if defined (CONFIG_USER_ONLY)
    279     env->uncached_cpsr = ARM_CPU_MODE_USR;
    280     /* For user mode we must enable access to coprocessors */
    281     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
    282     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
    283         env->cp15.c15_cpar = 3;
    284     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
    285         env->cp15.c15_cpar = 1;
    286     }
    287 #else
    288     /* SVC mode with interrupts disabled.  */
    289     env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
    290     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
    291        clear at reset.  Initial SP and PC are loaded from ROM.  */
    292     if (IS_M(env)) {
    293         uint32_t pc;
    294         uint8_t *rom;
    295         env->uncached_cpsr &= ~CPSR_I;
    296 #ifndef CONFIG_ANDROID  /* No hw/loader.h and no ROM support for now on Android */
    297         rom = rom_ptr(0);
    298         if (rom) {
    299             /* We should really use ldl_phys here, in case the guest
    300                modified flash and reset itself.  However images
    301                loaded via -kenrel have not been copied yet, so load the
    302                values directly from there.  */
    303             env->regs[13] = ldl_p(rom);
    304             pc = ldl_p(rom + 4);
    305             env->thumb = pc & 1;
    306             env->regs[15] = pc & ~1;
    307         }
    308 #endif
    309     }
    310     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
    311     env->cp15.c2_base_mask = 0xffffc000u;
    312 #endif
    313     set_flush_to_zero(1, &env->vfp.standard_fp_status);
    314     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
    315     set_default_nan_mode(1, &env->vfp.standard_fp_status);
    316     set_float_detect_tininess(float_tininess_before_rounding,
    317                               &env->vfp.fp_status);
    318     set_float_detect_tininess(float_tininess_before_rounding,
    319                               &env->vfp.standard_fp_status);
    320     tlb_flush(env, 1);
    321 }
    322 
    323 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
    324 {
    325     int nregs;
    326 
    327     /* VFP data registers are always little-endian.  */
    328     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    329     if (reg < nregs) {
    330         stfq_le_p(buf, env->vfp.regs[reg]);
    331         return 8;
    332     }
    333     if (arm_feature(env, ARM_FEATURE_NEON)) {
    334         /* Aliases for Q regs.  */
    335         nregs += 16;
    336         if (reg < nregs) {
    337             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
    338             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
    339             return 16;
    340         }
    341     }
    342     switch (reg - nregs) {
    343     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    344     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    345     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    346     }
    347     return 0;
    348 }
    349 
    350 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
    351 {
    352     int nregs;
    353 
    354     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    355     if (reg < nregs) {
    356         env->vfp.regs[reg] = ldfq_le_p(buf);
    357         return 8;
    358     }
    359     if (arm_feature(env, ARM_FEATURE_NEON)) {
    360         nregs += 16;
    361         if (reg < nregs) {
    362             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
    363             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
    364             return 16;
    365         }
    366     }
    367     switch (reg - nregs) {
    368     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    369     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
    370     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
    371     }
    372     return 0;
    373 }
    374 
    375 CPUARMState *cpu_arm_init(const char *cpu_model)
    376 {
    377     CPUARMState *env;
    378     uint32_t id;
    379     static int inited = 0;
    380 
    381     id = cpu_arm_find_by_name(cpu_model);
    382     if (id == 0)
    383         return NULL;
    384     env = qemu_mallocz(sizeof(CPUARMState));
    385     cpu_exec_init(env);
    386     if (!inited) {
    387         inited = 1;
    388         arm_translate_init();
    389     }
    390 
    391     env->cpu_model_str = cpu_model;
    392     env->cp15.c0_cpuid = id;
    393     cpu_reset(env);
    394     if (arm_feature(env, ARM_FEATURE_NEON)) {
    395         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
    396                                  51, "arm-neon.xml", 0);
    397     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
    398         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
    399                                  35, "arm-vfp3.xml", 0);
    400     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
    401         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
    402                                  19, "arm-vfp.xml", 0);
    403     }
    404     qemu_init_vcpu(env);
    405     return env;
    406 }
    407 
    408 struct arm_cpu_t {
    409     uint32_t id;
    410     const char *name;
    411 };
    412 
    413 static const struct arm_cpu_t arm_cpu_names[] = {
    414     { ARM_CPUID_ARM926, "arm926"},
    415     { ARM_CPUID_ARM946, "arm946"},
    416     { ARM_CPUID_ARM1026, "arm1026"},
    417     { ARM_CPUID_ARM1136, "arm1136"},
    418     { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
    419     { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
    420     { ARM_CPUID_CORTEXM3, "cortex-m3"},
    421     { ARM_CPUID_CORTEXA8, "cortex-a8"},
    422     { ARM_CPUID_CORTEXA8_R2, "cortex-a8-r2"},
    423     { ARM_CPUID_CORTEXA9, "cortex-a9"},
    424     { ARM_CPUID_TI925T, "ti925t" },
    425     { ARM_CPUID_PXA250, "pxa250" },
    426     { ARM_CPUID_SA1100,    "sa1100" },
    427     { ARM_CPUID_SA1110,    "sa1110" },
    428     { ARM_CPUID_PXA255, "pxa255" },
    429     { ARM_CPUID_PXA260, "pxa260" },
    430     { ARM_CPUID_PXA261, "pxa261" },
    431     { ARM_CPUID_PXA262, "pxa262" },
    432     { ARM_CPUID_PXA270, "pxa270" },
    433     { ARM_CPUID_PXA270_A0, "pxa270-a0" },
    434     { ARM_CPUID_PXA270_A1, "pxa270-a1" },
    435     { ARM_CPUID_PXA270_B0, "pxa270-b0" },
    436     { ARM_CPUID_PXA270_B1, "pxa270-b1" },
    437     { ARM_CPUID_PXA270_C0, "pxa270-c0" },
    438     { ARM_CPUID_PXA270_C5, "pxa270-c5" },
    439     { ARM_CPUID_ANY, "any"},
    440     { 0, NULL}
    441 };
    442 
    443 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
    444 {
    445     int i;
    446 
    447     (*cpu_fprintf)(f, "Available CPUs:\n");
    448     for (i = 0; arm_cpu_names[i].name; i++) {
    449         (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
    450     }
    451 }
    452 
    453 /* return 0 if not found */
    454 static uint32_t cpu_arm_find_by_name(const char *name)
    455 {
    456     int i;
    457     uint32_t id;
    458 
    459     id = 0;
    460     for (i = 0; arm_cpu_names[i].name; i++) {
    461         if (strcmp(name, arm_cpu_names[i].name) == 0) {
    462             id = arm_cpu_names[i].id;
    463             break;
    464         }
    465     }
    466     return id;
    467 }
    468 
    469 void cpu_arm_close(CPUARMState *env)
    470 {
    471     free(env);
    472 }
    473 
    474 uint32_t cpsr_read(CPUARMState *env)
    475 {
    476     int ZF;
    477     ZF = (env->ZF == 0);
    478     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
    479         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
    480         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
    481         | ((env->condexec_bits & 0xfc) << 8)
    482         | (env->GE << 16);
    483 }
    484 
    485 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
    486 {
    487     if (mask & CPSR_NZCV) {
    488         env->ZF = (~val) & CPSR_Z;
    489         env->NF = val;
    490         env->CF = (val >> 29) & 1;
    491         env->VF = (val << 3) & 0x80000000;
    492     }
    493     if (mask & CPSR_Q)
    494         env->QF = ((val & CPSR_Q) != 0);
    495     if (mask & CPSR_T)
    496         env->thumb = ((val & CPSR_T) != 0);
    497     if (mask & CPSR_IT_0_1) {
    498         env->condexec_bits &= ~3;
    499         env->condexec_bits |= (val >> 25) & 3;
    500     }
    501     if (mask & CPSR_IT_2_7) {
    502         env->condexec_bits &= 3;
    503         env->condexec_bits |= (val >> 8) & 0xfc;
    504     }
    505     if (mask & CPSR_GE) {
    506         env->GE = (val >> 16) & 0xf;
    507     }
    508 
    509     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
    510         switch_mode(env, val & CPSR_M);
    511     }
    512     mask &= ~CACHED_CPSR_BITS;
    513     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
    514 }
    515 
    516 /* Sign/zero extend */
    517 uint32_t HELPER(sxtb16)(uint32_t x)
    518 {
    519     uint32_t res;
    520     res = (uint16_t)(int8_t)x;
    521     res |= (uint32_t)(int8_t)(x >> 16) << 16;
    522     return res;
    523 }
    524 
    525 uint32_t HELPER(uxtb16)(uint32_t x)
    526 {
    527     uint32_t res;
    528     res = (uint16_t)(uint8_t)x;
    529     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    530     return res;
    531 }
    532 
    533 uint32_t HELPER(clz)(uint32_t x)
    534 {
    535     return clz32(x);
    536 }
    537 
    538 int32_t HELPER(sdiv)(int32_t num, int32_t den)
    539 {
    540     if (den == 0)
    541       return 0;
    542     if (num == INT_MIN && den == -1)
    543       return INT_MIN;
    544     return num / den;
    545 }
    546 
    547 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
    548 {
    549     if (den == 0)
    550       return 0;
    551     return num / den;
    552 }
    553 
    554 uint32_t HELPER(rbit)(uint32_t x)
    555 {
    556     x =  ((x & 0xff000000) >> 24)
    557        | ((x & 0x00ff0000) >> 8)
    558        | ((x & 0x0000ff00) << 8)
    559        | ((x & 0x000000ff) << 24);
    560     x =  ((x & 0xf0f0f0f0) >> 4)
    561        | ((x & 0x0f0f0f0f) << 4);
    562     x =  ((x & 0x88888888) >> 3)
    563        | ((x & 0x44444444) >> 1)
    564        | ((x & 0x22222222) << 1)
    565        | ((x & 0x11111111) << 3);
    566     return x;
    567 }
    568 
    569 uint32_t HELPER(abs)(uint32_t x)
    570 {
    571     return ((int32_t)x < 0) ? -x : x;
    572 }
    573 
    574 #if defined(CONFIG_USER_ONLY)
    575 
    576 void do_interrupt (CPUState *env)
    577 {
    578     env->exception_index = -1;
    579 }
    580 
    581 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
    582                               int mmu_idx, int is_softmmu)
    583 {
    584     if (rw == 2) {
    585         env->exception_index = EXCP_PREFETCH_ABORT;
    586         env->cp15.c6_insn = address;
    587     } else {
    588         env->exception_index = EXCP_DATA_ABORT;
    589         env->cp15.c6_data = address;
    590     }
    591     return 1;
    592 }
    593 
    594 /* These should probably raise undefined insn exceptions.  */
    595 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
    596 {
    597     cpu_abort(env, "cp15 insn %08x\n", insn);
    598 }
    599 
    600 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
    601 {
    602     cpu_abort(env, "cp15 insn %08x\n", insn);
    603     return 0;
    604 }
    605 
    606 /* These should probably raise undefined insn exceptions.  */
    607 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
    608 {
    609     cpu_abort(env, "v7m_mrs %d\n", reg);
    610 }
    611 
    612 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
    613 {
    614     cpu_abort(env, "v7m_mrs %d\n", reg);
    615     return 0;
    616 }
    617 
    618 void switch_mode(CPUState *env, int mode)
    619 {
    620     if (mode != ARM_CPU_MODE_USR)
    621         cpu_abort(env, "Tried to switch out of user mode\n");
    622 }
    623 
    624 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
    625 {
    626     cpu_abort(env, "banked r13 write\n");
    627 }
    628 
    629 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
    630 {
    631     cpu_abort(env, "banked r13 read\n");
    632     return 0;
    633 }
    634 
    635 #else
    636 
    637 extern int semihosting_enabled;
    638 
    639 /* Map CPU modes onto saved register banks.  */
    640 static inline int bank_number (int mode)
    641 {
    642     switch (mode) {
    643     case ARM_CPU_MODE_USR:
    644     case ARM_CPU_MODE_SYS:
    645         return 0;
    646     case ARM_CPU_MODE_SVC:
    647         return 1;
    648     case ARM_CPU_MODE_ABT:
    649         return 2;
    650     case ARM_CPU_MODE_UND:
    651         return 3;
    652     case ARM_CPU_MODE_IRQ:
    653         return 4;
    654     case ARM_CPU_MODE_FIQ:
    655         return 5;
    656     case ARM_CPU_MODE_SMC:
    657         return 6;
    658     }
    659     cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
    660     return -1;
    661 }
    662 
    663 void switch_mode(CPUState *env, int mode)
    664 {
    665     int old_mode;
    666     int i;
    667 
    668     old_mode = env->uncached_cpsr & CPSR_M;
    669     if (mode == old_mode)
    670         return;
    671 
    672     if (old_mode == ARM_CPU_MODE_FIQ) {
    673         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    674         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    675     } else if (mode == ARM_CPU_MODE_FIQ) {
    676         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    677         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    678     }
    679 
    680     i = bank_number(old_mode);
    681     env->banked_r13[i] = env->regs[13];
    682     env->banked_r14[i] = env->regs[14];
    683     env->banked_spsr[i] = env->spsr;
    684 
    685     i = bank_number(mode);
    686     env->regs[13] = env->banked_r13[i];
    687     env->regs[14] = env->banked_r14[i];
    688     env->spsr = env->banked_spsr[i];
    689 }
    690 
    691 static void v7m_push(CPUARMState *env, uint32_t val)
    692 {
    693     env->regs[13] -= 4;
    694     stl_phys(env->regs[13], val);
    695 }
    696 
    697 static uint32_t v7m_pop(CPUARMState *env)
    698 {
    699     uint32_t val;
    700     val = ldl_phys(env->regs[13]);
    701     env->regs[13] += 4;
    702     return val;
    703 }
    704 
    705 /* Switch to V7M main or process stack pointer.  */
    706 static void switch_v7m_sp(CPUARMState *env, int process)
    707 {
    708     uint32_t tmp;
    709     if (env->v7m.current_sp != process) {
    710         tmp = env->v7m.other_sp;
    711         env->v7m.other_sp = env->regs[13];
    712         env->regs[13] = tmp;
    713         env->v7m.current_sp = process;
    714     }
    715 }
    716 
    717 static void do_v7m_exception_exit(CPUARMState *env)
    718 {
    719     uint32_t type;
    720     uint32_t xpsr;
    721 
    722     type = env->regs[15];
    723     if (env->v7m.exception != 0)
    724         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
    725 
    726     /* Switch to the target stack.  */
    727     switch_v7m_sp(env, (type & 4) != 0);
    728     /* Pop registers.  */
    729     env->regs[0] = v7m_pop(env);
    730     env->regs[1] = v7m_pop(env);
    731     env->regs[2] = v7m_pop(env);
    732     env->regs[3] = v7m_pop(env);
    733     env->regs[12] = v7m_pop(env);
    734     env->regs[14] = v7m_pop(env);
    735     env->regs[15] = v7m_pop(env);
    736     xpsr = v7m_pop(env);
    737     xpsr_write(env, xpsr, 0xfffffdff);
    738     /* Undo stack alignment.  */
    739     if (xpsr & 0x200)
    740         env->regs[13] |= 4;
    741     /* ??? The exception return type specifies Thread/Handler mode.  However
    742        this is also implied by the xPSR value. Not sure what to do
    743        if there is a mismatch.  */
    744     /* ??? Likewise for mismatches between the CONTROL register and the stack
    745        pointer.  */
    746 }
    747 
    748 static void do_interrupt_v7m(CPUARMState *env)
    749 {
    750     uint32_t xpsr = xpsr_read(env);
    751     uint32_t lr;
    752     uint32_t addr;
    753 
    754     lr = 0xfffffff1;
    755     if (env->v7m.current_sp)
    756         lr |= 4;
    757     if (env->v7m.exception == 0)
    758         lr |= 8;
    759 
    760     /* For exceptions we just mark as pending on the NVIC, and let that
    761        handle it.  */
    762     /* TODO: Need to escalate if the current priority is higher than the
    763        one we're raising.  */
    764     switch (env->exception_index) {
    765     case EXCP_UDEF:
    766         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
    767         return;
    768     case EXCP_SWI:
    769         env->regs[15] += 2;
    770         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
    771         return;
    772     case EXCP_PREFETCH_ABORT:
    773     case EXCP_DATA_ABORT:
    774         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
    775         return;
    776     case EXCP_BKPT:
    777         if (semihosting_enabled) {
    778             int nr;
    779             nr = lduw_code(env->regs[15]) & 0xff;
    780             if (nr == 0xab) {
    781                 env->regs[15] += 2;
    782                 env->regs[0] = do_arm_semihosting(env);
    783                 return;
    784             }
    785         }
    786         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
    787         return;
    788     case EXCP_IRQ:
    789         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
    790         break;
    791     case EXCP_EXCEPTION_EXIT:
    792         do_v7m_exception_exit(env);
    793         return;
    794     default:
    795         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
    796         return; /* Never happens.  Keep compiler happy.  */
    797     }
    798 
    799     /* Align stack pointer.  */
    800     /* ??? Should only do this if Configuration Control Register
    801        STACKALIGN bit is set.  */
    802     if (env->regs[13] & 4) {
    803         env->regs[13] -= 4;
    804         xpsr |= 0x200;
    805     }
    806     /* Switch to the handler mode.  */
    807     v7m_push(env, xpsr);
    808     v7m_push(env, env->regs[15]);
    809     v7m_push(env, env->regs[14]);
    810     v7m_push(env, env->regs[12]);
    811     v7m_push(env, env->regs[3]);
    812     v7m_push(env, env->regs[2]);
    813     v7m_push(env, env->regs[1]);
    814     v7m_push(env, env->regs[0]);
    815     switch_v7m_sp(env, 0);
    816     env->uncached_cpsr &= ~CPSR_IT;
    817     env->regs[14] = lr;
    818     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
    819     env->regs[15] = addr & 0xfffffffe;
    820     env->thumb = addr & 1;
    821 }
    822 
    823 /* Handle a CPU exception.  */
    824 void do_interrupt(CPUARMState *env)
    825 {
    826     uint32_t addr;
    827     uint32_t mask;
    828     int new_mode;
    829     uint32_t offset;
    830 
    831 #ifdef CONFIG_TRACE
    832     if (tracing) {
    833         trace_exception(env->regs[15]);
    834     }
    835 #endif
    836 
    837     if (IS_M(env)) {
    838         do_interrupt_v7m(env);
    839         return;
    840     }
    841     /* TODO: Vectored interrupt controller.  */
    842     switch (env->exception_index) {
    843     case EXCP_UDEF:
    844         new_mode = ARM_CPU_MODE_UND;
    845         addr = 0x04;
    846         mask = CPSR_I;
    847         if (env->thumb)
    848             offset = 2;
    849         else
    850             offset = 4;
    851         break;
    852     case EXCP_SWI:
    853         if (semihosting_enabled) {
    854             /* Check for semihosting interrupt.  */
    855             if (env->thumb) {
    856                 mask = lduw_code(env->regs[15] - 2) & 0xff;
    857             } else {
    858                 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
    859             }
    860             /* Only intercept calls from privileged modes, to provide some
    861                semblance of security.  */
    862             if (((mask == 0x123456 && !env->thumb)
    863                     || (mask == 0xab && env->thumb))
    864                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
    865                 env->regs[0] = do_arm_semihosting(env);
    866                 return;
    867             }
    868         }
    869         new_mode = ARM_CPU_MODE_SVC;
    870         addr = 0x08;
    871         mask = CPSR_I;
    872         /* The PC already points to the next instruction.  */
    873         offset = 0;
    874         break;
    875     case EXCP_BKPT:
    876         /* See if this is a semihosting syscall.  */
    877         if (env->thumb && semihosting_enabled) {
    878             mask = lduw_code(env->regs[15]) & 0xff;
    879             if (mask == 0xab
    880                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
    881                 env->regs[15] += 2;
    882                 env->regs[0] = do_arm_semihosting(env);
    883                 return;
    884             }
    885         }
    886         /* Fall through to prefetch abort.  */
    887     case EXCP_PREFETCH_ABORT:
    888         new_mode = ARM_CPU_MODE_ABT;
    889         addr = 0x0c;
    890         mask = CPSR_A | CPSR_I;
    891         offset = 4;
    892         break;
    893     case EXCP_DATA_ABORT:
    894         new_mode = ARM_CPU_MODE_ABT;
    895         addr = 0x10;
    896         mask = CPSR_A | CPSR_I;
    897         offset = 8;
    898         break;
    899     case EXCP_IRQ:
    900         new_mode = ARM_CPU_MODE_IRQ;
    901         addr = 0x18;
    902         /* Disable IRQ and imprecise data aborts.  */
    903         mask = CPSR_A | CPSR_I;
    904         offset = 4;
    905         break;
    906     case EXCP_FIQ:
    907         new_mode = ARM_CPU_MODE_FIQ;
    908         addr = 0x1c;
    909         /* Disable FIQ, IRQ and imprecise data aborts.  */
    910         mask = CPSR_A | CPSR_I | CPSR_F;
    911         offset = 4;
    912         break;
    913     case EXCP_SMC:
    914         if (semihosting_enabled) {
    915             cpu_abort(env, "SMC handling under semihosting not implemented\n");
    916             return;
    917         }
    918         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
    919             env->cp15.c1_secfg &= ~1;
    920         }
    921         offset = env->thumb ? 2 : 0;
    922         new_mode = ARM_CPU_MODE_SMC;
    923         addr = 0x08;
    924         mask = CPSR_A | CPSR_I | CPSR_F;
    925         break;
    926     default:
    927         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
    928         return; /* Never happens.  Keep compiler happy.  */
    929     }
    930     if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
    931         if (new_mode == ARM_CPU_MODE_SMC ||
    932             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SMC) {
    933             addr += env->cp15.c12_mvbar;
    934         } else {
    935             if (env->cp15.c1_sys & (1 << 13)) {
    936                 addr += 0xffff0000;
    937             } else {
    938                 addr += env->cp15.c12_vbar;
    939             }
    940         }
    941     } else {
    942     /* High vectors.  */
    943     if (env->cp15.c1_sys & (1 << 13)) {
    944         addr += 0xffff0000;
    945         }
    946     }
    947     switch_mode (env, new_mode);
    948     env->spsr = cpsr_read(env);
    949     /* Clear IT bits.  */
    950     env->condexec_bits = 0;
    951     /* Switch to the new mode, and to the correct instruction set.  */
    952     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
    953     env->uncached_cpsr |= mask;
    954     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
    955      * and we should just guard the thumb mode on V4 */
    956     if (arm_feature(env, ARM_FEATURE_V4T)) {
    957         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
    958     }
    959     env->regs[14] = env->regs[15] + offset;
    960     env->regs[15] = addr;
    961     env->interrupt_request |= CPU_INTERRUPT_EXITTB;
    962 }
    963 
    964 /* Check section/page access permissions.
    965    Returns the page protection flags, or zero if the access is not
    966    permitted.  */
    967 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
    968                            int is_user)
    969 {
    970   int prot_ro;
    971 
    972   if (domain == 3)
    973     return PAGE_READ | PAGE_WRITE;
    974 
    975   if (access_type == 1)
    976       prot_ro = 0;
    977   else
    978       prot_ro = PAGE_READ;
    979 
    980   switch (ap) {
    981   case 0:
    982       if (access_type == 1)
    983           return 0;
    984       switch ((env->cp15.c1_sys >> 8) & 3) {
    985       case 1:
    986           return is_user ? 0 : PAGE_READ;
    987       case 2:
    988           return PAGE_READ;
    989       default:
    990           return 0;
    991       }
    992   case 1:
    993       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    994   case 2:
    995       if (is_user)
    996           return prot_ro;
    997       else
    998           return PAGE_READ | PAGE_WRITE;
    999   case 3:
   1000       return PAGE_READ | PAGE_WRITE;
   1001   case 4: /* Reserved.  */
   1002       return 0;
   1003   case 5:
   1004       return is_user ? 0 : prot_ro;
   1005   case 6:
   1006       return prot_ro;
   1007   case 7:
   1008       if (!arm_feature (env, ARM_FEATURE_V7))
   1009           return 0;
   1010       return prot_ro;
   1011   default:
   1012       abort();
   1013   }
   1014 }
   1015 
   1016 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
   1017 {
   1018     uint32_t table;
   1019 
   1020     if (address & env->cp15.c2_mask)
   1021         table = env->cp15.c2_base1 & 0xffffc000;
   1022     else
   1023         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
   1024 
   1025     table |= (address >> 18) & 0x3ffc;
   1026     return table;
   1027 }
   1028 
   1029 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
   1030 			    int is_user, uint32_t *phys_ptr, int *prot,
   1031                             target_ulong *page_size)
   1032 {
   1033     int code;
   1034     uint32_t table;
   1035     uint32_t desc;
   1036     int type;
   1037     int ap;
   1038     int domain;
   1039     uint32_t phys_addr;
   1040 
   1041     /* Pagetable walk.  */
   1042     /* Lookup l1 descriptor.  */
   1043     table = get_level1_table_address(env, address);
   1044     desc = ldl_phys(table);
   1045     type = (desc & 3);
   1046     domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
   1047     if (type == 0) {
   1048         /* Section translation fault.  */
   1049         code = 5;
   1050         goto do_fault;
   1051     }
   1052     if (domain == 0 || domain == 2) {
   1053         if (type == 2)
   1054             code = 9; /* Section domain fault.  */
   1055         else
   1056             code = 11; /* Page domain fault.  */
   1057         goto do_fault;
   1058     }
   1059     if (type == 2) {
   1060         /* 1Mb section.  */
   1061         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
   1062         ap = (desc >> 10) & 3;
   1063         code = 13;
   1064         *page_size = 1024 * 1024;
   1065     } else {
   1066         /* Lookup l2 entry.  */
   1067 	if (type == 1) {
   1068 	    /* Coarse pagetable.  */
   1069 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
   1070 	} else {
   1071 	    /* Fine pagetable.  */
   1072 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
   1073 	}
   1074         desc = ldl_phys(table);
   1075         switch (desc & 3) {
   1076         case 0: /* Page translation fault.  */
   1077             code = 7;
   1078             goto do_fault;
   1079         case 1: /* 64k page.  */
   1080             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
   1081             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
   1082             *page_size = 0x10000;
   1083             break;
   1084         case 2: /* 4k page.  */
   1085             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1086             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
   1087             *page_size = 0x1000;
   1088             break;
   1089         case 3: /* 1k page.  */
   1090 	    if (type == 1) {
   1091 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1092 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1093 		} else {
   1094 		    /* Page translation fault.  */
   1095 		    code = 7;
   1096 		    goto do_fault;
   1097 		}
   1098 	    } else {
   1099 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
   1100 	    }
   1101             ap = (desc >> 4) & 3;
   1102             *page_size = 0x400;
   1103             break;
   1104         default:
   1105             /* Never happens, but compiler isn't smart enough to tell.  */
   1106             abort();
   1107         }
   1108         code = 15;
   1109     }
   1110     *prot = check_ap(env, ap, domain, access_type, is_user);
   1111     if (!*prot) {
   1112         /* Access permission fault.  */
   1113         goto do_fault;
   1114     }
   1115     *prot |= PAGE_EXEC;
   1116     *phys_ptr = phys_addr;
   1117     return 0;
   1118 do_fault:
   1119     return code | (domain << 4);
   1120 }
   1121 
   1122 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
   1123 			    int is_user, uint32_t *phys_ptr, int *prot,
   1124                             target_ulong *page_size)
   1125 {
   1126     int code;
   1127     uint32_t table;
   1128     uint32_t desc;
   1129     uint32_t xn;
   1130     int type;
   1131     int ap;
   1132     int domain;
   1133     uint32_t phys_addr;
   1134 
   1135     /* Pagetable walk.  */
   1136     /* Lookup l1 descriptor.  */
   1137     table = get_level1_table_address(env, address);
   1138     desc = ldl_phys(table);
   1139     type = (desc & 3);
   1140     if (type == 0 || type == 3) {
   1141         /* Section translation fault.  */
   1142         code = 5;
   1143         domain = 0;
   1144         goto do_fault;
   1145     } else if (type == 2 && (desc & (1 << 18))) {
   1146         /* Supersection.  */
   1147         domain = 0;
   1148     } else {
   1149         /* Section or page.  */
   1150         domain = (desc >> 4) & 0x1e;
   1151     }
   1152     domain = (env->cp15.c3 >> domain) & 3;
   1153     if (domain == 0 || domain == 2) {
   1154         if (type == 2)
   1155             code = 9; /* Section domain fault.  */
   1156         else
   1157             code = 11; /* Page domain fault.  */
   1158         goto do_fault;
   1159     }
   1160     if (type == 2) {
   1161         if (desc & (1 << 18)) {
   1162             /* Supersection.  */
   1163             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
   1164             *page_size = 0x1000000;
   1165         } else {
   1166             /* Section.  */
   1167             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
   1168             *page_size = 0x100000;
   1169         }
   1170         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
   1171         xn = desc & (1 << 4);
   1172         code = 13;
   1173     } else {
   1174         /* Lookup l2 entry.  */
   1175         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
   1176         desc = ldl_phys(table);
   1177         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
   1178         switch (desc & 3) {
   1179         case 0: /* Page translation fault.  */
   1180             code = 7;
   1181             goto do_fault;
   1182         case 1: /* 64k page.  */
   1183             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
   1184             xn = desc & (1 << 15);
   1185             *page_size = 0x10000;
   1186             break;
   1187         case 2: case 3: /* 4k page.  */
   1188             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
   1189             xn = desc & 1;
   1190             *page_size = 0x1000;
   1191             break;
   1192         default:
   1193             /* Never happens, but compiler isn't smart enough to tell.  */
   1194             abort();
   1195         }
   1196         code = 15;
   1197     }
   1198     if (domain == 3) {
   1199         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1200     } else {
   1201     if (xn && access_type == 2)
   1202         goto do_fault;
   1203 
   1204     /* The simplified model uses AP[0] as an access control bit.  */
   1205     if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
   1206         /* Access flag fault.  */
   1207         code = (code == 15) ? 6 : 3;
   1208         goto do_fault;
   1209     }
   1210     *prot = check_ap(env, ap, domain, access_type, is_user);
   1211     if (!*prot) {
   1212         /* Access permission fault.  */
   1213         goto do_fault;
   1214         }
   1215         if (!xn) {
   1216             *prot |= PAGE_EXEC;
   1217         }
   1218     }
   1219     *phys_ptr = phys_addr;
   1220     return 0;
   1221 do_fault:
   1222     return code | (domain << 4);
   1223 }
   1224 
   1225 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
   1226 			     int is_user, uint32_t *phys_ptr, int *prot)
   1227 {
   1228     int n;
   1229     uint32_t mask;
   1230     uint32_t base;
   1231 
   1232     *phys_ptr = address;
   1233     for (n = 7; n >= 0; n--) {
   1234 	base = env->cp15.c6_region[n];
   1235 	if ((base & 1) == 0)
   1236 	    continue;
   1237 	mask = 1 << ((base >> 1) & 0x1f);
   1238 	/* Keep this shift separate from the above to avoid an
   1239 	   (undefined) << 32.  */
   1240 	mask = (mask << 1) - 1;
   1241 	if (((base ^ address) & ~mask) == 0)
   1242 	    break;
   1243     }
   1244     if (n < 0)
   1245 	return 2;
   1246 
   1247     if (access_type == 2) {
   1248 	mask = env->cp15.c5_insn;
   1249     } else {
   1250 	mask = env->cp15.c5_data;
   1251     }
   1252     mask = (mask >> (n * 4)) & 0xf;
   1253     switch (mask) {
   1254     case 0:
   1255 	return 1;
   1256     case 1:
   1257 	if (is_user)
   1258 	  return 1;
   1259 	*prot = PAGE_READ | PAGE_WRITE;
   1260 	break;
   1261     case 2:
   1262 	*prot = PAGE_READ;
   1263 	if (!is_user)
   1264 	    *prot |= PAGE_WRITE;
   1265 	break;
   1266     case 3:
   1267 	*prot = PAGE_READ | PAGE_WRITE;
   1268 	break;
   1269     case 5:
   1270 	if (is_user)
   1271 	    return 1;
   1272 	*prot = PAGE_READ;
   1273 	break;
   1274     case 6:
   1275 	*prot = PAGE_READ;
   1276 	break;
   1277     default:
   1278 	/* Bad permission.  */
   1279 	return 1;
   1280     }
   1281     *prot |= PAGE_EXEC;
   1282     return 0;
   1283 }
   1284 
   1285 #ifdef CONFIG_GLES2
   1286 int get_phys_addr(CPUState *env, uint32_t address,
   1287                   int access_type, int is_user,
   1288                   uint32_t *phys_ptr, int *prot,
   1289                   target_ulong *page_size);
   1290 #else
   1291 static
   1292 #endif
   1293 int get_phys_addr(CPUState *env, uint32_t address,
   1294                                 int access_type, int is_user,
   1295                                 uint32_t *phys_ptr, int *prot,
   1296                                 target_ulong *page_size)
   1297 {
   1298     /* Fast Context Switch Extension.  */
   1299     if (address < 0x02000000)
   1300         address += env->cp15.c13_fcse;
   1301 
   1302     if ((env->cp15.c1_sys & 1) == 0) {
   1303         /* MMU/MPU disabled.  */
   1304         *phys_ptr = address;
   1305         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
   1306         *page_size = TARGET_PAGE_SIZE;
   1307         return 0;
   1308     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
   1309         *page_size = TARGET_PAGE_SIZE;
   1310 	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
   1311 				 prot);
   1312     } else if (env->cp15.c1_sys & (1 << 23)) {
   1313         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
   1314                                 prot, page_size);
   1315     } else {
   1316         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
   1317                                 prot, page_size);
   1318     }
   1319 }
   1320 
   1321 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
   1322                               int access_type, int mmu_idx, int is_softmmu)
   1323 {
   1324     uint32_t phys_addr;
   1325     target_ulong page_size;
   1326     int prot;
   1327     int ret, is_user;
   1328 
   1329     is_user = mmu_idx == MMU_USER_IDX;
   1330     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
   1331                         &page_size);
   1332     if (ret == 0) {
   1333         /* Map a single [sub]page.  */
   1334         phys_addr &= ~(uint32_t)0x3ff;
   1335         address &= ~(uint32_t)0x3ff;
   1336         tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
   1337         return 0;
   1338     }
   1339 
   1340     if (access_type == 2) {
   1341         env->cp15.c5_insn = ret;
   1342         env->cp15.c6_insn = address;
   1343         env->exception_index = EXCP_PREFETCH_ABORT;
   1344     } else {
   1345         env->cp15.c5_data = ret;
   1346         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
   1347             env->cp15.c5_data |= (1 << 11);
   1348         env->cp15.c6_data = address;
   1349         env->exception_index = EXCP_DATA_ABORT;
   1350     }
   1351     return 1;
   1352 }
   1353 
   1354 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
   1355 {
   1356     uint32_t phys_addr;
   1357     target_ulong page_size;
   1358     int prot;
   1359     int ret;
   1360 
   1361     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
   1362 
   1363     if (ret != 0)
   1364         return -1;
   1365 
   1366     return phys_addr;
   1367 }
   1368 
   1369 /* Return basic MPU access permission bits.  */
   1370 static uint32_t simple_mpu_ap_bits(uint32_t val)
   1371 {
   1372     uint32_t ret;
   1373     uint32_t mask;
   1374     int i;
   1375     ret = 0;
   1376     mask = 3;
   1377     for (i = 0; i < 16; i += 2) {
   1378         ret |= (val >> i) & mask;
   1379         mask <<= 2;
   1380     }
   1381     return ret;
   1382 }
   1383 
   1384 /* Pad basic MPU access permission bits to extended format.  */
   1385 static uint32_t extended_mpu_ap_bits(uint32_t val)
   1386 {
   1387     uint32_t ret;
   1388     uint32_t mask;
   1389     int i;
   1390     ret = 0;
   1391     mask = 3;
   1392     for (i = 0; i < 16; i += 2) {
   1393         ret |= (val & mask) << i;
   1394         mask <<= 2;
   1395     }
   1396     return ret;
   1397 }
   1398 
   1399 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
   1400 {
   1401     int op1;
   1402     int op2;
   1403     int crm;
   1404 
   1405     op1 = (insn >> 21) & 7;
   1406     op2 = (insn >> 5) & 7;
   1407     crm = insn & 0xf;
   1408     switch ((insn >> 16) & 0xf) {
   1409     case 0:
   1410         /* ID codes.  */
   1411         if (arm_feature(env, ARM_FEATURE_XSCALE))
   1412             break;
   1413         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1414             break;
   1415         if (arm_feature(env, ARM_FEATURE_V7)
   1416                 && op1 == 2 && crm == 0 && op2 == 0) {
   1417             env->cp15.c0_cssel = val & 0xf;
   1418             break;
   1419         }
   1420         goto bad_reg;
   1421     case 1: /* System configuration.  */
   1422         switch (crm) {
   1423         case 0:
   1424         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1425             op2 = 0;
   1426         switch (op2) {
   1427         case 0:
   1428                 if (!arm_feature(env, ARM_FEATURE_XSCALE))
   1429                 env->cp15.c1_sys = val;
   1430             /* ??? Lots of these bits are not implemented.  */
   1431             /* This may enable/disable the MMU, so do a TLB flush.  */
   1432             tlb_flush(env, 1);
   1433             break;
   1434             case 1: /* Auxiliary control register.  */
   1435             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1436                 env->cp15.c1_xscaleauxcr = val;
   1437                 break;
   1438             }
   1439             /* Not implemented.  */
   1440             break;
   1441         case 2:
   1442             if (arm_feature(env, ARM_FEATURE_XSCALE))
   1443                 goto bad_reg;
   1444             if (env->cp15.c1_coproc != val) {
   1445                 env->cp15.c1_coproc = val;
   1446                 /* ??? Is this safe when called from within a TB?  */
   1447                 tb_flush(env);
   1448                 }
   1449                 break;
   1450             default:
   1451                 goto bad_reg;
   1452             }
   1453             break;
   1454         case 1:
   1455             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
   1456                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
   1457                 goto bad_reg;
   1458             switch (op2) {
   1459             case 0: /* Secure configuration register. */
   1460                 if (env->cp15.c1_secfg & 1)
   1461                     goto bad_reg;
   1462                 env->cp15.c1_secfg = val;
   1463                 break;
   1464             case 1: /* Secure debug enable register. */
   1465                 if (env->cp15.c1_secfg & 1)
   1466                     goto bad_reg;
   1467                 env->cp15.c1_sedbg = val;
   1468                 break;
   1469             case 2: /* Nonsecure access control register. */
   1470                 if (env->cp15.c1_secfg & 1)
   1471                     goto bad_reg;
   1472                 env->cp15.c1_nseac = val;
   1473                 break;
   1474             default:
   1475                 goto bad_reg;
   1476             }
   1477             break;
   1478         default:
   1479             goto bad_reg;
   1480         }
   1481         break;
   1482     case 2: /* MMU Page table control / MPU cache control.  */
   1483         if (arm_feature(env, ARM_FEATURE_MPU)) {
   1484             switch (op2) {
   1485             case 0:
   1486                 env->cp15.c2_data = val;
   1487                 break;
   1488             case 1:
   1489                 env->cp15.c2_insn = val;
   1490                 break;
   1491             default:
   1492                 goto bad_reg;
   1493             }
   1494         } else {
   1495 	    switch (op2) {
   1496 	    case 0:
   1497 		env->cp15.c2_base0 = val;
   1498 		break;
   1499 	    case 1:
   1500 		env->cp15.c2_base1 = val;
   1501 		break;
   1502 	    case 2:
   1503                 val &= 7;
   1504                 env->cp15.c2_control = val;
   1505 		env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
   1506                 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
   1507 		break;
   1508 	    default:
   1509 		goto bad_reg;
   1510 	    }
   1511         }
   1512         break;
   1513     case 3: /* MMU Domain access control / MPU write buffer control.  */
   1514         env->cp15.c3 = val;
   1515         tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
   1516         break;
   1517     case 4: /* Reserved.  */
   1518         goto bad_reg;
   1519     case 5: /* MMU Fault status / MPU access permission.  */
   1520         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1521             op2 = 0;
   1522         switch (op2) {
   1523         case 0:
   1524             if (arm_feature(env, ARM_FEATURE_MPU))
   1525                 val = extended_mpu_ap_bits(val);
   1526             env->cp15.c5_data = val;
   1527             break;
   1528         case 1:
   1529             if (arm_feature(env, ARM_FEATURE_MPU))
   1530                 val = extended_mpu_ap_bits(val);
   1531             env->cp15.c5_insn = val;
   1532             break;
   1533         case 2:
   1534             if (!arm_feature(env, ARM_FEATURE_MPU))
   1535                 goto bad_reg;
   1536             env->cp15.c5_data = val;
   1537             break;
   1538         case 3:
   1539             if (!arm_feature(env, ARM_FEATURE_MPU))
   1540                 goto bad_reg;
   1541             env->cp15.c5_insn = val;
   1542             break;
   1543         default:
   1544             goto bad_reg;
   1545         }
   1546         break;
   1547     case 6: /* MMU Fault address / MPU base/size.  */
   1548         if (arm_feature(env, ARM_FEATURE_MPU)) {
   1549             if (crm >= 8)
   1550                 goto bad_reg;
   1551             env->cp15.c6_region[crm] = val;
   1552         } else {
   1553             if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1554                 op2 = 0;
   1555             switch (op2) {
   1556             case 0:
   1557                 env->cp15.c6_data = val;
   1558                 break;
   1559             case 1: /* ??? This is WFAR on armv6 */
   1560             case 2:
   1561                 env->cp15.c6_insn = val;
   1562                 break;
   1563             default:
   1564                 goto bad_reg;
   1565             }
   1566         }
   1567         break;
   1568     case 7: /* Cache control.  */
   1569         env->cp15.c15_i_max = 0x000;
   1570         env->cp15.c15_i_min = 0xff0;
   1571         if (op1 != 0) {
   1572             goto bad_reg;
   1573         }
   1574         /* No cache, so nothing to do except VA->PA translations. */
   1575         if (arm_feature(env, ARM_FEATURE_V6K)) {
   1576             switch (crm) {
   1577             case 4:
   1578                 if (arm_feature(env, ARM_FEATURE_V7)) {
   1579                     env->cp15.c7_par = val & 0xfffff6ff;
   1580                 } else {
   1581                     env->cp15.c7_par = val & 0xfffff1ff;
   1582                 }
   1583                 break;
   1584             case 8: {
   1585                 uint32_t phys_addr;
   1586                 target_ulong page_size;
   1587                 int prot;
   1588                 int ret, is_user = op2 & 2;
   1589                 int access_type = op2 & 1;
   1590 
   1591                 if (op2 & 4) {
   1592                     /* Other states are only available with TrustZone */
   1593                     goto bad_reg;
   1594                 }
   1595                 ret = get_phys_addr(env, val, access_type, is_user,
   1596                                     &phys_addr, &prot, &page_size);
   1597                 if (ret == 0) {
   1598                     /* We do not set any attribute bits in the PAR */
   1599                     if (page_size == (1 << 24)
   1600                         && arm_feature(env, ARM_FEATURE_V7)) {
   1601                         env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
   1602                     } else {
   1603                         env->cp15.c7_par = phys_addr & 0xfffff000;
   1604                     }
   1605                 } else {
   1606                     env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
   1607                                        ((ret & (12 << 1)) >> 6) |
   1608                                        ((ret & 0xf) << 1) | 1;
   1609                 }
   1610                 break;
   1611             }
   1612             }
   1613         }
   1614         break;
   1615     case 8: /* MMU TLB control.  */
   1616         switch (op2) {
   1617         case 0: /* Invalidate all.  */
   1618             tlb_flush(env, 0);
   1619             break;
   1620         case 1: /* Invalidate single TLB entry.  */
   1621             tlb_flush_page(env, val & TARGET_PAGE_MASK);
   1622             break;
   1623         case 2: /* Invalidate on ASID.  */
   1624             tlb_flush(env, val == 0);
   1625             break;
   1626         case 3: /* Invalidate single entry on MVA.  */
   1627             /* ??? This is like case 1, but ignores ASID.  */
   1628             tlb_flush(env, 1);
   1629             break;
   1630         default:
   1631             goto bad_reg;
   1632         }
   1633         break;
   1634     case 9:
   1635         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1636             break;
   1637         if (arm_feature(env, ARM_FEATURE_STRONGARM))
   1638             break; /* Ignore ReadBuffer access */
   1639         switch (crm) {
   1640         case 0: /* Cache lockdown.  */
   1641 	    switch (op1) {
   1642 	    case 0: /* L1 cache.  */
   1643 		switch (op2) {
   1644 		case 0:
   1645 		    env->cp15.c9_data = val;
   1646 		    break;
   1647 		case 1:
   1648 		    env->cp15.c9_insn = val;
   1649 		    break;
   1650 		default:
   1651 		    goto bad_reg;
   1652 		}
   1653 		break;
   1654 	    case 1: /* L2 cache.  */
   1655                 switch (op2) {
   1656                 case 0: /* L2 cache lockdown */
   1657                 case 2: /* L2 cache auxiliary control */
   1658                     /* ignore */
   1659                     break;
   1660                 default:
   1661                     goto bad_reg;
   1662                 }
   1663 		break;
   1664 	    default:
   1665 		goto bad_reg;
   1666 	    }
   1667 	    break;
   1668         case 1: /* TCM memory region registers.  */
   1669         case 2:
   1670             /* Not implemented.  */
   1671             goto bad_reg;
   1672         case 12: /* performance monitor control */
   1673             if (arm_feature(env, ARM_FEATURE_V7)) {
   1674                 switch (op2) {
   1675                 case 0: /* performance monitor control */
   1676                     env->cp15.c9_pmcr_data = val;
   1677                     break;
   1678                 case 1: /* count enable set */
   1679                 case 2: /* count enable clear */
   1680                 case 3: /* overflow flag status */
   1681                 case 4: /* software increment */
   1682                 case 5: /* performance counter selection */
   1683                     /* not implemented */
   1684                     goto bad_reg;
   1685                 default:
   1686                     goto bad_reg;
   1687                 }
   1688             } else {
   1689                 goto bad_reg;
   1690             }
   1691             break;
   1692         case 13: /* performance counters */
   1693             if (arm_feature(env, ARM_FEATURE_V7)) {
   1694                 switch (op2) {
   1695                 case 0: /* cycle count */
   1696                 case 1: /* event selection */
   1697                 case 2: /* performance monitor count */
   1698                     /* not implemented */
   1699                     goto bad_reg;
   1700                 default:
   1701                     goto bad_reg;
   1702                 }
   1703             } else {
   1704                 goto bad_reg;
   1705             }
   1706             break;
   1707         case 14: /* performance monitor control */
   1708             if (arm_feature(env, ARM_FEATURE_V7)) {
   1709                 switch (op2) {
   1710                 case 0: /* user enable */
   1711                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
   1712                         goto bad_reg;
   1713                     }
   1714                     env->cp15.c9_useren = val & 1;
   1715                     break;
   1716                 case 1: /* interrupt enable set */
   1717                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
   1718                         goto bad_reg;
   1719                     }
   1720                     env->cp15.c9_inten |= val & 0xf;
   1721                     break;
   1722                 case 2: /* interrupt enable clear */
   1723                     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
   1724                         goto bad_reg;
   1725                     }
   1726                     env->cp15.c9_inten &= ~(val & 0xf);
   1727                     break;
   1728                 default:
   1729                     goto bad_reg;
   1730                 }
   1731             } else {
   1732                 goto bad_reg;
   1733             }
   1734             break;
   1735         default:
   1736             goto bad_reg;
   1737         }
   1738         break;
   1739     case 10: /* MMU TLB lockdown.  */
   1740         /* ??? TLB lockdown not implemented.  */
   1741         break;
   1742     case 12: /* Reserved.  */
   1743         if (!op1 && !crm) {
   1744             switch (op2) {
   1745             case 0:
   1746                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   1747                     goto bad_reg;
   1748                 }
   1749                 env->cp15.c12_vbar = val & ~0x1f;
   1750                 break;
   1751             case 1:
   1752                 if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   1753                     goto bad_reg;
   1754                 }
   1755                 if (!(env->cp15.c1_secfg & 1)) {
   1756                     env->cp15.c12_mvbar = val & ~0x1f;
   1757                 }
   1758                 break;
   1759             default:
   1760                 goto bad_reg;
   1761             }
   1762             break;
   1763         }
   1764         goto bad_reg;
   1765     case 13: /* Process ID.  */
   1766         switch (op2) {
   1767         case 0:
   1768             /* Unlike real hardware the qemu TLB uses virtual addresses,
   1769                not modified virtual addresses, so this causes a TLB flush.
   1770              */
   1771             if (env->cp15.c13_fcse != val)
   1772               tlb_flush(env, 1);
   1773             env->cp15.c13_fcse = val;
   1774             break;
   1775         case 1:
   1776             /* This changes the ASID, so do a TLB flush.  */
   1777             if (env->cp15.c13_context != val
   1778                 && !arm_feature(env, ARM_FEATURE_MPU))
   1779               tlb_flush(env, 0);
   1780             env->cp15.c13_context = val;
   1781             break;
   1782         default:
   1783             goto bad_reg;
   1784         }
   1785         break;
   1786     case 14: /* Reserved.  */
   1787         goto bad_reg;
   1788     case 15: /* Implementation specific.  */
   1789         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   1790             if (op2 == 0 && crm == 1) {
   1791                 if (env->cp15.c15_cpar != (val & 0x3fff)) {
   1792                     /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
   1793                     tb_flush(env);
   1794                     env->cp15.c15_cpar = val & 0x3fff;
   1795                 }
   1796                 break;
   1797             }
   1798             goto bad_reg;
   1799         }
   1800         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
   1801             switch (crm) {
   1802             case 0:
   1803                 break;
   1804             case 1: /* Set TI925T configuration.  */
   1805                 env->cp15.c15_ticonfig = val & 0xe7;
   1806                 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
   1807                         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
   1808                 break;
   1809             case 2: /* Set I_max.  */
   1810                 env->cp15.c15_i_max = val;
   1811                 break;
   1812             case 3: /* Set I_min.  */
   1813                 env->cp15.c15_i_min = val;
   1814                 break;
   1815             case 4: /* Set thread-ID.  */
   1816                 env->cp15.c15_threadid = val & 0xffff;
   1817                 break;
   1818             case 8: /* Wait-for-interrupt (deprecated).  */
   1819                 cpu_interrupt(env, CPU_INTERRUPT_HALT);
   1820                 break;
   1821             default:
   1822                 goto bad_reg;
   1823             }
   1824         }
   1825         break;
   1826     }
   1827     return;
   1828 bad_reg:
   1829     /* ??? For debugging only.  Should raise illegal instruction exception.  */
   1830     cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
   1831               (insn >> 16) & 0xf, crm, op1, op2);
   1832 }
   1833 
   1834 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
   1835 {
   1836     int op1;
   1837     int op2;
   1838     int crm;
   1839 
   1840     op1 = (insn >> 21) & 7;
   1841     op2 = (insn >> 5) & 7;
   1842     crm = insn & 0xf;
   1843     switch ((insn >> 16) & 0xf) {
   1844     case 0: /* ID codes.  */
   1845         switch (op1) {
   1846         case 0:
   1847             switch (crm) {
   1848             case 0:
   1849                 switch (op2) {
   1850                 case 0: /* Device ID.  */
   1851                     return env->cp15.c0_cpuid;
   1852                 case 1: /* Cache Type.  */
   1853 		    return env->cp15.c0_cachetype;
   1854                 case 2: /* TCM status.  */
   1855                     return 0;
   1856                 case 3: /* TLB type register.  */
   1857                     return 0; /* No lockable TLB entries.  */
   1858                 case 5: /* MPIDR */
   1859                     /* The MPIDR was standardised in v7; prior to
   1860                      * this it was implemented only in the 11MPCore.
   1861                      * For all other pre-v7 cores it does not exist.
   1862                      */
   1863                     if (arm_feature(env, ARM_FEATURE_V7) ||
   1864                         ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
   1865                         int mpidr = env->cpu_index;
   1866                         /* We don't support setting cluster ID ([8..11])
   1867                          * so these bits always RAZ.
   1868                          */
   1869                         if (arm_feature(env, ARM_FEATURE_V7MP)) {
   1870                             mpidr |= (1 << 31);
   1871                             /* Cores which are uniprocessor (non-coherent)
   1872                              * but still implement the MP extensions set
   1873                              * bit 30. (For instance, A9UP.) However we do
   1874                              * not currently model any of those cores.
   1875                              */
   1876                         }
   1877                         return mpidr;
   1878                     }
   1879                     /* otherwise fall through to the unimplemented-reg case */
   1880                 default:
   1881                     goto bad_reg;
   1882                 }
   1883             case 1:
   1884                 if (!arm_feature(env, ARM_FEATURE_V6))
   1885                     goto bad_reg;
   1886                 return env->cp15.c0_c1[op2];
   1887             case 2:
   1888                 if (!arm_feature(env, ARM_FEATURE_V6))
   1889                     goto bad_reg;
   1890                 return env->cp15.c0_c2[op2];
   1891             case 3: case 4: case 5: case 6: case 7:
   1892                 return 0;
   1893             default:
   1894                 goto bad_reg;
   1895             }
   1896             break;
   1897         case 1:
   1898             /* These registers aren't documented on arm11 cores.  However
   1899                Linux looks at them anyway.  */
   1900             if (!arm_feature(env, ARM_FEATURE_V6))
   1901                 goto bad_reg;
   1902             if (crm != 0)
   1903                 goto bad_reg;
   1904             if (!arm_feature(env, ARM_FEATURE_V7))
   1905                 return 0;
   1906 
   1907             switch (op2) {
   1908             case 0:
   1909                 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
   1910             case 1:
   1911                 return env->cp15.c0_clid;
   1912             case 7:
   1913                 return 0;
   1914             }
   1915             goto bad_reg;
   1916         case 2:
   1917             if (op2 != 0 || crm != 0)
   1918                 goto bad_reg;
   1919             return env->cp15.c0_cssel;
   1920         default:
   1921             goto bad_reg;
   1922         }
   1923         break;
   1924     case 1: /* System configuration.  */
   1925         switch (crm) {
   1926         case 0:
   1927         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   1928             op2 = 0;
   1929         switch (op2) {
   1930         case 0: /* Control register.  */
   1931             return env->cp15.c1_sys;
   1932         case 1: /* Auxiliary control register.  */
   1933             if (arm_feature(env, ARM_FEATURE_XSCALE))
   1934                 return env->cp15.c1_xscaleauxcr;
   1935             if (!arm_feature(env, ARM_FEATURE_AUXCR))
   1936                 goto bad_reg;
   1937             switch (ARM_CPUID(env)) {
   1938             case ARM_CPUID_ARM1026:
   1939                 return 1;
   1940             case ARM_CPUID_ARM1136:
   1941             case ARM_CPUID_ARM1136_R2:
   1942                 return 7;
   1943             case ARM_CPUID_ARM11MPCORE:
   1944                 return 1;
   1945             case ARM_CPUID_CORTEXA8:
   1946                 case ARM_CPUID_CORTEXA8_R2:
   1947                 return 2;
   1948                 case ARM_CPUID_CORTEXA9:
   1949                     return 0;
   1950             default:
   1951                 goto bad_reg;
   1952             }
   1953                 break;
   1954         case 2: /* Coprocessor access register.  */
   1955             if (arm_feature(env, ARM_FEATURE_XSCALE))
   1956                 goto bad_reg;
   1957             return env->cp15.c1_coproc;
   1958         default:
   1959             goto bad_reg;
   1960         }
   1961             break;
   1962         case 1:
   1963             if (!arm_feature(env, ARM_FEATURE_TRUSTZONE)
   1964                 || (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)
   1965                 goto bad_reg;
   1966             switch (op2) {
   1967             case 0: /* Secure configuration register. */
   1968                 if (env->cp15.c1_secfg & 1)
   1969                     goto bad_reg;
   1970                 return env->cp15.c1_secfg;
   1971             case 1: /* Secure debug enable register. */
   1972                 if (env->cp15.c1_secfg & 1)
   1973                     goto bad_reg;
   1974                 return env->cp15.c1_sedbg;
   1975             case 2: /* Nonsecure access control register. */
   1976                 return env->cp15.c1_nseac;
   1977             default:
   1978                 goto bad_reg;
   1979             }
   1980             break;
   1981         default:
   1982             goto bad_reg;
   1983         }
   1984         break;
   1985     case 2: /* MMU Page table control / MPU cache control.  */
   1986         if (arm_feature(env, ARM_FEATURE_MPU)) {
   1987             switch (op2) {
   1988             case 0:
   1989                 return env->cp15.c2_data;
   1990                 break;
   1991             case 1:
   1992                 return env->cp15.c2_insn;
   1993                 break;
   1994             default:
   1995                 goto bad_reg;
   1996             }
   1997         } else {
   1998 	    switch (op2) {
   1999 	    case 0:
   2000 		return env->cp15.c2_base0;
   2001 	    case 1:
   2002 		return env->cp15.c2_base1;
   2003 	    case 2:
   2004                 return env->cp15.c2_control;
   2005 	    default:
   2006 		goto bad_reg;
   2007 	    }
   2008 	}
   2009     case 3: /* MMU Domain access control / MPU write buffer control.  */
   2010         return env->cp15.c3;
   2011     case 4: /* Reserved.  */
   2012         goto bad_reg;
   2013     case 5: /* MMU Fault status / MPU access permission.  */
   2014         if (arm_feature(env, ARM_FEATURE_OMAPCP))
   2015             op2 = 0;
   2016         switch (op2) {
   2017         case 0:
   2018             if (arm_feature(env, ARM_FEATURE_MPU))
   2019                 return simple_mpu_ap_bits(env->cp15.c5_data);
   2020             return env->cp15.c5_data;
   2021         case 1:
   2022             if (arm_feature(env, ARM_FEATURE_MPU))
   2023                 return simple_mpu_ap_bits(env->cp15.c5_data);
   2024             return env->cp15.c5_insn;
   2025         case 2:
   2026             if (!arm_feature(env, ARM_FEATURE_MPU))
   2027                 goto bad_reg;
   2028             return env->cp15.c5_data;
   2029         case 3:
   2030             if (!arm_feature(env, ARM_FEATURE_MPU))
   2031                 goto bad_reg;
   2032             return env->cp15.c5_insn;
   2033         default:
   2034             goto bad_reg;
   2035         }
   2036     case 6: /* MMU Fault address.  */
   2037         if (arm_feature(env, ARM_FEATURE_MPU)) {
   2038             if (crm >= 8)
   2039                 goto bad_reg;
   2040             return env->cp15.c6_region[crm];
   2041         } else {
   2042             if (arm_feature(env, ARM_FEATURE_OMAPCP))
   2043                 op2 = 0;
   2044 	    switch (op2) {
   2045 	    case 0:
   2046 		return env->cp15.c6_data;
   2047 	    case 1:
   2048 		if (arm_feature(env, ARM_FEATURE_V6)) {
   2049 		    /* Watchpoint Fault Adrress.  */
   2050 		    return 0; /* Not implemented.  */
   2051                 }
   2052 		    /* Instruction Fault Adrress.  */
   2053 		    /* Arm9 doesn't have an IFAR, but implementing it anyway
   2054 		       shouldn't do any harm.  */
   2055 		    return env->cp15.c6_insn;
   2056 	    case 2:
   2057 		if (arm_feature(env, ARM_FEATURE_V6)) {
   2058 		    /* Instruction Fault Adrress.  */
   2059 		    return env->cp15.c6_insn;
   2060 		}
   2061                 goto bad_reg;
   2062 	    default:
   2063 		goto bad_reg;
   2064 	    }
   2065         }
   2066     case 7: /* Cache control.  */
   2067         if (crm == 4 && op1 == 0 && op2 == 0) {
   2068             return env->cp15.c7_par;
   2069         }
   2070         if (((insn >> 12) & 0xf) == 0xf) /* clear ZF only if destination is r15 */
   2071         env->ZF = 0;
   2072         return 0;
   2073     case 8: /* MMU TLB control.  */
   2074         goto bad_reg;
   2075     case 9: /* Cache lockdown.  */
   2076         switch (op1) {
   2077         case 0:
   2078 	    if (arm_feature(env, ARM_FEATURE_OMAPCP))
   2079 		return 0;
   2080             switch (crm) {
   2081             case 0: /* L1 cache */
   2082             switch (op2) {
   2083             case 0:
   2084                 return env->cp15.c9_data;
   2085             case 1:
   2086                 return env->cp15.c9_insn;
   2087             default:
   2088                 goto bad_reg;
   2089             }
   2090                 break;
   2091             case 12:
   2092                 switch (op2) {
   2093                 case 0:
   2094                     return env->cp15.c9_pmcr_data;
   2095                 default:
   2096                     goto bad_reg;
   2097                 }
   2098                 break;
   2099             case 14: /* performance monitor control */
   2100                 if (arm_feature(env, ARM_FEATURE_V7)) {
   2101                     switch (op2) {
   2102                     case 0: /* user enable */
   2103                         return env->cp15.c9_useren;
   2104                     case 1: /* interrupt enable set */
   2105                     case 2: /* interrupt enable clear */
   2106                         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
   2107                             goto bad_reg;
   2108                         }
   2109                         return env->cp15.c9_inten;
   2110                     default:
   2111                         goto bad_reg;
   2112                     }
   2113                 } else {
   2114                     goto bad_reg;
   2115                 }
   2116                 break;
   2117             default:
   2118                 goto bad_reg;
   2119             }
   2120             break;
   2121         case 1: /* L2 cache */
   2122             if (crm != 0)
   2123                 goto bad_reg;
   2124             /* L2 Lockdown and Auxiliary control.  */
   2125             return 0;
   2126         default:
   2127             goto bad_reg;
   2128         }
   2129     case 10: /* MMU TLB lockdown.  */
   2130         /* ??? TLB lockdown not implemented.  */
   2131         return 0;
   2132     case 11: /* TCM DMA control.  */
   2133     case 12: /* Reserved.  */
   2134         if (!op1 && !crm) {
   2135             switch (op2) {
   2136             case 0: /* secure or nonsecure vector base address */
   2137                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   2138                     return env->cp15.c12_vbar;
   2139                 }
   2140                 break;
   2141             case 1: /* monitor vector base address */
   2142                 if (arm_feature(env, ARM_FEATURE_TRUSTZONE)) {
   2143                     return env->cp15.c12_mvbar;
   2144                 }
   2145                 break;
   2146             default:
   2147                 break;
   2148             }
   2149         }
   2150         goto bad_reg;
   2151     case 13: /* Process ID.  */
   2152         switch (op2) {
   2153         case 0:
   2154             return env->cp15.c13_fcse;
   2155         case 1:
   2156             return env->cp15.c13_context;
   2157         default:
   2158             goto bad_reg;
   2159         }
   2160     case 14: /* Reserved.  */
   2161         goto bad_reg;
   2162     case 15: /* Implementation specific.  */
   2163         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
   2164             if (op2 == 0 && crm == 1)
   2165                 return env->cp15.c15_cpar;
   2166 
   2167             goto bad_reg;
   2168         }
   2169         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
   2170             switch (crm) {
   2171             case 0:
   2172                 return 0;
   2173             case 1: /* Read TI925T configuration.  */
   2174                 return env->cp15.c15_ticonfig;
   2175             case 2: /* Read I_max.  */
   2176                 return env->cp15.c15_i_max;
   2177             case 3: /* Read I_min.  */
   2178                 return env->cp15.c15_i_min;
   2179             case 4: /* Read thread-ID.  */
   2180                 return env->cp15.c15_threadid;
   2181             case 8: /* TI925T_status */
   2182                 return 0;
   2183             }
   2184             /* TODO: Peripheral port remap register:
   2185              * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
   2186              * controller base address at $rn & ~0xfff and map size of
   2187              * 0x200 << ($rn & 0xfff), when MMU is off.  */
   2188             goto bad_reg;
   2189         }
   2190         return 0;
   2191     }
   2192 bad_reg:
   2193     /* ??? For debugging only.  Should raise illegal instruction exception.  */
   2194     cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
   2195               (insn >> 16) & 0xf, crm, op1, op2);
   2196     return 0;
   2197 }
   2198 
   2199 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
   2200 {
   2201     if ((env->uncached_cpsr & CPSR_M) == mode) {
   2202         env->regs[13] = val;
   2203     } else {
   2204     env->banked_r13[bank_number(mode)] = val;
   2205 }
   2206 }
   2207 
   2208 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
   2209 {
   2210     if ((env->uncached_cpsr & CPSR_M) == mode) {
   2211         return env->regs[13];
   2212     } else {
   2213     return env->banked_r13[bank_number(mode)];
   2214     }
   2215 }
   2216 
   2217 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
   2218 {
   2219     switch (reg) {
   2220     case 0: /* APSR */
   2221         return xpsr_read(env) & 0xf8000000;
   2222     case 1: /* IAPSR */
   2223         return xpsr_read(env) & 0xf80001ff;
   2224     case 2: /* EAPSR */
   2225         return xpsr_read(env) & 0xff00fc00;
   2226     case 3: /* xPSR */
   2227         return xpsr_read(env) & 0xff00fdff;
   2228     case 5: /* IPSR */
   2229         return xpsr_read(env) & 0x000001ff;
   2230     case 6: /* EPSR */
   2231         return xpsr_read(env) & 0x0700fc00;
   2232     case 7: /* IEPSR */
   2233         return xpsr_read(env) & 0x0700edff;
   2234     case 8: /* MSP */
   2235         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
   2236     case 9: /* PSP */
   2237         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
   2238     case 16: /* PRIMASK */
   2239         return (env->uncached_cpsr & CPSR_I) != 0;
   2240     case 17: /* FAULTMASK */
   2241         return (env->uncached_cpsr & CPSR_F) != 0;
   2242     case 18: /* BASEPRI */
   2243     case 19: /* BASEPRI_MAX */
   2244         return env->v7m.basepri;
   2245     case 20: /* CONTROL */
   2246         return env->v7m.control;
   2247     default:
   2248         /* ??? For debugging only.  */
   2249         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
   2250         return 0;
   2251     }
   2252 }
   2253 
   2254 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
   2255 {
   2256     switch (reg) {
   2257     case 0: /* APSR */
   2258         xpsr_write(env, val, 0xf8000000);
   2259         break;
   2260     case 1: /* IAPSR */
   2261         xpsr_write(env, val, 0xf8000000);
   2262         break;
   2263     case 2: /* EAPSR */
   2264         xpsr_write(env, val, 0xfe00fc00);
   2265         break;
   2266     case 3: /* xPSR */
   2267         xpsr_write(env, val, 0xfe00fc00);
   2268         break;
   2269     case 5: /* IPSR */
   2270         /* IPSR bits are readonly.  */
   2271         break;
   2272     case 6: /* EPSR */
   2273         xpsr_write(env, val, 0x0600fc00);
   2274         break;
   2275     case 7: /* IEPSR */
   2276         xpsr_write(env, val, 0x0600fc00);
   2277         break;
   2278     case 8: /* MSP */
   2279         if (env->v7m.current_sp)
   2280             env->v7m.other_sp = val;
   2281         else
   2282             env->regs[13] = val;
   2283         break;
   2284     case 9: /* PSP */
   2285         if (env->v7m.current_sp)
   2286             env->regs[13] = val;
   2287         else
   2288             env->v7m.other_sp = val;
   2289         break;
   2290     case 16: /* PRIMASK */
   2291         if (val & 1)
   2292             env->uncached_cpsr |= CPSR_I;
   2293         else
   2294             env->uncached_cpsr &= ~CPSR_I;
   2295         break;
   2296     case 17: /* FAULTMASK */
   2297         if (val & 1)
   2298             env->uncached_cpsr |= CPSR_F;
   2299         else
   2300             env->uncached_cpsr &= ~CPSR_F;
   2301         break;
   2302     case 18: /* BASEPRI */
   2303         env->v7m.basepri = val & 0xff;
   2304         break;
   2305     case 19: /* BASEPRI_MAX */
   2306         val &= 0xff;
   2307         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
   2308             env->v7m.basepri = val;
   2309         break;
   2310     case 20: /* CONTROL */
   2311         env->v7m.control = val & 3;
   2312         switch_v7m_sp(env, (val & 2) != 0);
   2313         break;
   2314     default:
   2315         /* ??? For debugging only.  */
   2316         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
   2317         return;
   2318     }
   2319 }
   2320 
   2321 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
   2322                 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
   2323                 void *opaque)
   2324 {
   2325     if (cpnum < 0 || cpnum > 14) {
   2326         cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
   2327         return;
   2328     }
   2329 
   2330     env->cp[cpnum].cp_read = cp_read;
   2331     env->cp[cpnum].cp_write = cp_write;
   2332     env->cp[cpnum].opaque = opaque;
   2333 }
   2334 
   2335 #endif
   2336 
   2337 /* Note that signed overflow is undefined in C.  The following routines are
   2338    careful to use unsigned types where modulo arithmetic is required.
   2339    Failure to do so _will_ break on newer gcc.  */
   2340 
   2341 /* Signed saturating arithmetic.  */
   2342 
   2343 /* Perform 16-bit signed saturating addition.  */
   2344 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
   2345 {
   2346     uint16_t res;
   2347 
   2348     res = a + b;
   2349     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
   2350         if (a & 0x8000)
   2351             res = 0x8000;
   2352         else
   2353             res = 0x7fff;
   2354     }
   2355     return res;
   2356 }
   2357 
   2358 /* Perform 8-bit signed saturating addition.  */
   2359 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
   2360 {
   2361     uint8_t res;
   2362 
   2363     res = a + b;
   2364     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
   2365         if (a & 0x80)
   2366             res = 0x80;
   2367         else
   2368             res = 0x7f;
   2369     }
   2370     return res;
   2371 }
   2372 
   2373 /* Perform 16-bit signed saturating subtraction.  */
   2374 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
   2375 {
   2376     uint16_t res;
   2377 
   2378     res = a - b;
   2379     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
   2380         if (a & 0x8000)
   2381             res = 0x8000;
   2382         else
   2383             res = 0x7fff;
   2384     }
   2385     return res;
   2386 }
   2387 
   2388 /* Perform 8-bit signed saturating subtraction.  */
   2389 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
   2390 {
   2391     uint8_t res;
   2392 
   2393     res = a - b;
   2394     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
   2395         if (a & 0x80)
   2396             res = 0x80;
   2397         else
   2398             res = 0x7f;
   2399     }
   2400     return res;
   2401 }
   2402 
   2403 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
   2404 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
   2405 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
   2406 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
   2407 #define PFX q
   2408 
   2409 #include "op_addsub.h"
   2410 
   2411 /* Unsigned saturating arithmetic.  */
   2412 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
   2413 {
   2414     uint16_t res;
   2415     res = a + b;
   2416     if (res < a)
   2417         res = 0xffff;
   2418     return res;
   2419 }
   2420 
   2421 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
   2422 {
   2423     if (a > b)
   2424         return a - b;
   2425     else
   2426         return 0;
   2427 }
   2428 
   2429 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
   2430 {
   2431     uint8_t res;
   2432     res = a + b;
   2433     if (res < a)
   2434         res = 0xff;
   2435     return res;
   2436 }
   2437 
   2438 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
   2439 {
   2440     if (a > b)
   2441         return a - b;
   2442     else
   2443         return 0;
   2444 }
   2445 
   2446 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
   2447 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
   2448 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
   2449 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
   2450 #define PFX uq
   2451 
   2452 #include "op_addsub.h"
   2453 
   2454 /* Signed modulo arithmetic.  */
   2455 #define SARITH16(a, b, n, op) do { \
   2456     int32_t sum; \
   2457     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
   2458     RESULT(sum, n, 16); \
   2459     if (sum >= 0) \
   2460         ge |= 3 << (n * 2); \
   2461     } while(0)
   2462 
   2463 #define SARITH8(a, b, n, op) do { \
   2464     int32_t sum; \
   2465     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
   2466     RESULT(sum, n, 8); \
   2467     if (sum >= 0) \
   2468         ge |= 1 << n; \
   2469     } while(0)
   2470 
   2471 
   2472 #define ADD16(a, b, n) SARITH16(a, b, n, +)
   2473 #define SUB16(a, b, n) SARITH16(a, b, n, -)
   2474 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
   2475 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
   2476 #define PFX s
   2477 #define ARITH_GE
   2478 
   2479 #include "op_addsub.h"
   2480 
   2481 /* Unsigned modulo arithmetic.  */
   2482 #define ADD16(a, b, n) do { \
   2483     uint32_t sum; \
   2484     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
   2485     RESULT(sum, n, 16); \
   2486     if ((sum >> 16) == 1) \
   2487         ge |= 3 << (n * 2); \
   2488     } while(0)
   2489 
   2490 #define ADD8(a, b, n) do { \
   2491     uint32_t sum; \
   2492     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
   2493     RESULT(sum, n, 8); \
   2494     if ((sum >> 8) == 1) \
   2495         ge |= 1 << n; \
   2496     } while(0)
   2497 
   2498 #define SUB16(a, b, n) do { \
   2499     uint32_t sum; \
   2500     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
   2501     RESULT(sum, n, 16); \
   2502     if ((sum >> 16) == 0) \
   2503         ge |= 3 << (n * 2); \
   2504     } while(0)
   2505 
   2506 #define SUB8(a, b, n) do { \
   2507     uint32_t sum; \
   2508     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
   2509     RESULT(sum, n, 8); \
   2510     if ((sum >> 8) == 0) \
   2511         ge |= 1 << n; \
   2512     } while(0)
   2513 
   2514 #define PFX u
   2515 #define ARITH_GE
   2516 
   2517 #include "op_addsub.h"
   2518 
   2519 /* Halved signed arithmetic.  */
   2520 #define ADD16(a, b, n) \
   2521   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
   2522 #define SUB16(a, b, n) \
   2523   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
   2524 #define ADD8(a, b, n) \
   2525   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
   2526 #define SUB8(a, b, n) \
   2527   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
   2528 #define PFX sh
   2529 
   2530 #include "op_addsub.h"
   2531 
   2532 /* Halved unsigned arithmetic.  */
   2533 #define ADD16(a, b, n) \
   2534   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
   2535 #define SUB16(a, b, n) \
   2536   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
   2537 #define ADD8(a, b, n) \
   2538   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
   2539 #define SUB8(a, b, n) \
   2540   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
   2541 #define PFX uh
   2542 
   2543 #include "op_addsub.h"
   2544 
   2545 static inline uint8_t do_usad(uint8_t a, uint8_t b)
   2546 {
   2547     if (a > b)
   2548         return a - b;
   2549     else
   2550         return b - a;
   2551 }
   2552 
   2553 /* Unsigned sum of absolute byte differences.  */
   2554 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
   2555 {
   2556     uint32_t sum;
   2557     sum = do_usad(a, b);
   2558     sum += do_usad(a >> 8, b >> 8);
   2559     sum += do_usad(a >> 16, b >>16);
   2560     sum += do_usad(a >> 24, b >> 24);
   2561     return sum;
   2562 }
   2563 
   2564 /* For ARMv6 SEL instruction.  */
   2565 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
   2566 {
   2567     uint32_t mask;
   2568 
   2569     mask = 0;
   2570     if (flags & 1)
   2571         mask |= 0xff;
   2572     if (flags & 2)
   2573         mask |= 0xff00;
   2574     if (flags & 4)
   2575         mask |= 0xff0000;
   2576     if (flags & 8)
   2577         mask |= 0xff000000;
   2578     return (a & mask) | (b & ~mask);
   2579 }
   2580 
   2581 uint32_t HELPER(logicq_cc)(uint64_t val)
   2582 {
   2583     return (val >> 32) | (val != 0);
   2584 }
   2585 
   2586 /* VFP support.  We follow the convention used for VFP instrunctions:
   2587    Single precition routines have a "s" suffix, double precision a
   2588    "d" suffix.  */
   2589 
   2590 /* Convert host exception flags to vfp form.  */
   2591 static inline int vfp_exceptbits_from_host(int host_bits)
   2592 {
   2593     int target_bits = 0;
   2594 
   2595     if (host_bits & float_flag_invalid)
   2596         target_bits |= 1;
   2597     if (host_bits & float_flag_divbyzero)
   2598         target_bits |= 2;
   2599     if (host_bits & float_flag_overflow)
   2600         target_bits |= 4;
   2601     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
   2602         target_bits |= 8;
   2603     if (host_bits & float_flag_inexact)
   2604         target_bits |= 0x10;
   2605     if (host_bits & float_flag_input_denormal)
   2606         target_bits |= 0x80;
   2607     return target_bits;
   2608 }
   2609 
   2610 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
   2611 {
   2612     int i;
   2613     uint32_t fpscr;
   2614 
   2615     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
   2616             | (env->vfp.vec_len << 16)
   2617             | (env->vfp.vec_stride << 20);
   2618     i = get_float_exception_flags(&env->vfp.fp_status);
   2619     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
   2620     fpscr |= vfp_exceptbits_from_host(i);
   2621     return fpscr;
   2622 }
   2623 
   2624 uint32_t vfp_get_fpscr(CPUState *env)
   2625 {
   2626     return HELPER(vfp_get_fpscr)(env);
   2627 }
   2628 
   2629 /* Convert vfp exception flags to target form.  */
   2630 static inline int vfp_exceptbits_to_host(int target_bits)
   2631 {
   2632     int host_bits = 0;
   2633 
   2634     if (target_bits & 1)
   2635         host_bits |= float_flag_invalid;
   2636     if (target_bits & 2)
   2637         host_bits |= float_flag_divbyzero;
   2638     if (target_bits & 4)
   2639         host_bits |= float_flag_overflow;
   2640     if (target_bits & 8)
   2641         host_bits |= float_flag_underflow;
   2642     if (target_bits & 0x10)
   2643         host_bits |= float_flag_inexact;
   2644     if (target_bits & 0x80)
   2645         host_bits |= float_flag_input_denormal;
   2646     return host_bits;
   2647 }
   2648 
   2649 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
   2650 {
   2651     int i;
   2652     uint32_t changed;
   2653 
   2654     changed = env->vfp.xregs[ARM_VFP_FPSCR];
   2655     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
   2656     env->vfp.vec_len = (val >> 16) & 7;
   2657     env->vfp.vec_stride = (val >> 20) & 3;
   2658 
   2659     changed ^= val;
   2660     if (changed & (3 << 22)) {
   2661         i = (val >> 22) & 3;
   2662         switch (i) {
   2663         case 0:
   2664             i = float_round_nearest_even;
   2665             break;
   2666         case 1:
   2667             i = float_round_up;
   2668             break;
   2669         case 2:
   2670             i = float_round_down;
   2671             break;
   2672         case 3:
   2673             i = float_round_to_zero;
   2674             break;
   2675         }
   2676         set_float_rounding_mode(i, &env->vfp.fp_status);
   2677     }
   2678     if (changed & (1 << 24)) {
   2679         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
   2680         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
   2681     }
   2682     if (changed & (1 << 25))
   2683         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
   2684 
   2685     i = vfp_exceptbits_to_host(val);
   2686     set_float_exception_flags(i, &env->vfp.fp_status);
   2687     set_float_exception_flags(0, &env->vfp.standard_fp_status);
   2688 }
   2689 
   2690 void vfp_set_fpscr(CPUState *env, uint32_t val)
   2691 {
   2692     HELPER(vfp_set_fpscr)(env, val);
   2693 }
   2694 
   2695 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
   2696 
   2697 #define VFP_BINOP(name) \
   2698 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
   2699 { \
   2700     return float32_ ## name (a, b, &env->vfp.fp_status); \
   2701 } \
   2702 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
   2703 { \
   2704     return float64_ ## name (a, b, &env->vfp.fp_status); \
   2705 }
   2706 VFP_BINOP(add)
   2707 VFP_BINOP(sub)
   2708 VFP_BINOP(mul)
   2709 VFP_BINOP(div)
   2710 #undef VFP_BINOP
   2711 
   2712 float32 VFP_HELPER(neg, s)(float32 a)
   2713 {
   2714     return float32_chs(a);
   2715 }
   2716 
   2717 float64 VFP_HELPER(neg, d)(float64 a)
   2718 {
   2719     return float64_chs(a);
   2720 }
   2721 
   2722 float32 VFP_HELPER(abs, s)(float32 a)
   2723 {
   2724     return float32_abs(a);
   2725 }
   2726 
   2727 float64 VFP_HELPER(abs, d)(float64 a)
   2728 {
   2729     return float64_abs(a);
   2730 }
   2731 
   2732 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
   2733 {
   2734     return float32_sqrt(a, &env->vfp.fp_status);
   2735 }
   2736 
   2737 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
   2738 {
   2739     return float64_sqrt(a, &env->vfp.fp_status);
   2740 }
   2741 
   2742 /* XXX: check quiet/signaling case */
   2743 #define DO_VFP_cmp(p, type) \
   2744 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
   2745 { \
   2746     uint32_t flags; \
   2747     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
   2748     case 0: flags = 0x6; break; \
   2749     case -1: flags = 0x8; break; \
   2750     case 1: flags = 0x2; break; \
   2751     default: case 2: flags = 0x3; break; \
   2752     } \
   2753     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
   2754         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
   2755 } \
   2756 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
   2757 { \
   2758     uint32_t flags; \
   2759     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
   2760     case 0: flags = 0x6; break; \
   2761     case -1: flags = 0x8; break; \
   2762     case 1: flags = 0x2; break; \
   2763     default: case 2: flags = 0x3; break; \
   2764     } \
   2765     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
   2766         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
   2767 }
   2768 DO_VFP_cmp(s, float32)
   2769 DO_VFP_cmp(d, float64)
   2770 #undef DO_VFP_cmp
   2771 
   2772 /* Integer to float and float to integer conversions */
   2773 
   2774 #define CONV_ITOF(name, fsz, sign) \
   2775     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
   2776 { \
   2777     float_status *fpst = fpstp; \
   2778     return sign##int32_to_##float##fsz(x, fpst); \
   2779 }
   2780 
   2781 #define CONV_FTOI(name, fsz, sign, round) \
   2782 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
   2783 { \
   2784     float_status *fpst = fpstp; \
   2785     if (float##fsz##_is_any_nan(x)) { \
   2786         float_raise(float_flag_invalid, fpst); \
   2787         return 0; \
   2788     } \
   2789     return float##fsz##_to_##sign##int32##round(x, fpst); \
   2790 }
   2791 
   2792 #define FLOAT_CONVS(name, p, fsz, sign) \
   2793 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
   2794 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
   2795 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
   2796 
   2797 FLOAT_CONVS(si, s, 32, )
   2798 FLOAT_CONVS(si, d, 64, )
   2799 FLOAT_CONVS(ui, s, 32, u)
   2800 FLOAT_CONVS(ui, d, 64, u)
   2801 
   2802 #undef CONV_ITOF
   2803 #undef CONV_FTOI
   2804 #undef FLOAT_CONVS
   2805 
   2806 /* floating point conversion */
   2807 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
   2808 {
   2809     float64 r = float32_to_float64(x, &env->vfp.fp_status);
   2810     /* ARM requires that S<->D conversion of any kind of NaN generates
   2811      * a quiet NaN by forcing the most significant frac bit to 1.
   2812      */
   2813     return float64_maybe_silence_nan(r);
   2814 }
   2815 
   2816 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
   2817 {
   2818     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
   2819     /* ARM requires that S<->D conversion of any kind of NaN generates
   2820      * a quiet NaN by forcing the most significant frac bit to 1.
   2821      */
   2822     return float32_maybe_silence_nan(r);
   2823 }
   2824 
   2825 /* VFP3 fixed point conversion.  */
   2826 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
   2827 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
   2828                                     void *fpstp) \
   2829 { \
   2830     float_status *fpst = fpstp; \
   2831     float##fsz tmp; \
   2832     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
   2833     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
   2834 } \
   2835 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
   2836                                        void *fpstp) \
   2837 { \
   2838     float_status *fpst = fpstp; \
   2839     float##fsz tmp; \
   2840     if (float##fsz##_is_any_nan(x)) { \
   2841         float_raise(float_flag_invalid, fpst); \
   2842         return 0; \
   2843     } \
   2844     tmp = float##fsz##_scalbn(x, shift, fpst); \
   2845     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
   2846 }
   2847 
   2848 VFP_CONV_FIX(sh, d, 64, int16, )
   2849 VFP_CONV_FIX(sl, d, 64, int32, )
   2850 VFP_CONV_FIX(uh, d, 64, uint16, u)
   2851 VFP_CONV_FIX(ul, d, 64, uint32, u)
   2852 VFP_CONV_FIX(sh, s, 32, int16, )
   2853 VFP_CONV_FIX(sl, s, 32, int32, )
   2854 VFP_CONV_FIX(uh, s, 32, uint16, u)
   2855 VFP_CONV_FIX(ul, s, 32, uint32, u)
   2856 #undef VFP_CONV_FIX
   2857 
   2858 /* Half precision conversions.  */
   2859 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
   2860 {
   2861     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
   2862     float32 r = float16_to_float32(make_float16(a), ieee, s);
   2863     if (ieee) {
   2864         return float32_maybe_silence_nan(r);
   2865     }
   2866     return r;
   2867 }
   2868 
   2869 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
   2870 {
   2871     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
   2872     float16 r = float32_to_float16(a, ieee, s);
   2873     if (ieee) {
   2874         r = float16_maybe_silence_nan(r);
   2875     }
   2876     return float16_val(r);
   2877 }
   2878 
   2879 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
   2880 {
   2881     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
   2882 }
   2883 
   2884 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
   2885 {
   2886     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
   2887 }
   2888 
   2889 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
   2890 {
   2891     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
   2892 }
   2893 
   2894 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
   2895 {
   2896     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
   2897 }
   2898 
   2899 #define float32_two make_float32(0x40000000)
   2900 #define float32_three make_float32(0x40400000)
   2901 #define float32_one_point_five make_float32(0x3fc00000)
   2902 
   2903 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
   2904 {
   2905     float_status *s = &env->vfp.standard_fp_status;
   2906     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
   2907         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
   2908         if (!(float32_is_zero(a) || float32_is_zero(b))) {
   2909             float_raise(float_flag_input_denormal, s);
   2910         }
   2911         return float32_two;
   2912     }
   2913     return float32_sub(float32_two, float32_mul(a, b, s), s);
   2914 }
   2915 
   2916 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
   2917 {
   2918     float_status *s = &env->vfp.standard_fp_status;
   2919     float32 product;
   2920     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
   2921         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
   2922         if (!(float32_is_zero(a) || float32_is_zero(b))) {
   2923             float_raise(float_flag_input_denormal, s);
   2924         }
   2925         return float32_one_point_five;
   2926     }
   2927     product = float32_mul(a, b, s);
   2928     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
   2929 }
   2930 
   2931 /* NEON helpers.  */
   2932 
   2933 /* Constants 256 and 512 are used in some helpers; we avoid relying on
   2934  * int->float conversions at run-time.  */
   2935 #define float64_256 make_float64(0x4070000000000000LL)
   2936 #define float64_512 make_float64(0x4080000000000000LL)
   2937 
   2938 /* The algorithm that must be used to calculate the estimate
   2939  * is specified by the ARM ARM.
   2940  */
   2941 static float64 recip_estimate(float64 a, CPUState *env)
   2942 {
   2943     /* These calculations mustn't set any fp exception flags,
   2944      * so we use a local copy of the fp_status.
   2945      */
   2946     float_status dummy_status = env->vfp.standard_fp_status;
   2947     float_status *s = &dummy_status;
   2948     /* q = (int)(a * 512.0) */
   2949     float64 q = float64_mul(float64_512, a, s);
   2950     int64_t q_int = float64_to_int64_round_to_zero(q, s);
   2951 
   2952     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
   2953     q = int64_to_float64(q_int, s);
   2954     q = float64_add(q, float64_half, s);
   2955     q = float64_div(q, float64_512, s);
   2956     q = float64_div(float64_one, q, s);
   2957 
   2958     /* s = (int)(256.0 * r + 0.5) */
   2959     q = float64_mul(q, float64_256, s);
   2960     q = float64_add(q, float64_half, s);
   2961     q_int = float64_to_int64_round_to_zero(q, s);
   2962 
   2963     /* return (double)s / 256.0 */
   2964     return float64_div(int64_to_float64(q_int, s), float64_256, s);
   2965 }
   2966 
   2967 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
   2968 {
   2969     float_status *s = &env->vfp.standard_fp_status;
   2970     float64 f64;
   2971     uint32_t val32 = float32_val(a);
   2972 
   2973     int result_exp;
   2974     int a_exp = (val32  & 0x7f800000) >> 23;
   2975     int sign = val32 & 0x80000000;
   2976 
   2977     if (float32_is_any_nan(a)) {
   2978         if (float32_is_signaling_nan(a)) {
   2979             float_raise(float_flag_invalid, s);
   2980         }
   2981         return float32_default_nan;
   2982     } else if (float32_is_infinity(a)) {
   2983         return float32_set_sign(float32_zero, float32_is_neg(a));
   2984     } else if (float32_is_zero_or_denormal(a)) {
   2985         if (!float32_is_zero(a)) {
   2986             float_raise(float_flag_input_denormal, s);
   2987         }
   2988         float_raise(float_flag_divbyzero, s);
   2989         return float32_set_sign(float32_infinity, float32_is_neg(a));
   2990     } else if (a_exp >= 253) {
   2991         float_raise(float_flag_underflow, s);
   2992         return float32_set_sign(float32_zero, float32_is_neg(a));
   2993     }
   2994 
   2995     f64 = make_float64((0x3feULL << 52)
   2996                        | ((int64_t)(val32 & 0x7fffff) << 29));
   2997 
   2998     result_exp = 253 - a_exp;
   2999 
   3000     f64 = recip_estimate(f64, env);
   3001 
   3002     val32 = sign
   3003         | ((result_exp & 0xff) << 23)
   3004         | ((float64_val(f64) >> 29) & 0x7fffff);
   3005     return make_float32(val32);
   3006 }
   3007 
   3008 /* The algorithm that must be used to calculate the estimate
   3009  * is specified by the ARM ARM.
   3010  */
   3011 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
   3012 {
   3013     /* These calculations mustn't set any fp exception flags,
   3014      * so we use a local copy of the fp_status.
   3015      */
   3016     float_status dummy_status = env->vfp.standard_fp_status;
   3017     float_status *s = &dummy_status;
   3018     float64 q;
   3019     int64_t q_int;
   3020 
   3021     if (float64_lt(a, float64_half, s)) {
   3022         /* range 0.25 <= a < 0.5 */
   3023 
   3024         /* a in units of 1/512 rounded down */
   3025         /* q0 = (int)(a * 512.0);  */
   3026         q = float64_mul(float64_512, a, s);
   3027         q_int = float64_to_int64_round_to_zero(q, s);
   3028 
   3029         /* reciprocal root r */
   3030         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
   3031         q = int64_to_float64(q_int, s);
   3032         q = float64_add(q, float64_half, s);
   3033         q = float64_div(q, float64_512, s);
   3034         q = float64_sqrt(q, s);
   3035         q = float64_div(float64_one, q, s);
   3036     } else {
   3037         /* range 0.5 <= a < 1.0 */
   3038 
   3039         /* a in units of 1/256 rounded down */
   3040         /* q1 = (int)(a * 256.0); */
   3041         q = float64_mul(float64_256, a, s);
   3042         int64_t q_int = float64_to_int64_round_to_zero(q, s);
   3043 
   3044         /* reciprocal root r */
   3045         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
   3046         q = int64_to_float64(q_int, s);
   3047         q = float64_add(q, float64_half, s);
   3048         q = float64_div(q, float64_256, s);
   3049         q = float64_sqrt(q, s);
   3050         q = float64_div(float64_one, q, s);
   3051     }
   3052     /* r in units of 1/256 rounded to nearest */
   3053     /* s = (int)(256.0 * r + 0.5); */
   3054 
   3055     q = float64_mul(q, float64_256,s );
   3056     q = float64_add(q, float64_half, s);
   3057     q_int = float64_to_int64_round_to_zero(q, s);
   3058 
   3059     /* return (double)s / 256.0;*/
   3060     return float64_div(int64_to_float64(q_int, s), float64_256, s);
   3061 }
   3062 
   3063 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
   3064 {
   3065     float_status *s = &env->vfp.standard_fp_status;
   3066     int result_exp;
   3067     float64 f64;
   3068     uint32_t val;
   3069     uint64_t val64;
   3070 
   3071     val = float32_val(a);
   3072 
   3073     if (float32_is_any_nan(a)) {
   3074         if (float32_is_signaling_nan(a)) {
   3075             float_raise(float_flag_invalid, s);
   3076         }
   3077         return float32_default_nan;
   3078     } else if (float32_is_zero_or_denormal(a)) {
   3079         if (!float32_is_zero(a)) {
   3080             float_raise(float_flag_input_denormal, s);
   3081         }
   3082         float_raise(float_flag_divbyzero, s);
   3083         return float32_set_sign(float32_infinity, float32_is_neg(a));
   3084     } else if (float32_is_neg(a)) {
   3085         float_raise(float_flag_invalid, s);
   3086         return float32_default_nan;
   3087     } else if (float32_is_infinity(a)) {
   3088         return float32_zero;
   3089     }
   3090 
   3091     /* Normalize to a double-precision value between 0.25 and 1.0,
   3092      * preserving the parity of the exponent.  */
   3093     if ((val & 0x800000) == 0) {
   3094         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
   3095                            | (0x3feULL << 52)
   3096                            | ((uint64_t)(val & 0x7fffff) << 29));
   3097     } else {
   3098         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
   3099                            | (0x3fdULL << 52)
   3100                            | ((uint64_t)(val & 0x7fffff) << 29));
   3101     }
   3102 
   3103     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
   3104 
   3105     f64 = recip_sqrt_estimate(f64, env);
   3106 
   3107     val64 = float64_val(f64);
   3108 
   3109     val = ((val64 >> 63)  & 0x80000000)
   3110         | ((result_exp & 0xff) << 23)
   3111         | ((val64 >> 29)  & 0x7fffff);
   3112     return make_float32(val);
   3113 }
   3114 
   3115 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
   3116 {
   3117     float64 f64;
   3118 
   3119     if ((a & 0x80000000) == 0) {
   3120         return 0xffffffff;
   3121     }
   3122 
   3123     f64 = make_float64((0x3feULL << 52)
   3124                        | ((int64_t)(a & 0x7fffffff) << 21));
   3125 
   3126     f64 = recip_estimate (f64, env);
   3127 
   3128     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
   3129 }
   3130 
   3131 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
   3132 {
   3133     float64 f64;
   3134 
   3135     if ((a & 0xc0000000) == 0) {
   3136         return 0xffffffff;
   3137     }
   3138 
   3139     if (a & 0x80000000) {
   3140         f64 = make_float64((0x3feULL << 52)
   3141                            | ((uint64_t)(a & 0x7fffffff) << 21));
   3142     } else { /* bits 31-30 == '01' */
   3143         f64 = make_float64((0x3fdULL << 52)
   3144                            | ((uint64_t)(a & 0x3fffffff) << 22));
   3145     }
   3146 
   3147     f64 = recip_sqrt_estimate(f64, env);
   3148 
   3149     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
   3150 }
   3151 
   3152 void HELPER(set_teecr)(CPUState *env, uint32_t val)
   3153 {
   3154     val &= 1;
   3155     if (env->teecr != val) {
   3156         env->teecr = val;
   3157         tb_flush(env);
   3158     }
   3159 }
   3160