1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: keir (at) google.com (Keir Mierle) 30 31 #include "ceres/internal/autodiff.h" 32 33 #include "gtest/gtest.h" 34 #include "ceres/random.h" 35 36 namespace ceres { 37 namespace internal { 38 39 template <typename T> inline 40 T &RowMajorAccess(T *base, int rows, int cols, int i, int j) { 41 return base[cols * i + j]; 42 } 43 44 // Do (symmetric) finite differencing using the given function object 'b' of 45 // type 'B' and scalar type 'T' with step size 'del'. 46 // 47 // The type B should have a signature 48 // 49 // bool operator()(T const *, T *) const; 50 // 51 // which maps a vector of parameters to a vector of outputs. 52 template <typename B, typename T, int M, int N> inline 53 bool SymmetricDiff(const B& b, 54 const T par[N], 55 T del, // step size. 56 T fun[M], 57 T jac[M * N]) { // row-major. 58 if (!b(par, fun)) { 59 return false; 60 } 61 62 // Temporary parameter vector. 63 T tmp_par[N]; 64 for (int j = 0; j < N; ++j) { 65 tmp_par[j] = par[j]; 66 } 67 68 // For each dimension, we do one forward step and one backward step in 69 // parameter space, and store the output vector vectors in these vectors. 70 T fwd_fun[M]; 71 T bwd_fun[M]; 72 73 for (int j = 0; j < N; ++j) { 74 // Forward step. 75 tmp_par[j] = par[j] + del; 76 if (!b(tmp_par, fwd_fun)) { 77 return false; 78 } 79 80 // Backward step. 81 tmp_par[j] = par[j] - del; 82 if (!b(tmp_par, bwd_fun)) { 83 return false; 84 } 85 86 // Symmetric differencing: 87 // f'(a) = (f(a + h) - f(a - h)) / (2 h) 88 for (int i = 0; i < M; ++i) { 89 RowMajorAccess(jac, M, N, i, j) = 90 (fwd_fun[i] - bwd_fun[i]) / (T(2) * del); 91 } 92 93 // Restore our temporary vector. 94 tmp_par[j] = par[j]; 95 } 96 97 return true; 98 } 99 100 template <typename A> inline 101 void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) { 102 // Make convenient names for elements of q. 103 A a = q[0]; 104 A b = q[1]; 105 A c = q[2]; 106 A d = q[3]; 107 // This is not to eliminate common sub-expression, but to 108 // make the lines shorter so that they fit in 80 columns! 109 A aa = a*a; 110 A ab = a*b; 111 A ac = a*c; 112 A ad = a*d; 113 A bb = b*b; 114 A bc = b*c; 115 A bd = b*d; 116 A cc = c*c; 117 A cd = c*d; 118 A dd = d*d; 119 #define R(i, j) RowMajorAccess(R, 3, 3, (i), (j)) 120 R(0, 0) = aa+bb-cc-dd; R(0, 1) = A(2)*(bc-ad); R(0, 2) = A(2)*(ac+bd); // NOLINT 121 R(1, 0) = A(2)*(ad+bc); R(1, 1) = aa-bb+cc-dd; R(1, 2) = A(2)*(cd-ab); // NOLINT 122 R(2, 0) = A(2)*(bd-ac); R(2, 1) = A(2)*(ab+cd); R(2, 2) = aa-bb-cc+dd; // NOLINT 123 #undef R 124 } 125 126 // A structure for projecting a 3x4 camera matrix and a 127 // homogeneous 3D point, to a 2D inhomogeneous point. 128 struct Projective { 129 // Function that takes P and X as separate vectors: 130 // P, X -> x 131 template <typename A> 132 bool operator()(A const P[12], A const X[4], A x[2]) const { 133 A PX[3]; 134 for (int i = 0; i < 3; ++i) { 135 PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] + 136 RowMajorAccess(P, 3, 4, i, 1) * X[1] + 137 RowMajorAccess(P, 3, 4, i, 2) * X[2] + 138 RowMajorAccess(P, 3, 4, i, 3) * X[3]; 139 } 140 if (PX[2] != 0.0) { 141 x[0] = PX[0] / PX[2]; 142 x[1] = PX[1] / PX[2]; 143 return true; 144 } 145 return false; 146 } 147 148 // Version that takes P and X packed in one vector: 149 // 150 // (P, X) -> x 151 // 152 template <typename A> 153 bool operator()(A const P_X[12 + 4], A x[2]) const { 154 return operator()(P_X + 0, P_X + 12, x); 155 } 156 }; 157 158 // Test projective camera model projector. 159 TEST(AutoDiff, ProjectiveCameraModel) { 160 srand(5); 161 double const tol = 1e-10; // floating-point tolerance. 162 double const del = 1e-4; // finite-difference step. 163 double const err = 1e-6; // finite-difference tolerance. 164 165 Projective b; 166 167 // Make random P and X, in a single vector. 168 double PX[12 + 4]; 169 for (int i = 0; i < 12 + 4; ++i) { 170 PX[i] = RandDouble(); 171 } 172 173 // Handy names for the P and X parts. 174 double *P = PX + 0; 175 double *X = PX + 12; 176 177 // Apply the mapping, to get image point b_x. 178 double b_x[2]; 179 b(P, X, b_x); 180 181 // Use finite differencing to estimate the Jacobian. 182 double fd_x[2]; 183 double fd_J[2 * (12 + 4)]; 184 ASSERT_TRUE((SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del, 185 fd_x, fd_J))); 186 187 for (int i = 0; i < 2; ++i) { 188 ASSERT_EQ(fd_x[i], b_x[i]); 189 } 190 191 // Use automatic differentiation to compute the Jacobian. 192 double ad_x1[2]; 193 double J_PX[2 * (12 + 4)]; 194 { 195 double *parameters[] = { PX }; 196 double *jacobians[] = { J_PX }; 197 ASSERT_TRUE((AutoDiff<Projective, double, 12 + 4>::Differentiate( 198 b, parameters, 2, ad_x1, jacobians))); 199 200 for (int i = 0; i < 2; ++i) { 201 ASSERT_NEAR(ad_x1[i], b_x[i], tol); 202 } 203 } 204 205 // Use automatic differentiation (again), with two arguments. 206 { 207 double ad_x2[2]; 208 double J_P[2 * 12]; 209 double J_X[2 * 4]; 210 double *parameters[] = { P, X }; 211 double *jacobians[] = { J_P, J_X }; 212 ASSERT_TRUE((AutoDiff<Projective, double, 12, 4>::Differentiate( 213 b, parameters, 2, ad_x2, jacobians))); 214 215 for (int i = 0; i < 2; ++i) { 216 ASSERT_NEAR(ad_x2[i], b_x[i], tol); 217 } 218 219 // Now compare the jacobians we got. 220 for (int i = 0; i < 2; ++i) { 221 for (int j = 0; j < 12 + 4; ++j) { 222 ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err); 223 } 224 225 for (int j = 0; j < 12; ++j) { 226 ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol); 227 } 228 for (int j = 0; j < 4; ++j) { 229 ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol); 230 } 231 } 232 } 233 } 234 235 // Object to implement the projection by a calibrated camera. 236 struct Metric { 237 // The mapping is 238 // 239 // q, c, X -> x = dehomg(R(q) (X - c)) 240 // 241 // where q is a quaternion and c is the center of projection. 242 // 243 // This function takes three input vectors. 244 template <typename A> 245 bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const { 246 A R[3 * 3]; 247 QuaternionToScaledRotation(q, R); 248 249 // Convert the quaternion mapping all the way to projective matrix. 250 A P[3 * 4]; 251 252 // Set P(:, 1:3) = R 253 for (int i = 0; i < 3; ++i) { 254 for (int j = 0; j < 3; ++j) { 255 RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j); 256 } 257 } 258 259 // Set P(:, 4) = - R c 260 for (int i = 0; i < 3; ++i) { 261 RowMajorAccess(P, 3, 4, i, 3) = 262 - (RowMajorAccess(R, 3, 3, i, 0) * c[0] + 263 RowMajorAccess(R, 3, 3, i, 1) * c[1] + 264 RowMajorAccess(R, 3, 3, i, 2) * c[2]); 265 } 266 267 A X1[4] = { X[0], X[1], X[2], A(1) }; 268 Projective p; 269 return p(P, X1, x); 270 } 271 272 // A version that takes a single vector. 273 template <typename A> 274 bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const { 275 return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x); 276 } 277 }; 278 279 // This test is similar in structure to the previous one. 280 TEST(AutoDiff, Metric) { 281 srand(5); 282 double const tol = 1e-10; // floating-point tolerance. 283 double const del = 1e-4; // finite-difference step. 284 double const err = 1e-5; // finite-difference tolerance. 285 286 Metric b; 287 288 // Make random parameter vector. 289 double qcX[4 + 3 + 3]; 290 for (int i = 0; i < 4 + 3 + 3; ++i) 291 qcX[i] = RandDouble(); 292 293 // Handy names. 294 double *q = qcX; 295 double *c = qcX + 4; 296 double *X = qcX + 4 + 3; 297 298 // Compute projection, b_x. 299 double b_x[2]; 300 ASSERT_TRUE(b(q, c, X, b_x)); 301 302 // Finite differencing estimate of Jacobian. 303 double fd_x[2]; 304 double fd_J[2 * (4 + 3 + 3)]; 305 ASSERT_TRUE((SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del, 306 fd_x, fd_J))); 307 308 for (int i = 0; i < 2; ++i) { 309 ASSERT_NEAR(fd_x[i], b_x[i], tol); 310 } 311 312 // Automatic differentiation. 313 double ad_x[2]; 314 double J_q[2 * 4]; 315 double J_c[2 * 3]; 316 double J_X[2 * 3]; 317 double *parameters[] = { q, c, X }; 318 double *jacobians[] = { J_q, J_c, J_X }; 319 ASSERT_TRUE((AutoDiff<Metric, double, 4, 3, 3>::Differentiate( 320 b, parameters, 2, ad_x, jacobians))); 321 322 for (int i = 0; i < 2; ++i) { 323 ASSERT_NEAR(ad_x[i], b_x[i], tol); 324 } 325 326 // Compare the pieces. 327 for (int i = 0; i < 2; ++i) { 328 for (int j = 0; j < 4; ++j) { 329 ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err); 330 } 331 for (int j = 0; j < 3; ++j) { 332 ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err); 333 } 334 for (int j = 0; j < 3; ++j) { 335 ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err); 336 } 337 } 338 } 339 340 struct VaryingResidualFunctor { 341 template <typename T> 342 bool operator()(const T x[2], T* y) const { 343 for (int i = 0; i < num_residuals; ++i) { 344 y[i] = T(i) * x[0] * x[1] * x[1]; 345 } 346 return true; 347 } 348 349 int num_residuals; 350 }; 351 352 TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) { 353 double x[2] = { 1.0, 5.5 }; 354 double *parameters[] = { x }; 355 const int kMaxResiduals = 10; 356 double J_x[2 * kMaxResiduals]; 357 double residuals[kMaxResiduals]; 358 double *jacobians[] = { J_x }; 359 360 // Use a single functor, but tweak it to produce different numbers of 361 // residuals. 362 VaryingResidualFunctor functor; 363 364 for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) { 365 // Tweak the number of residuals to produce. 366 functor.num_residuals = num_residuals; 367 368 // Run autodiff with the new number of residuals. 369 ASSERT_TRUE((AutoDiff<VaryingResidualFunctor, double, 2>::Differentiate( 370 functor, parameters, num_residuals, residuals, jacobians))); 371 372 const double kTolerance = 1e-14; 373 for (int i = 0; i < num_residuals; ++i) { 374 EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i; 375 EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance) 376 << "i: " << i; 377 } 378 } 379 } 380 381 struct Residual1Param { 382 template <typename T> 383 bool operator()(const T* x0, T* y) const { 384 y[0] = *x0; 385 return true; 386 } 387 }; 388 389 struct Residual2Param { 390 template <typename T> 391 bool operator()(const T* x0, const T* x1, T* y) const { 392 y[0] = *x0 + pow(*x1, 2); 393 return true; 394 } 395 }; 396 397 struct Residual3Param { 398 template <typename T> 399 bool operator()(const T* x0, const T* x1, const T* x2, T* y) const { 400 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3); 401 return true; 402 } 403 }; 404 405 struct Residual4Param { 406 template <typename T> 407 bool operator()(const T* x0, 408 const T* x1, 409 const T* x2, 410 const T* x3, 411 T* y) const { 412 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4); 413 return true; 414 } 415 }; 416 417 struct Residual5Param { 418 template <typename T> 419 bool operator()(const T* x0, 420 const T* x1, 421 const T* x2, 422 const T* x3, 423 const T* x4, 424 T* y) const { 425 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5); 426 return true; 427 } 428 }; 429 430 struct Residual6Param { 431 template <typename T> 432 bool operator()(const T* x0, 433 const T* x1, 434 const T* x2, 435 const T* x3, 436 const T* x4, 437 const T* x5, 438 T* y) const { 439 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + 440 pow(*x5, 6); 441 return true; 442 } 443 }; 444 445 struct Residual7Param { 446 template <typename T> 447 bool operator()(const T* x0, 448 const T* x1, 449 const T* x2, 450 const T* x3, 451 const T* x4, 452 const T* x5, 453 const T* x6, 454 T* y) const { 455 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + 456 pow(*x5, 6) + pow(*x6, 7); 457 return true; 458 } 459 }; 460 461 struct Residual8Param { 462 template <typename T> 463 bool operator()(const T* x0, 464 const T* x1, 465 const T* x2, 466 const T* x3, 467 const T* x4, 468 const T* x5, 469 const T* x6, 470 const T* x7, 471 T* y) const { 472 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + 473 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8); 474 return true; 475 } 476 }; 477 478 struct Residual9Param { 479 template <typename T> 480 bool operator()(const T* x0, 481 const T* x1, 482 const T* x2, 483 const T* x3, 484 const T* x4, 485 const T* x5, 486 const T* x6, 487 const T* x7, 488 const T* x8, 489 T* y) const { 490 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + 491 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9); 492 return true; 493 } 494 }; 495 496 struct Residual10Param { 497 template <typename T> 498 bool operator()(const T* x0, 499 const T* x1, 500 const T* x2, 501 const T* x3, 502 const T* x4, 503 const T* x5, 504 const T* x6, 505 const T* x7, 506 const T* x8, 507 const T* x9, 508 T* y) const { 509 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) + 510 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10); 511 return true; 512 } 513 }; 514 515 TEST(AutoDiff, VariadicAutoDiff) { 516 double x[10]; 517 double residual = 0; 518 double* parameters[10]; 519 double jacobian_values[10]; 520 double* jacobians[10]; 521 522 for (int i = 0; i < 10; ++i) { 523 x[i] = 2.0; 524 parameters[i] = x + i; 525 jacobians[i] = jacobian_values + i; 526 } 527 528 { 529 Residual1Param functor; 530 int num_variables = 1; 531 EXPECT_TRUE((AutoDiff<Residual1Param, double, 1>::Differentiate( 532 functor, parameters, 1, &residual, jacobians))); 533 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 534 for (int i = 0; i < num_variables; ++i) { 535 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 536 } 537 } 538 539 { 540 Residual2Param functor; 541 int num_variables = 2; 542 EXPECT_TRUE((AutoDiff<Residual2Param, double, 1, 1>::Differentiate( 543 functor, parameters, 1, &residual, jacobians))); 544 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 545 for (int i = 0; i < num_variables; ++i) { 546 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 547 } 548 } 549 550 { 551 Residual3Param functor; 552 int num_variables = 3; 553 EXPECT_TRUE((AutoDiff<Residual3Param, double, 1, 1, 1>::Differentiate( 554 functor, parameters, 1, &residual, jacobians))); 555 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 556 for (int i = 0; i < num_variables; ++i) { 557 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 558 } 559 } 560 561 { 562 Residual4Param functor; 563 int num_variables = 4; 564 EXPECT_TRUE((AutoDiff<Residual4Param, double, 1, 1, 1, 1>::Differentiate( 565 functor, parameters, 1, &residual, jacobians))); 566 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 567 for (int i = 0; i < num_variables; ++i) { 568 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 569 } 570 } 571 572 { 573 Residual5Param functor; 574 int num_variables = 5; 575 EXPECT_TRUE((AutoDiff<Residual5Param, double, 1, 1, 1, 1, 1>::Differentiate( 576 functor, parameters, 1, &residual, jacobians))); 577 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 578 for (int i = 0; i < num_variables; ++i) { 579 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 580 } 581 } 582 583 { 584 Residual6Param functor; 585 int num_variables = 6; 586 EXPECT_TRUE((AutoDiff<Residual6Param, 587 double, 588 1, 1, 1, 1, 1, 1>::Differentiate( 589 functor, parameters, 1, &residual, jacobians))); 590 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 591 for (int i = 0; i < num_variables; ++i) { 592 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 593 } 594 } 595 596 { 597 Residual7Param functor; 598 int num_variables = 7; 599 EXPECT_TRUE((AutoDiff<Residual7Param, 600 double, 601 1, 1, 1, 1, 1, 1, 1>::Differentiate( 602 functor, parameters, 1, &residual, jacobians))); 603 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 604 for (int i = 0; i < num_variables; ++i) { 605 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 606 } 607 } 608 609 { 610 Residual8Param functor; 611 int num_variables = 8; 612 EXPECT_TRUE((AutoDiff< 613 Residual8Param, 614 double, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate( 615 functor, parameters, 1, &residual, jacobians))); 616 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 617 for (int i = 0; i < num_variables; ++i) { 618 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 619 } 620 } 621 622 { 623 Residual9Param functor; 624 int num_variables = 9; 625 EXPECT_TRUE((AutoDiff< 626 Residual9Param, 627 double, 628 1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate( 629 functor, parameters, 1, &residual, jacobians))); 630 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 631 for (int i = 0; i < num_variables; ++i) { 632 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 633 } 634 } 635 636 { 637 Residual10Param functor; 638 int num_variables = 10; 639 EXPECT_TRUE((AutoDiff< 640 Residual10Param, 641 double, 642 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate( 643 functor, parameters, 1, &residual, jacobians))); 644 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2); 645 for (int i = 0; i < num_variables; ++i) { 646 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i)); 647 } 648 } 649 } 650 651 // This is fragile test that triggers the alignment bug on 652 // i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible, 653 // that other combinations of operating system + compiler will 654 // re-arrange the operations in this test. 655 // 656 // But this is the best (and only) way we know of to trigger this 657 // problem for now. A more robust solution that guarantees the 658 // alignment of Eigen types used for automatic differentiation would 659 // be nice. 660 TEST(AutoDiff, AlignedAllocationTest) { 661 // This int is needed to allocate 16 bits on the stack, so that the 662 // next allocation is not aligned by default. 663 char y = 0; 664 665 // This is needed to prevent the compiler from optimizing y out of 666 // this function. 667 y += 1; 668 669 typedef Jet<double, 2> JetT; 670 FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3); 671 672 // Need this to makes sure that x does not get optimized out. 673 x[0] = x[0] + JetT(1.0); 674 } 675 676 } // namespace internal 677 } // namespace ceres 678