1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Aggregate Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGObjCRuntime.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/DeclCXX.h" 19 #include "clang/AST/DeclTemplate.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GlobalVariable.h" 24 #include "llvm/IR/Intrinsics.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Aggregate Expression Emitter 30 //===----------------------------------------------------------------------===// 31 32 namespace { 33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 34 CodeGenFunction &CGF; 35 CGBuilderTy &Builder; 36 AggValueSlot Dest; 37 38 /// We want to use 'dest' as the return slot except under two 39 /// conditions: 40 /// - The destination slot requires garbage collection, so we 41 /// need to use the GC API. 42 /// - The destination slot is potentially aliased. 43 bool shouldUseDestForReturnSlot() const { 44 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 45 } 46 47 ReturnValueSlot getReturnValueSlot() const { 48 if (!shouldUseDestForReturnSlot()) 49 return ReturnValueSlot(); 50 51 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 52 } 53 54 AggValueSlot EnsureSlot(QualType T) { 55 if (!Dest.isIgnored()) return Dest; 56 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 57 } 58 void EnsureDest(QualType T) { 59 if (!Dest.isIgnored()) return; 60 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 61 } 62 63 public: 64 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 65 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 66 } 67 68 //===--------------------------------------------------------------------===// 69 // Utilities 70 //===--------------------------------------------------------------------===// 71 72 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 73 /// represents a value lvalue, this method emits the address of the lvalue, 74 /// then loads the result into DestPtr. 75 void EmitAggLoadOfLValue(const Expr *E); 76 77 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 78 void EmitFinalDestCopy(QualType type, const LValue &src); 79 void EmitFinalDestCopy(QualType type, RValue src, 80 CharUnits srcAlignment = CharUnits::Zero()); 81 void EmitCopy(QualType type, const AggValueSlot &dest, 82 const AggValueSlot &src); 83 84 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 85 86 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 87 QualType elementType, InitListExpr *E); 88 89 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 90 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 91 return AggValueSlot::NeedsGCBarriers; 92 return AggValueSlot::DoesNotNeedGCBarriers; 93 } 94 95 bool TypeRequiresGCollection(QualType T); 96 97 //===--------------------------------------------------------------------===// 98 // Visitor Methods 99 //===--------------------------------------------------------------------===// 100 101 void VisitStmt(Stmt *S) { 102 CGF.ErrorUnsupported(S, "aggregate expression"); 103 } 104 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 105 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 106 Visit(GE->getResultExpr()); 107 } 108 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 109 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 110 return Visit(E->getReplacement()); 111 } 112 113 // l-values. 114 void VisitDeclRefExpr(DeclRefExpr *E) { 115 // For aggregates, we should always be able to emit the variable 116 // as an l-value unless it's a reference. This is due to the fact 117 // that we can't actually ever see a normal l2r conversion on an 118 // aggregate in C++, and in C there's no language standard 119 // actively preventing us from listing variables in the captures 120 // list of a block. 121 if (E->getDecl()->getType()->isReferenceType()) { 122 if (CodeGenFunction::ConstantEmission result 123 = CGF.tryEmitAsConstant(E)) { 124 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 125 return; 126 } 127 } 128 129 EmitAggLoadOfLValue(E); 130 } 131 132 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 133 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 134 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 135 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 136 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 137 EmitAggLoadOfLValue(E); 138 } 139 void VisitPredefinedExpr(const PredefinedExpr *E) { 140 EmitAggLoadOfLValue(E); 141 } 142 143 // Operators. 144 void VisitCastExpr(CastExpr *E); 145 void VisitCallExpr(const CallExpr *E); 146 void VisitStmtExpr(const StmtExpr *E); 147 void VisitBinaryOperator(const BinaryOperator *BO); 148 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 149 void VisitBinAssign(const BinaryOperator *E); 150 void VisitBinComma(const BinaryOperator *E); 151 152 void VisitObjCMessageExpr(ObjCMessageExpr *E); 153 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 154 EmitAggLoadOfLValue(E); 155 } 156 157 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 158 void VisitChooseExpr(const ChooseExpr *CE); 159 void VisitInitListExpr(InitListExpr *E); 160 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 161 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 162 Visit(DAE->getExpr()); 163 } 164 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 165 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 166 Visit(DIE->getExpr()); 167 } 168 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 169 void VisitCXXConstructExpr(const CXXConstructExpr *E); 170 void VisitLambdaExpr(LambdaExpr *E); 171 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 172 void VisitExprWithCleanups(ExprWithCleanups *E); 173 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 174 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 175 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 176 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 177 178 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 179 if (E->isGLValue()) { 180 LValue LV = CGF.EmitPseudoObjectLValue(E); 181 return EmitFinalDestCopy(E->getType(), LV); 182 } 183 184 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 185 } 186 187 void VisitVAArgExpr(VAArgExpr *E); 188 189 void EmitInitializationToLValue(Expr *E, LValue Address); 190 void EmitNullInitializationToLValue(LValue Address); 191 // case Expr::ChooseExprClass: 192 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 193 void VisitAtomicExpr(AtomicExpr *E) { 194 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 195 } 196 }; 197 } // end anonymous namespace. 198 199 //===----------------------------------------------------------------------===// 200 // Utilities 201 //===----------------------------------------------------------------------===// 202 203 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 204 /// represents a value lvalue, this method emits the address of the lvalue, 205 /// then loads the result into DestPtr. 206 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 207 LValue LV = CGF.EmitLValue(E); 208 209 // If the type of the l-value is atomic, then do an atomic load. 210 if (LV.getType()->isAtomicType()) { 211 CGF.EmitAtomicLoad(LV, Dest); 212 return; 213 } 214 215 EmitFinalDestCopy(E->getType(), LV); 216 } 217 218 /// \brief True if the given aggregate type requires special GC API calls. 219 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 220 // Only record types have members that might require garbage collection. 221 const RecordType *RecordTy = T->getAs<RecordType>(); 222 if (!RecordTy) return false; 223 224 // Don't mess with non-trivial C++ types. 225 RecordDecl *Record = RecordTy->getDecl(); 226 if (isa<CXXRecordDecl>(Record) && 227 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 228 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 229 return false; 230 231 // Check whether the type has an object member. 232 return Record->hasObjectMember(); 233 } 234 235 /// \brief Perform the final move to DestPtr if for some reason 236 /// getReturnValueSlot() didn't use it directly. 237 /// 238 /// The idea is that you do something like this: 239 /// RValue Result = EmitSomething(..., getReturnValueSlot()); 240 /// EmitMoveFromReturnSlot(E, Result); 241 /// 242 /// If nothing interferes, this will cause the result to be emitted 243 /// directly into the return value slot. Otherwise, a final move 244 /// will be performed. 245 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 246 if (shouldUseDestForReturnSlot()) { 247 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 248 // The possibility of undef rvalues complicates that a lot, 249 // though, so we can't really assert. 250 return; 251 } 252 253 // Otherwise, copy from there to the destination. 254 assert(Dest.getAddr() != src.getAggregateAddr()); 255 std::pair<CharUnits, CharUnits> typeInfo = 256 CGF.getContext().getTypeInfoInChars(E->getType()); 257 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 258 } 259 260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 262 CharUnits srcAlign) { 263 assert(src.isAggregate() && "value must be aggregate value!"); 264 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 265 EmitFinalDestCopy(type, srcLV); 266 } 267 268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 270 // If Dest is ignored, then we're evaluating an aggregate expression 271 // in a context that doesn't care about the result. Note that loads 272 // from volatile l-values force the existence of a non-ignored 273 // destination. 274 if (Dest.isIgnored()) 275 return; 276 277 AggValueSlot srcAgg = 278 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 279 needsGC(type), AggValueSlot::IsAliased); 280 EmitCopy(type, Dest, srcAgg); 281 } 282 283 /// Perform a copy from the source into the destination. 284 /// 285 /// \param type - the type of the aggregate being copied; qualifiers are 286 /// ignored 287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 288 const AggValueSlot &src) { 289 if (dest.requiresGCollection()) { 290 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 291 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 292 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 293 dest.getAddr(), 294 src.getAddr(), 295 size); 296 return; 297 } 298 299 // If the result of the assignment is used, copy the LHS there also. 300 // It's volatile if either side is. Use the minimum alignment of 301 // the two sides. 302 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 303 dest.isVolatile() || src.isVolatile(), 304 std::min(dest.getAlignment(), src.getAlignment())); 305 } 306 307 /// \brief Emit the initializer for a std::initializer_list initialized with a 308 /// real initializer list. 309 void 310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 311 // Emit an array containing the elements. The array is externally destructed 312 // if the std::initializer_list object is. 313 ASTContext &Ctx = CGF.getContext(); 314 LValue Array = CGF.EmitLValue(E->getSubExpr()); 315 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 316 llvm::Value *ArrayPtr = Array.getAddress(); 317 318 const ConstantArrayType *ArrayType = 319 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 320 assert(ArrayType && "std::initializer_list constructed from non-array"); 321 322 // FIXME: Perform the checks on the field types in SemaInit. 323 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 324 RecordDecl::field_iterator Field = Record->field_begin(); 325 if (Field == Record->field_end()) { 326 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 327 return; 328 } 329 330 // Start pointer. 331 if (!Field->getType()->isPointerType() || 332 !Ctx.hasSameType(Field->getType()->getPointeeType(), 333 ArrayType->getElementType())) { 334 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 335 return; 336 } 337 338 AggValueSlot Dest = EnsureSlot(E->getType()); 339 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 340 Dest.getAlignment()); 341 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 342 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 343 llvm::Value *IdxStart[] = { Zero, Zero }; 344 llvm::Value *ArrayStart = 345 Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart"); 346 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 347 ++Field; 348 349 if (Field == Record->field_end()) { 350 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 351 return; 352 } 353 354 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 355 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 356 if (Field->getType()->isPointerType() && 357 Ctx.hasSameType(Field->getType()->getPointeeType(), 358 ArrayType->getElementType())) { 359 // End pointer. 360 llvm::Value *IdxEnd[] = { Zero, Size }; 361 llvm::Value *ArrayEnd = 362 Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend"); 363 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 364 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 365 // Length. 366 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 367 } else { 368 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 369 return; 370 } 371 } 372 373 /// \brief Emit initialization of an array from an initializer list. 374 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 375 QualType elementType, InitListExpr *E) { 376 uint64_t NumInitElements = E->getNumInits(); 377 378 uint64_t NumArrayElements = AType->getNumElements(); 379 assert(NumInitElements <= NumArrayElements); 380 381 // DestPtr is an array*. Construct an elementType* by drilling 382 // down a level. 383 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 384 llvm::Value *indices[] = { zero, zero }; 385 llvm::Value *begin = 386 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 387 388 // Exception safety requires us to destroy all the 389 // already-constructed members if an initializer throws. 390 // For that, we'll need an EH cleanup. 391 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 392 llvm::AllocaInst *endOfInit = 0; 393 EHScopeStack::stable_iterator cleanup; 394 llvm::Instruction *cleanupDominator = 0; 395 if (CGF.needsEHCleanup(dtorKind)) { 396 // In principle we could tell the cleanup where we are more 397 // directly, but the control flow can get so varied here that it 398 // would actually be quite complex. Therefore we go through an 399 // alloca. 400 endOfInit = CGF.CreateTempAlloca(begin->getType(), 401 "arrayinit.endOfInit"); 402 cleanupDominator = Builder.CreateStore(begin, endOfInit); 403 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 404 CGF.getDestroyer(dtorKind)); 405 cleanup = CGF.EHStack.stable_begin(); 406 407 // Otherwise, remember that we didn't need a cleanup. 408 } else { 409 dtorKind = QualType::DK_none; 410 } 411 412 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 413 414 // The 'current element to initialize'. The invariants on this 415 // variable are complicated. Essentially, after each iteration of 416 // the loop, it points to the last initialized element, except 417 // that it points to the beginning of the array before any 418 // elements have been initialized. 419 llvm::Value *element = begin; 420 421 // Emit the explicit initializers. 422 for (uint64_t i = 0; i != NumInitElements; ++i) { 423 // Advance to the next element. 424 if (i > 0) { 425 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 426 427 // Tell the cleanup that it needs to destroy up to this 428 // element. TODO: some of these stores can be trivially 429 // observed to be unnecessary. 430 if (endOfInit) Builder.CreateStore(element, endOfInit); 431 } 432 433 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 434 EmitInitializationToLValue(E->getInit(i), elementLV); 435 } 436 437 // Check whether there's a non-trivial array-fill expression. 438 // Note that this will be a CXXConstructExpr even if the element 439 // type is an array (or array of array, etc.) of class type. 440 Expr *filler = E->getArrayFiller(); 441 bool hasTrivialFiller = true; 442 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 443 assert(cons->getConstructor()->isDefaultConstructor()); 444 hasTrivialFiller = cons->getConstructor()->isTrivial(); 445 } 446 447 // Any remaining elements need to be zero-initialized, possibly 448 // using the filler expression. We can skip this if the we're 449 // emitting to zeroed memory. 450 if (NumInitElements != NumArrayElements && 451 !(Dest.isZeroed() && hasTrivialFiller && 452 CGF.getTypes().isZeroInitializable(elementType))) { 453 454 // Use an actual loop. This is basically 455 // do { *array++ = filler; } while (array != end); 456 457 // Advance to the start of the rest of the array. 458 if (NumInitElements) { 459 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 460 if (endOfInit) Builder.CreateStore(element, endOfInit); 461 } 462 463 // Compute the end of the array. 464 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 465 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 466 "arrayinit.end"); 467 468 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 469 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 470 471 // Jump into the body. 472 CGF.EmitBlock(bodyBB); 473 llvm::PHINode *currentElement = 474 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 475 currentElement->addIncoming(element, entryBB); 476 477 // Emit the actual filler expression. 478 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 479 if (filler) 480 EmitInitializationToLValue(filler, elementLV); 481 else 482 EmitNullInitializationToLValue(elementLV); 483 484 // Move on to the next element. 485 llvm::Value *nextElement = 486 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 487 488 // Tell the EH cleanup that we finished with the last element. 489 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 490 491 // Leave the loop if we're done. 492 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 493 "arrayinit.done"); 494 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 495 Builder.CreateCondBr(done, endBB, bodyBB); 496 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 497 498 CGF.EmitBlock(endBB); 499 } 500 501 // Leave the partial-array cleanup if we entered one. 502 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Visitor Methods 507 //===----------------------------------------------------------------------===// 508 509 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 510 Visit(E->GetTemporaryExpr()); 511 } 512 513 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 514 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 515 } 516 517 void 518 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 519 if (Dest.isPotentiallyAliased() && 520 E->getType().isPODType(CGF.getContext())) { 521 // For a POD type, just emit a load of the lvalue + a copy, because our 522 // compound literal might alias the destination. 523 EmitAggLoadOfLValue(E); 524 return; 525 } 526 527 AggValueSlot Slot = EnsureSlot(E->getType()); 528 CGF.EmitAggExpr(E->getInitializer(), Slot); 529 } 530 531 /// Attempt to look through various unimportant expressions to find a 532 /// cast of the given kind. 533 static Expr *findPeephole(Expr *op, CastKind kind) { 534 while (true) { 535 op = op->IgnoreParens(); 536 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 537 if (castE->getCastKind() == kind) 538 return castE->getSubExpr(); 539 if (castE->getCastKind() == CK_NoOp) 540 continue; 541 } 542 return 0; 543 } 544 } 545 546 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 547 switch (E->getCastKind()) { 548 case CK_Dynamic: { 549 // FIXME: Can this actually happen? We have no test coverage for it. 550 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 551 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 552 CodeGenFunction::TCK_Load); 553 // FIXME: Do we also need to handle property references here? 554 if (LV.isSimple()) 555 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 556 else 557 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 558 559 if (!Dest.isIgnored()) 560 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 561 break; 562 } 563 564 case CK_ToUnion: { 565 if (Dest.isIgnored()) break; 566 567 // GCC union extension 568 QualType Ty = E->getSubExpr()->getType(); 569 QualType PtrTy = CGF.getContext().getPointerType(Ty); 570 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 571 CGF.ConvertType(PtrTy)); 572 EmitInitializationToLValue(E->getSubExpr(), 573 CGF.MakeAddrLValue(CastPtr, Ty)); 574 break; 575 } 576 577 case CK_DerivedToBase: 578 case CK_BaseToDerived: 579 case CK_UncheckedDerivedToBase: { 580 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 581 "should have been unpacked before we got here"); 582 } 583 584 case CK_NonAtomicToAtomic: 585 case CK_AtomicToNonAtomic: { 586 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 587 588 // Determine the atomic and value types. 589 QualType atomicType = E->getSubExpr()->getType(); 590 QualType valueType = E->getType(); 591 if (isToAtomic) std::swap(atomicType, valueType); 592 593 assert(atomicType->isAtomicType()); 594 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 595 atomicType->castAs<AtomicType>()->getValueType())); 596 597 // Just recurse normally if we're ignoring the result or the 598 // atomic type doesn't change representation. 599 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 600 return Visit(E->getSubExpr()); 601 } 602 603 CastKind peepholeTarget = 604 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 605 606 // These two cases are reverses of each other; try to peephole them. 607 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 608 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 609 E->getType()) && 610 "peephole significantly changed types?"); 611 return Visit(op); 612 } 613 614 // If we're converting an r-value of non-atomic type to an r-value 615 // of atomic type, just emit directly into the relevant sub-object. 616 if (isToAtomic) { 617 AggValueSlot valueDest = Dest; 618 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 619 // Zero-initialize. (Strictly speaking, we only need to intialize 620 // the padding at the end, but this is simpler.) 621 if (!Dest.isZeroed()) 622 CGF.EmitNullInitialization(Dest.getAddr(), atomicType); 623 624 // Build a GEP to refer to the subobject. 625 llvm::Value *valueAddr = 626 CGF.Builder.CreateStructGEP(valueDest.getAddr(), 0); 627 valueDest = AggValueSlot::forAddr(valueAddr, 628 valueDest.getAlignment(), 629 valueDest.getQualifiers(), 630 valueDest.isExternallyDestructed(), 631 valueDest.requiresGCollection(), 632 valueDest.isPotentiallyAliased(), 633 AggValueSlot::IsZeroed); 634 } 635 636 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 637 return; 638 } 639 640 // Otherwise, we're converting an atomic type to a non-atomic type. 641 // Make an atomic temporary, emit into that, and then copy the value out. 642 AggValueSlot atomicSlot = 643 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 644 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 645 646 llvm::Value *valueAddr = 647 Builder.CreateStructGEP(atomicSlot.getAddr(), 0); 648 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 649 return EmitFinalDestCopy(valueType, rvalue); 650 } 651 652 case CK_LValueToRValue: 653 // If we're loading from a volatile type, force the destination 654 // into existence. 655 if (E->getSubExpr()->getType().isVolatileQualified()) { 656 EnsureDest(E->getType()); 657 return Visit(E->getSubExpr()); 658 } 659 660 // fallthrough 661 662 case CK_NoOp: 663 case CK_UserDefinedConversion: 664 case CK_ConstructorConversion: 665 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 666 E->getType()) && 667 "Implicit cast types must be compatible"); 668 Visit(E->getSubExpr()); 669 break; 670 671 case CK_LValueBitCast: 672 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 673 674 case CK_Dependent: 675 case CK_BitCast: 676 case CK_ArrayToPointerDecay: 677 case CK_FunctionToPointerDecay: 678 case CK_NullToPointer: 679 case CK_NullToMemberPointer: 680 case CK_BaseToDerivedMemberPointer: 681 case CK_DerivedToBaseMemberPointer: 682 case CK_MemberPointerToBoolean: 683 case CK_ReinterpretMemberPointer: 684 case CK_IntegralToPointer: 685 case CK_PointerToIntegral: 686 case CK_PointerToBoolean: 687 case CK_ToVoid: 688 case CK_VectorSplat: 689 case CK_IntegralCast: 690 case CK_IntegralToBoolean: 691 case CK_IntegralToFloating: 692 case CK_FloatingToIntegral: 693 case CK_FloatingToBoolean: 694 case CK_FloatingCast: 695 case CK_CPointerToObjCPointerCast: 696 case CK_BlockPointerToObjCPointerCast: 697 case CK_AnyPointerToBlockPointerCast: 698 case CK_ObjCObjectLValueCast: 699 case CK_FloatingRealToComplex: 700 case CK_FloatingComplexToReal: 701 case CK_FloatingComplexToBoolean: 702 case CK_FloatingComplexCast: 703 case CK_FloatingComplexToIntegralComplex: 704 case CK_IntegralRealToComplex: 705 case CK_IntegralComplexToReal: 706 case CK_IntegralComplexToBoolean: 707 case CK_IntegralComplexCast: 708 case CK_IntegralComplexToFloatingComplex: 709 case CK_ARCProduceObject: 710 case CK_ARCConsumeObject: 711 case CK_ARCReclaimReturnedObject: 712 case CK_ARCExtendBlockObject: 713 case CK_CopyAndAutoreleaseBlockObject: 714 case CK_BuiltinFnToFnPtr: 715 case CK_ZeroToOCLEvent: 716 llvm_unreachable("cast kind invalid for aggregate types"); 717 } 718 } 719 720 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 721 if (E->getCallReturnType()->isReferenceType()) { 722 EmitAggLoadOfLValue(E); 723 return; 724 } 725 726 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 727 EmitMoveFromReturnSlot(E, RV); 728 } 729 730 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 731 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 732 EmitMoveFromReturnSlot(E, RV); 733 } 734 735 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 736 CGF.EmitIgnoredExpr(E->getLHS()); 737 Visit(E->getRHS()); 738 } 739 740 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 741 CodeGenFunction::StmtExprEvaluation eval(CGF); 742 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 743 } 744 745 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 746 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 747 VisitPointerToDataMemberBinaryOperator(E); 748 else 749 CGF.ErrorUnsupported(E, "aggregate binary expression"); 750 } 751 752 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 753 const BinaryOperator *E) { 754 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 755 EmitFinalDestCopy(E->getType(), LV); 756 } 757 758 /// Is the value of the given expression possibly a reference to or 759 /// into a __block variable? 760 static bool isBlockVarRef(const Expr *E) { 761 // Make sure we look through parens. 762 E = E->IgnoreParens(); 763 764 // Check for a direct reference to a __block variable. 765 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 766 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 767 return (var && var->hasAttr<BlocksAttr>()); 768 } 769 770 // More complicated stuff. 771 772 // Binary operators. 773 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 774 // For an assignment or pointer-to-member operation, just care 775 // about the LHS. 776 if (op->isAssignmentOp() || op->isPtrMemOp()) 777 return isBlockVarRef(op->getLHS()); 778 779 // For a comma, just care about the RHS. 780 if (op->getOpcode() == BO_Comma) 781 return isBlockVarRef(op->getRHS()); 782 783 // FIXME: pointer arithmetic? 784 return false; 785 786 // Check both sides of a conditional operator. 787 } else if (const AbstractConditionalOperator *op 788 = dyn_cast<AbstractConditionalOperator>(E)) { 789 return isBlockVarRef(op->getTrueExpr()) 790 || isBlockVarRef(op->getFalseExpr()); 791 792 // OVEs are required to support BinaryConditionalOperators. 793 } else if (const OpaqueValueExpr *op 794 = dyn_cast<OpaqueValueExpr>(E)) { 795 if (const Expr *src = op->getSourceExpr()) 796 return isBlockVarRef(src); 797 798 // Casts are necessary to get things like (*(int*)&var) = foo(). 799 // We don't really care about the kind of cast here, except 800 // we don't want to look through l2r casts, because it's okay 801 // to get the *value* in a __block variable. 802 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 803 if (cast->getCastKind() == CK_LValueToRValue) 804 return false; 805 return isBlockVarRef(cast->getSubExpr()); 806 807 // Handle unary operators. Again, just aggressively look through 808 // it, ignoring the operation. 809 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 810 return isBlockVarRef(uop->getSubExpr()); 811 812 // Look into the base of a field access. 813 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 814 return isBlockVarRef(mem->getBase()); 815 816 // Look into the base of a subscript. 817 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 818 return isBlockVarRef(sub->getBase()); 819 } 820 821 return false; 822 } 823 824 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 825 // For an assignment to work, the value on the right has 826 // to be compatible with the value on the left. 827 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 828 E->getRHS()->getType()) 829 && "Invalid assignment"); 830 831 // If the LHS might be a __block variable, and the RHS can 832 // potentially cause a block copy, we need to evaluate the RHS first 833 // so that the assignment goes the right place. 834 // This is pretty semantically fragile. 835 if (isBlockVarRef(E->getLHS()) && 836 E->getRHS()->HasSideEffects(CGF.getContext())) { 837 // Ensure that we have a destination, and evaluate the RHS into that. 838 EnsureDest(E->getRHS()->getType()); 839 Visit(E->getRHS()); 840 841 // Now emit the LHS and copy into it. 842 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 843 844 // That copy is an atomic copy if the LHS is atomic. 845 if (LHS.getType()->isAtomicType()) { 846 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 847 return; 848 } 849 850 EmitCopy(E->getLHS()->getType(), 851 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 852 needsGC(E->getLHS()->getType()), 853 AggValueSlot::IsAliased), 854 Dest); 855 return; 856 } 857 858 LValue LHS = CGF.EmitLValue(E->getLHS()); 859 860 // If we have an atomic type, evaluate into the destination and then 861 // do an atomic copy. 862 if (LHS.getType()->isAtomicType()) { 863 EnsureDest(E->getRHS()->getType()); 864 Visit(E->getRHS()); 865 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 866 return; 867 } 868 869 // Codegen the RHS so that it stores directly into the LHS. 870 AggValueSlot LHSSlot = 871 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 872 needsGC(E->getLHS()->getType()), 873 AggValueSlot::IsAliased); 874 // A non-volatile aggregate destination might have volatile member. 875 if (!LHSSlot.isVolatile() && 876 CGF.hasVolatileMember(E->getLHS()->getType())) 877 LHSSlot.setVolatile(true); 878 879 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 880 881 // Copy into the destination if the assignment isn't ignored. 882 EmitFinalDestCopy(E->getType(), LHS); 883 } 884 885 void AggExprEmitter:: 886 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 887 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 888 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 889 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 890 891 // Bind the common expression if necessary. 892 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 893 894 CodeGenFunction::ConditionalEvaluation eval(CGF); 895 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 896 897 // Save whether the destination's lifetime is externally managed. 898 bool isExternallyDestructed = Dest.isExternallyDestructed(); 899 900 eval.begin(CGF); 901 CGF.EmitBlock(LHSBlock); 902 Visit(E->getTrueExpr()); 903 eval.end(CGF); 904 905 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 906 CGF.Builder.CreateBr(ContBlock); 907 908 // If the result of an agg expression is unused, then the emission 909 // of the LHS might need to create a destination slot. That's fine 910 // with us, and we can safely emit the RHS into the same slot, but 911 // we shouldn't claim that it's already being destructed. 912 Dest.setExternallyDestructed(isExternallyDestructed); 913 914 eval.begin(CGF); 915 CGF.EmitBlock(RHSBlock); 916 Visit(E->getFalseExpr()); 917 eval.end(CGF); 918 919 CGF.EmitBlock(ContBlock); 920 } 921 922 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 923 Visit(CE->getChosenSubExpr()); 924 } 925 926 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 927 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 928 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 929 930 if (!ArgPtr) { 931 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 932 return; 933 } 934 935 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 936 } 937 938 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 939 // Ensure that we have a slot, but if we already do, remember 940 // whether it was externally destructed. 941 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 942 EnsureDest(E->getType()); 943 944 // We're going to push a destructor if there isn't already one. 945 Dest.setExternallyDestructed(); 946 947 Visit(E->getSubExpr()); 948 949 // Push that destructor we promised. 950 if (!wasExternallyDestructed) 951 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 952 } 953 954 void 955 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 956 AggValueSlot Slot = EnsureSlot(E->getType()); 957 CGF.EmitCXXConstructExpr(E, Slot); 958 } 959 960 void 961 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 962 AggValueSlot Slot = EnsureSlot(E->getType()); 963 CGF.EmitLambdaExpr(E, Slot); 964 } 965 966 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 967 CGF.enterFullExpression(E); 968 CodeGenFunction::RunCleanupsScope cleanups(CGF); 969 Visit(E->getSubExpr()); 970 } 971 972 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 973 QualType T = E->getType(); 974 AggValueSlot Slot = EnsureSlot(T); 975 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 976 } 977 978 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 979 QualType T = E->getType(); 980 AggValueSlot Slot = EnsureSlot(T); 981 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 982 } 983 984 /// isSimpleZero - If emitting this value will obviously just cause a store of 985 /// zero to memory, return true. This can return false if uncertain, so it just 986 /// handles simple cases. 987 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 988 E = E->IgnoreParens(); 989 990 // 0 991 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 992 return IL->getValue() == 0; 993 // +0.0 994 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 995 return FL->getValue().isPosZero(); 996 // int() 997 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 998 CGF.getTypes().isZeroInitializable(E->getType())) 999 return true; 1000 // (int*)0 - Null pointer expressions. 1001 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1002 return ICE->getCastKind() == CK_NullToPointer; 1003 // '\0' 1004 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1005 return CL->getValue() == 0; 1006 1007 // Otherwise, hard case: conservatively return false. 1008 return false; 1009 } 1010 1011 1012 void 1013 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 1014 QualType type = LV.getType(); 1015 // FIXME: Ignore result? 1016 // FIXME: Are initializers affected by volatile? 1017 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1018 // Storing "i32 0" to a zero'd memory location is a noop. 1019 return; 1020 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1021 return EmitNullInitializationToLValue(LV); 1022 } else if (type->isReferenceType()) { 1023 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1024 return CGF.EmitStoreThroughLValue(RV, LV); 1025 } 1026 1027 switch (CGF.getEvaluationKind(type)) { 1028 case TEK_Complex: 1029 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1030 return; 1031 case TEK_Aggregate: 1032 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1033 AggValueSlot::IsDestructed, 1034 AggValueSlot::DoesNotNeedGCBarriers, 1035 AggValueSlot::IsNotAliased, 1036 Dest.isZeroed())); 1037 return; 1038 case TEK_Scalar: 1039 if (LV.isSimple()) { 1040 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 1041 } else { 1042 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1043 } 1044 return; 1045 } 1046 llvm_unreachable("bad evaluation kind"); 1047 } 1048 1049 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1050 QualType type = lv.getType(); 1051 1052 // If the destination slot is already zeroed out before the aggregate is 1053 // copied into it, we don't have to emit any zeros here. 1054 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1055 return; 1056 1057 if (CGF.hasScalarEvaluationKind(type)) { 1058 // For non-aggregates, we can store the appropriate null constant. 1059 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1060 // Note that the following is not equivalent to 1061 // EmitStoreThroughBitfieldLValue for ARC types. 1062 if (lv.isBitField()) { 1063 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1064 } else { 1065 assert(lv.isSimple()); 1066 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1067 } 1068 } else { 1069 // There's a potential optimization opportunity in combining 1070 // memsets; that would be easy for arrays, but relatively 1071 // difficult for structures with the current code. 1072 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1073 } 1074 } 1075 1076 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1077 #if 0 1078 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1079 // (Length of globals? Chunks of zeroed-out space?). 1080 // 1081 // If we can, prefer a copy from a global; this is a lot less code for long 1082 // globals, and it's easier for the current optimizers to analyze. 1083 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1084 llvm::GlobalVariable* GV = 1085 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1086 llvm::GlobalValue::InternalLinkage, C, ""); 1087 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1088 return; 1089 } 1090 #endif 1091 if (E->hadArrayRangeDesignator()) 1092 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1093 1094 AggValueSlot Dest = EnsureSlot(E->getType()); 1095 1096 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1097 Dest.getAlignment()); 1098 1099 // Handle initialization of an array. 1100 if (E->getType()->isArrayType()) { 1101 if (E->isStringLiteralInit()) 1102 return Visit(E->getInit(0)); 1103 1104 QualType elementType = 1105 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1106 1107 llvm::PointerType *APType = 1108 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1109 llvm::ArrayType *AType = 1110 cast<llvm::ArrayType>(APType->getElementType()); 1111 1112 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1113 return; 1114 } 1115 1116 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1117 1118 // Do struct initialization; this code just sets each individual member 1119 // to the approprate value. This makes bitfield support automatic; 1120 // the disadvantage is that the generated code is more difficult for 1121 // the optimizer, especially with bitfields. 1122 unsigned NumInitElements = E->getNumInits(); 1123 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1124 1125 // Prepare a 'this' for CXXDefaultInitExprs. 1126 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr()); 1127 1128 if (record->isUnion()) { 1129 // Only initialize one field of a union. The field itself is 1130 // specified by the initializer list. 1131 if (!E->getInitializedFieldInUnion()) { 1132 // Empty union; we have nothing to do. 1133 1134 #ifndef NDEBUG 1135 // Make sure that it's really an empty and not a failure of 1136 // semantic analysis. 1137 for (RecordDecl::field_iterator Field = record->field_begin(), 1138 FieldEnd = record->field_end(); 1139 Field != FieldEnd; ++Field) 1140 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1141 #endif 1142 return; 1143 } 1144 1145 // FIXME: volatility 1146 FieldDecl *Field = E->getInitializedFieldInUnion(); 1147 1148 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1149 if (NumInitElements) { 1150 // Store the initializer into the field 1151 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1152 } else { 1153 // Default-initialize to null. 1154 EmitNullInitializationToLValue(FieldLoc); 1155 } 1156 1157 return; 1158 } 1159 1160 // We'll need to enter cleanup scopes in case any of the member 1161 // initializers throw an exception. 1162 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1163 llvm::Instruction *cleanupDominator = 0; 1164 1165 // Here we iterate over the fields; this makes it simpler to both 1166 // default-initialize fields and skip over unnamed fields. 1167 unsigned curInitIndex = 0; 1168 for (RecordDecl::field_iterator field = record->field_begin(), 1169 fieldEnd = record->field_end(); 1170 field != fieldEnd; ++field) { 1171 // We're done once we hit the flexible array member. 1172 if (field->getType()->isIncompleteArrayType()) 1173 break; 1174 1175 // Always skip anonymous bitfields. 1176 if (field->isUnnamedBitfield()) 1177 continue; 1178 1179 // We're done if we reach the end of the explicit initializers, we 1180 // have a zeroed object, and the rest of the fields are 1181 // zero-initializable. 1182 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1183 CGF.getTypes().isZeroInitializable(E->getType())) 1184 break; 1185 1186 1187 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); 1188 // We never generate write-barries for initialized fields. 1189 LV.setNonGC(true); 1190 1191 if (curInitIndex < NumInitElements) { 1192 // Store the initializer into the field. 1193 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1194 } else { 1195 // We're out of initalizers; default-initialize to null 1196 EmitNullInitializationToLValue(LV); 1197 } 1198 1199 // Push a destructor if necessary. 1200 // FIXME: if we have an array of structures, all explicitly 1201 // initialized, we can end up pushing a linear number of cleanups. 1202 bool pushedCleanup = false; 1203 if (QualType::DestructionKind dtorKind 1204 = field->getType().isDestructedType()) { 1205 assert(LV.isSimple()); 1206 if (CGF.needsEHCleanup(dtorKind)) { 1207 if (!cleanupDominator) 1208 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1209 1210 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1211 CGF.getDestroyer(dtorKind), false); 1212 cleanups.push_back(CGF.EHStack.stable_begin()); 1213 pushedCleanup = true; 1214 } 1215 } 1216 1217 // If the GEP didn't get used because of a dead zero init or something 1218 // else, clean it up for -O0 builds and general tidiness. 1219 if (!pushedCleanup && LV.isSimple()) 1220 if (llvm::GetElementPtrInst *GEP = 1221 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1222 if (GEP->use_empty()) 1223 GEP->eraseFromParent(); 1224 } 1225 1226 // Deactivate all the partial cleanups in reverse order, which 1227 // generally means popping them. 1228 for (unsigned i = cleanups.size(); i != 0; --i) 1229 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1230 1231 // Destroy the placeholder if we made one. 1232 if (cleanupDominator) 1233 cleanupDominator->eraseFromParent(); 1234 } 1235 1236 //===----------------------------------------------------------------------===// 1237 // Entry Points into this File 1238 //===----------------------------------------------------------------------===// 1239 1240 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1241 /// non-zero bytes that will be stored when outputting the initializer for the 1242 /// specified initializer expression. 1243 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1244 E = E->IgnoreParens(); 1245 1246 // 0 and 0.0 won't require any non-zero stores! 1247 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1248 1249 // If this is an initlist expr, sum up the size of sizes of the (present) 1250 // elements. If this is something weird, assume the whole thing is non-zero. 1251 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1252 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1253 return CGF.getContext().getTypeSizeInChars(E->getType()); 1254 1255 // InitListExprs for structs have to be handled carefully. If there are 1256 // reference members, we need to consider the size of the reference, not the 1257 // referencee. InitListExprs for unions and arrays can't have references. 1258 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1259 if (!RT->isUnionType()) { 1260 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1261 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1262 1263 unsigned ILEElement = 0; 1264 for (RecordDecl::field_iterator Field = SD->field_begin(), 1265 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1266 // We're done once we hit the flexible array member or run out of 1267 // InitListExpr elements. 1268 if (Field->getType()->isIncompleteArrayType() || 1269 ILEElement == ILE->getNumInits()) 1270 break; 1271 if (Field->isUnnamedBitfield()) 1272 continue; 1273 1274 const Expr *E = ILE->getInit(ILEElement++); 1275 1276 // Reference values are always non-null and have the width of a pointer. 1277 if (Field->getType()->isReferenceType()) 1278 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1279 CGF.getTarget().getPointerWidth(0)); 1280 else 1281 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1282 } 1283 1284 return NumNonZeroBytes; 1285 } 1286 } 1287 1288 1289 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1290 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1291 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1292 return NumNonZeroBytes; 1293 } 1294 1295 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1296 /// zeros in it, emit a memset and avoid storing the individual zeros. 1297 /// 1298 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1299 CodeGenFunction &CGF) { 1300 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1301 // volatile stores. 1302 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1303 1304 // C++ objects with a user-declared constructor don't need zero'ing. 1305 if (CGF.getLangOpts().CPlusPlus) 1306 if (const RecordType *RT = CGF.getContext() 1307 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1308 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1309 if (RD->hasUserDeclaredConstructor()) 1310 return; 1311 } 1312 1313 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1314 std::pair<CharUnits, CharUnits> TypeInfo = 1315 CGF.getContext().getTypeInfoInChars(E->getType()); 1316 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1317 return; 1318 1319 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1320 // we prefer to emit memset + individual stores for the rest. 1321 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1322 if (NumNonZeroBytes*4 > TypeInfo.first) 1323 return; 1324 1325 // Okay, it seems like a good idea to use an initial memset, emit the call. 1326 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1327 CharUnits Align = TypeInfo.second; 1328 1329 llvm::Value *Loc = Slot.getAddr(); 1330 1331 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1332 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1333 Align.getQuantity(), false); 1334 1335 // Tell the AggExprEmitter that the slot is known zero. 1336 Slot.setZeroed(); 1337 } 1338 1339 1340 1341 1342 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1343 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1344 /// the value of the aggregate expression is not needed. If VolatileDest is 1345 /// true, DestPtr cannot be 0. 1346 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1347 assert(E && hasAggregateEvaluationKind(E->getType()) && 1348 "Invalid aggregate expression to emit"); 1349 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1350 "slot has bits but no address"); 1351 1352 // Optimize the slot if possible. 1353 CheckAggExprForMemSetUse(Slot, E, *this); 1354 1355 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1356 } 1357 1358 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1359 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1360 llvm::Value *Temp = CreateMemTemp(E->getType()); 1361 LValue LV = MakeAddrLValue(Temp, E->getType()); 1362 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1363 AggValueSlot::DoesNotNeedGCBarriers, 1364 AggValueSlot::IsNotAliased)); 1365 return LV; 1366 } 1367 1368 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1369 llvm::Value *SrcPtr, QualType Ty, 1370 bool isVolatile, 1371 CharUnits alignment, 1372 bool isAssignment) { 1373 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1374 1375 if (getLangOpts().CPlusPlus) { 1376 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1377 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1378 assert((Record->hasTrivialCopyConstructor() || 1379 Record->hasTrivialCopyAssignment() || 1380 Record->hasTrivialMoveConstructor() || 1381 Record->hasTrivialMoveAssignment()) && 1382 "Trying to aggregate-copy a type without a trivial copy/move " 1383 "constructor or assignment operator"); 1384 // Ignore empty classes in C++. 1385 if (Record->isEmpty()) 1386 return; 1387 } 1388 } 1389 1390 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1391 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1392 // read from another object that overlaps in anyway the storage of the first 1393 // object, then the overlap shall be exact and the two objects shall have 1394 // qualified or unqualified versions of a compatible type." 1395 // 1396 // memcpy is not defined if the source and destination pointers are exactly 1397 // equal, but other compilers do this optimization, and almost every memcpy 1398 // implementation handles this case safely. If there is a libc that does not 1399 // safely handle this, we can add a target hook. 1400 1401 // Get data size and alignment info for this aggregate. If this is an 1402 // assignment don't copy the tail padding. Otherwise copying it is fine. 1403 std::pair<CharUnits, CharUnits> TypeInfo; 1404 if (isAssignment) 1405 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1406 else 1407 TypeInfo = getContext().getTypeInfoInChars(Ty); 1408 1409 if (alignment.isZero()) 1410 alignment = TypeInfo.second; 1411 1412 // FIXME: Handle variable sized types. 1413 1414 // FIXME: If we have a volatile struct, the optimizer can remove what might 1415 // appear to be `extra' memory ops: 1416 // 1417 // volatile struct { int i; } a, b; 1418 // 1419 // int main() { 1420 // a = b; 1421 // a = b; 1422 // } 1423 // 1424 // we need to use a different call here. We use isVolatile to indicate when 1425 // either the source or the destination is volatile. 1426 1427 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1428 llvm::Type *DBP = 1429 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1430 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1431 1432 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1433 llvm::Type *SBP = 1434 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1435 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1436 1437 // Don't do any of the memmove_collectable tests if GC isn't set. 1438 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1439 // fall through 1440 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1441 RecordDecl *Record = RecordTy->getDecl(); 1442 if (Record->hasObjectMember()) { 1443 CharUnits size = TypeInfo.first; 1444 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1445 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1446 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1447 SizeVal); 1448 return; 1449 } 1450 } else if (Ty->isArrayType()) { 1451 QualType BaseType = getContext().getBaseElementType(Ty); 1452 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1453 if (RecordTy->getDecl()->hasObjectMember()) { 1454 CharUnits size = TypeInfo.first; 1455 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1456 llvm::Value *SizeVal = 1457 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1458 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1459 SizeVal); 1460 return; 1461 } 1462 } 1463 } 1464 1465 // Determine the metadata to describe the position of any padding in this 1466 // memcpy, as well as the TBAA tags for the members of the struct, in case 1467 // the optimizer wishes to expand it in to scalar memory operations. 1468 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1469 1470 Builder.CreateMemCpy(DestPtr, SrcPtr, 1471 llvm::ConstantInt::get(IntPtrTy, 1472 TypeInfo.first.getQuantity()), 1473 alignment.getQuantity(), isVolatile, 1474 /*TBAATag=*/0, TBAAStructTag); 1475 } 1476