Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenModule.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/Function.h"
     23 #include "llvm/IR/GlobalVariable.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                        Aggregate Expression Emitter
     30 //===----------------------------------------------------------------------===//
     31 
     32 namespace  {
     33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     34   CodeGenFunction &CGF;
     35   CGBuilderTy &Builder;
     36   AggValueSlot Dest;
     37 
     38   /// We want to use 'dest' as the return slot except under two
     39   /// conditions:
     40   ///   - The destination slot requires garbage collection, so we
     41   ///     need to use the GC API.
     42   ///   - The destination slot is potentially aliased.
     43   bool shouldUseDestForReturnSlot() const {
     44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
     45   }
     46 
     47   ReturnValueSlot getReturnValueSlot() const {
     48     if (!shouldUseDestForReturnSlot())
     49       return ReturnValueSlot();
     50 
     51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
     52   }
     53 
     54   AggValueSlot EnsureSlot(QualType T) {
     55     if (!Dest.isIgnored()) return Dest;
     56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     57   }
     58   void EnsureDest(QualType T) {
     59     if (!Dest.isIgnored()) return;
     60     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
     61   }
     62 
     63 public:
     64   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
     65     : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
     66   }
     67 
     68   //===--------------------------------------------------------------------===//
     69   //                               Utilities
     70   //===--------------------------------------------------------------------===//
     71 
     72   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     73   /// represents a value lvalue, this method emits the address of the lvalue,
     74   /// then loads the result into DestPtr.
     75   void EmitAggLoadOfLValue(const Expr *E);
     76 
     77   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     78   void EmitFinalDestCopy(QualType type, const LValue &src);
     79   void EmitFinalDestCopy(QualType type, RValue src,
     80                          CharUnits srcAlignment = CharUnits::Zero());
     81   void EmitCopy(QualType type, const AggValueSlot &dest,
     82                 const AggValueSlot &src);
     83 
     84   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
     85 
     86   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
     87                      QualType elementType, InitListExpr *E);
     88 
     89   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
     90     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
     91       return AggValueSlot::NeedsGCBarriers;
     92     return AggValueSlot::DoesNotNeedGCBarriers;
     93   }
     94 
     95   bool TypeRequiresGCollection(QualType T);
     96 
     97   //===--------------------------------------------------------------------===//
     98   //                            Visitor Methods
     99   //===--------------------------------------------------------------------===//
    100 
    101   void VisitStmt(Stmt *S) {
    102     CGF.ErrorUnsupported(S, "aggregate expression");
    103   }
    104   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
    105   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    106     Visit(GE->getResultExpr());
    107   }
    108   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
    109   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    110     return Visit(E->getReplacement());
    111   }
    112 
    113   // l-values.
    114   void VisitDeclRefExpr(DeclRefExpr *E) {
    115     // For aggregates, we should always be able to emit the variable
    116     // as an l-value unless it's a reference.  This is due to the fact
    117     // that we can't actually ever see a normal l2r conversion on an
    118     // aggregate in C++, and in C there's no language standard
    119     // actively preventing us from listing variables in the captures
    120     // list of a block.
    121     if (E->getDecl()->getType()->isReferenceType()) {
    122       if (CodeGenFunction::ConstantEmission result
    123             = CGF.tryEmitAsConstant(E)) {
    124         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
    125         return;
    126       }
    127     }
    128 
    129     EmitAggLoadOfLValue(E);
    130   }
    131 
    132   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
    133   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
    134   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
    135   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
    136   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    137     EmitAggLoadOfLValue(E);
    138   }
    139   void VisitPredefinedExpr(const PredefinedExpr *E) {
    140     EmitAggLoadOfLValue(E);
    141   }
    142 
    143   // Operators.
    144   void VisitCastExpr(CastExpr *E);
    145   void VisitCallExpr(const CallExpr *E);
    146   void VisitStmtExpr(const StmtExpr *E);
    147   void VisitBinaryOperator(const BinaryOperator *BO);
    148   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    149   void VisitBinAssign(const BinaryOperator *E);
    150   void VisitBinComma(const BinaryOperator *E);
    151 
    152   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    153   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    154     EmitAggLoadOfLValue(E);
    155   }
    156 
    157   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    158   void VisitChooseExpr(const ChooseExpr *CE);
    159   void VisitInitListExpr(InitListExpr *E);
    160   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    161   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    162     Visit(DAE->getExpr());
    163   }
    164   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    165     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    166     Visit(DIE->getExpr());
    167   }
    168   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    169   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    170   void VisitLambdaExpr(LambdaExpr *E);
    171   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
    172   void VisitExprWithCleanups(ExprWithCleanups *E);
    173   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    174   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    175   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    176   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    177 
    178   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    179     if (E->isGLValue()) {
    180       LValue LV = CGF.EmitPseudoObjectLValue(E);
    181       return EmitFinalDestCopy(E->getType(), LV);
    182     }
    183 
    184     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
    185   }
    186 
    187   void VisitVAArgExpr(VAArgExpr *E);
    188 
    189   void EmitInitializationToLValue(Expr *E, LValue Address);
    190   void EmitNullInitializationToLValue(LValue Address);
    191   //  case Expr::ChooseExprClass:
    192   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    193   void VisitAtomicExpr(AtomicExpr *E) {
    194     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
    195   }
    196 };
    197 }  // end anonymous namespace.
    198 
    199 //===----------------------------------------------------------------------===//
    200 //                                Utilities
    201 //===----------------------------------------------------------------------===//
    202 
    203 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    204 /// represents a value lvalue, this method emits the address of the lvalue,
    205 /// then loads the result into DestPtr.
    206 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    207   LValue LV = CGF.EmitLValue(E);
    208 
    209   // If the type of the l-value is atomic, then do an atomic load.
    210   if (LV.getType()->isAtomicType()) {
    211     CGF.EmitAtomicLoad(LV, Dest);
    212     return;
    213   }
    214 
    215   EmitFinalDestCopy(E->getType(), LV);
    216 }
    217 
    218 /// \brief True if the given aggregate type requires special GC API calls.
    219 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    220   // Only record types have members that might require garbage collection.
    221   const RecordType *RecordTy = T->getAs<RecordType>();
    222   if (!RecordTy) return false;
    223 
    224   // Don't mess with non-trivial C++ types.
    225   RecordDecl *Record = RecordTy->getDecl();
    226   if (isa<CXXRecordDecl>(Record) &&
    227       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
    228        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    229     return false;
    230 
    231   // Check whether the type has an object member.
    232   return Record->hasObjectMember();
    233 }
    234 
    235 /// \brief Perform the final move to DestPtr if for some reason
    236 /// getReturnValueSlot() didn't use it directly.
    237 ///
    238 /// The idea is that you do something like this:
    239 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    240 ///   EmitMoveFromReturnSlot(E, Result);
    241 ///
    242 /// If nothing interferes, this will cause the result to be emitted
    243 /// directly into the return value slot.  Otherwise, a final move
    244 /// will be performed.
    245 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
    246   if (shouldUseDestForReturnSlot()) {
    247     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    248     // The possibility of undef rvalues complicates that a lot,
    249     // though, so we can't really assert.
    250     return;
    251   }
    252 
    253   // Otherwise, copy from there to the destination.
    254   assert(Dest.getAddr() != src.getAggregateAddr());
    255   std::pair<CharUnits, CharUnits> typeInfo =
    256     CGF.getContext().getTypeInfoInChars(E->getType());
    257   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
    258 }
    259 
    260 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    261 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
    262                                        CharUnits srcAlign) {
    263   assert(src.isAggregate() && "value must be aggregate value!");
    264   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
    265   EmitFinalDestCopy(type, srcLV);
    266 }
    267 
    268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    269 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
    270   // If Dest is ignored, then we're evaluating an aggregate expression
    271   // in a context that doesn't care about the result.  Note that loads
    272   // from volatile l-values force the existence of a non-ignored
    273   // destination.
    274   if (Dest.isIgnored())
    275     return;
    276 
    277   AggValueSlot srcAgg =
    278     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
    279                             needsGC(type), AggValueSlot::IsAliased);
    280   EmitCopy(type, Dest, srcAgg);
    281 }
    282 
    283 /// Perform a copy from the source into the destination.
    284 ///
    285 /// \param type - the type of the aggregate being copied; qualifiers are
    286 ///   ignored
    287 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
    288                               const AggValueSlot &src) {
    289   if (dest.requiresGCollection()) {
    290     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
    291     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
    292     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    293                                                       dest.getAddr(),
    294                                                       src.getAddr(),
    295                                                       size);
    296     return;
    297   }
    298 
    299   // If the result of the assignment is used, copy the LHS there also.
    300   // It's volatile if either side is.  Use the minimum alignment of
    301   // the two sides.
    302   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
    303                         dest.isVolatile() || src.isVolatile(),
    304                         std::min(dest.getAlignment(), src.getAlignment()));
    305 }
    306 
    307 /// \brief Emit the initializer for a std::initializer_list initialized with a
    308 /// real initializer list.
    309 void
    310 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
    311   // Emit an array containing the elements.  The array is externally destructed
    312   // if the std::initializer_list object is.
    313   ASTContext &Ctx = CGF.getContext();
    314   LValue Array = CGF.EmitLValue(E->getSubExpr());
    315   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
    316   llvm::Value *ArrayPtr = Array.getAddress();
    317 
    318   const ConstantArrayType *ArrayType =
    319       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
    320   assert(ArrayType && "std::initializer_list constructed from non-array");
    321 
    322   // FIXME: Perform the checks on the field types in SemaInit.
    323   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
    324   RecordDecl::field_iterator Field = Record->field_begin();
    325   if (Field == Record->field_end()) {
    326     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    327     return;
    328   }
    329 
    330   // Start pointer.
    331   if (!Field->getType()->isPointerType() ||
    332       !Ctx.hasSameType(Field->getType()->getPointeeType(),
    333                        ArrayType->getElementType())) {
    334     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    335     return;
    336   }
    337 
    338   AggValueSlot Dest = EnsureSlot(E->getType());
    339   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
    340                                      Dest.getAlignment());
    341   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
    342   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
    343   llvm::Value *IdxStart[] = { Zero, Zero };
    344   llvm::Value *ArrayStart =
    345       Builder.CreateInBoundsGEP(ArrayPtr, IdxStart, "arraystart");
    346   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
    347   ++Field;
    348 
    349   if (Field == Record->field_end()) {
    350     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    351     return;
    352   }
    353 
    354   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
    355   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
    356   if (Field->getType()->isPointerType() &&
    357       Ctx.hasSameType(Field->getType()->getPointeeType(),
    358                       ArrayType->getElementType())) {
    359     // End pointer.
    360     llvm::Value *IdxEnd[] = { Zero, Size };
    361     llvm::Value *ArrayEnd =
    362         Builder.CreateInBoundsGEP(ArrayPtr, IdxEnd, "arrayend");
    363     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
    364   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
    365     // Length.
    366     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
    367   } else {
    368     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    369     return;
    370   }
    371 }
    372 
    373 /// \brief Emit initialization of an array from an initializer list.
    374 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
    375                                    QualType elementType, InitListExpr *E) {
    376   uint64_t NumInitElements = E->getNumInits();
    377 
    378   uint64_t NumArrayElements = AType->getNumElements();
    379   assert(NumInitElements <= NumArrayElements);
    380 
    381   // DestPtr is an array*.  Construct an elementType* by drilling
    382   // down a level.
    383   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    384   llvm::Value *indices[] = { zero, zero };
    385   llvm::Value *begin =
    386     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
    387 
    388   // Exception safety requires us to destroy all the
    389   // already-constructed members if an initializer throws.
    390   // For that, we'll need an EH cleanup.
    391   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    392   llvm::AllocaInst *endOfInit = 0;
    393   EHScopeStack::stable_iterator cleanup;
    394   llvm::Instruction *cleanupDominator = 0;
    395   if (CGF.needsEHCleanup(dtorKind)) {
    396     // In principle we could tell the cleanup where we are more
    397     // directly, but the control flow can get so varied here that it
    398     // would actually be quite complex.  Therefore we go through an
    399     // alloca.
    400     endOfInit = CGF.CreateTempAlloca(begin->getType(),
    401                                      "arrayinit.endOfInit");
    402     cleanupDominator = Builder.CreateStore(begin, endOfInit);
    403     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    404                                          CGF.getDestroyer(dtorKind));
    405     cleanup = CGF.EHStack.stable_begin();
    406 
    407   // Otherwise, remember that we didn't need a cleanup.
    408   } else {
    409     dtorKind = QualType::DK_none;
    410   }
    411 
    412   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    413 
    414   // The 'current element to initialize'.  The invariants on this
    415   // variable are complicated.  Essentially, after each iteration of
    416   // the loop, it points to the last initialized element, except
    417   // that it points to the beginning of the array before any
    418   // elements have been initialized.
    419   llvm::Value *element = begin;
    420 
    421   // Emit the explicit initializers.
    422   for (uint64_t i = 0; i != NumInitElements; ++i) {
    423     // Advance to the next element.
    424     if (i > 0) {
    425       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    426 
    427       // Tell the cleanup that it needs to destroy up to this
    428       // element.  TODO: some of these stores can be trivially
    429       // observed to be unnecessary.
    430       if (endOfInit) Builder.CreateStore(element, endOfInit);
    431     }
    432 
    433     LValue elementLV = CGF.MakeAddrLValue(element, elementType);
    434     EmitInitializationToLValue(E->getInit(i), elementLV);
    435   }
    436 
    437   // Check whether there's a non-trivial array-fill expression.
    438   // Note that this will be a CXXConstructExpr even if the element
    439   // type is an array (or array of array, etc.) of class type.
    440   Expr *filler = E->getArrayFiller();
    441   bool hasTrivialFiller = true;
    442   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    443     assert(cons->getConstructor()->isDefaultConstructor());
    444     hasTrivialFiller = cons->getConstructor()->isTrivial();
    445   }
    446 
    447   // Any remaining elements need to be zero-initialized, possibly
    448   // using the filler expression.  We can skip this if the we're
    449   // emitting to zeroed memory.
    450   if (NumInitElements != NumArrayElements &&
    451       !(Dest.isZeroed() && hasTrivialFiller &&
    452         CGF.getTypes().isZeroInitializable(elementType))) {
    453 
    454     // Use an actual loop.  This is basically
    455     //   do { *array++ = filler; } while (array != end);
    456 
    457     // Advance to the start of the rest of the array.
    458     if (NumInitElements) {
    459       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    460       if (endOfInit) Builder.CreateStore(element, endOfInit);
    461     }
    462 
    463     // Compute the end of the array.
    464     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    465                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    466                                                  "arrayinit.end");
    467 
    468     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    469     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    470 
    471     // Jump into the body.
    472     CGF.EmitBlock(bodyBB);
    473     llvm::PHINode *currentElement =
    474       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    475     currentElement->addIncoming(element, entryBB);
    476 
    477     // Emit the actual filler expression.
    478     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    479     if (filler)
    480       EmitInitializationToLValue(filler, elementLV);
    481     else
    482       EmitNullInitializationToLValue(elementLV);
    483 
    484     // Move on to the next element.
    485     llvm::Value *nextElement =
    486       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    487 
    488     // Tell the EH cleanup that we finished with the last element.
    489     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
    490 
    491     // Leave the loop if we're done.
    492     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    493                                              "arrayinit.done");
    494     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    495     Builder.CreateCondBr(done, endBB, bodyBB);
    496     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    497 
    498     CGF.EmitBlock(endBB);
    499   }
    500 
    501   // Leave the partial-array cleanup if we entered one.
    502   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
    503 }
    504 
    505 //===----------------------------------------------------------------------===//
    506 //                            Visitor Methods
    507 //===----------------------------------------------------------------------===//
    508 
    509 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    510   Visit(E->GetTemporaryExpr());
    511 }
    512 
    513 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    514   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
    515 }
    516 
    517 void
    518 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    519   if (Dest.isPotentiallyAliased() &&
    520       E->getType().isPODType(CGF.getContext())) {
    521     // For a POD type, just emit a load of the lvalue + a copy, because our
    522     // compound literal might alias the destination.
    523     EmitAggLoadOfLValue(E);
    524     return;
    525   }
    526 
    527   AggValueSlot Slot = EnsureSlot(E->getType());
    528   CGF.EmitAggExpr(E->getInitializer(), Slot);
    529 }
    530 
    531 /// Attempt to look through various unimportant expressions to find a
    532 /// cast of the given kind.
    533 static Expr *findPeephole(Expr *op, CastKind kind) {
    534   while (true) {
    535     op = op->IgnoreParens();
    536     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
    537       if (castE->getCastKind() == kind)
    538         return castE->getSubExpr();
    539       if (castE->getCastKind() == CK_NoOp)
    540         continue;
    541     }
    542     return 0;
    543   }
    544 }
    545 
    546 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    547   switch (E->getCastKind()) {
    548   case CK_Dynamic: {
    549     // FIXME: Can this actually happen? We have no test coverage for it.
    550     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    551     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
    552                                       CodeGenFunction::TCK_Load);
    553     // FIXME: Do we also need to handle property references here?
    554     if (LV.isSimple())
    555       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    556     else
    557       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    558 
    559     if (!Dest.isIgnored())
    560       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    561     break;
    562   }
    563 
    564   case CK_ToUnion: {
    565     if (Dest.isIgnored()) break;
    566 
    567     // GCC union extension
    568     QualType Ty = E->getSubExpr()->getType();
    569     QualType PtrTy = CGF.getContext().getPointerType(Ty);
    570     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
    571                                                  CGF.ConvertType(PtrTy));
    572     EmitInitializationToLValue(E->getSubExpr(),
    573                                CGF.MakeAddrLValue(CastPtr, Ty));
    574     break;
    575   }
    576 
    577   case CK_DerivedToBase:
    578   case CK_BaseToDerived:
    579   case CK_UncheckedDerivedToBase: {
    580     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
    581                 "should have been unpacked before we got here");
    582   }
    583 
    584   case CK_NonAtomicToAtomic:
    585   case CK_AtomicToNonAtomic: {
    586     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
    587 
    588     // Determine the atomic and value types.
    589     QualType atomicType = E->getSubExpr()->getType();
    590     QualType valueType = E->getType();
    591     if (isToAtomic) std::swap(atomicType, valueType);
    592 
    593     assert(atomicType->isAtomicType());
    594     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
    595                           atomicType->castAs<AtomicType>()->getValueType()));
    596 
    597     // Just recurse normally if we're ignoring the result or the
    598     // atomic type doesn't change representation.
    599     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
    600       return Visit(E->getSubExpr());
    601     }
    602 
    603     CastKind peepholeTarget =
    604       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
    605 
    606     // These two cases are reverses of each other; try to peephole them.
    607     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
    608       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
    609                                                      E->getType()) &&
    610            "peephole significantly changed types?");
    611       return Visit(op);
    612     }
    613 
    614     // If we're converting an r-value of non-atomic type to an r-value
    615     // of atomic type, just emit directly into the relevant sub-object.
    616     if (isToAtomic) {
    617       AggValueSlot valueDest = Dest;
    618       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
    619         // Zero-initialize.  (Strictly speaking, we only need to intialize
    620         // the padding at the end, but this is simpler.)
    621         if (!Dest.isZeroed())
    622           CGF.EmitNullInitialization(Dest.getAddr(), atomicType);
    623 
    624         // Build a GEP to refer to the subobject.
    625         llvm::Value *valueAddr =
    626             CGF.Builder.CreateStructGEP(valueDest.getAddr(), 0);
    627         valueDest = AggValueSlot::forAddr(valueAddr,
    628                                           valueDest.getAlignment(),
    629                                           valueDest.getQualifiers(),
    630                                           valueDest.isExternallyDestructed(),
    631                                           valueDest.requiresGCollection(),
    632                                           valueDest.isPotentiallyAliased(),
    633                                           AggValueSlot::IsZeroed);
    634       }
    635 
    636       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
    637       return;
    638     }
    639 
    640     // Otherwise, we're converting an atomic type to a non-atomic type.
    641     // Make an atomic temporary, emit into that, and then copy the value out.
    642     AggValueSlot atomicSlot =
    643       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
    644     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
    645 
    646     llvm::Value *valueAddr =
    647       Builder.CreateStructGEP(atomicSlot.getAddr(), 0);
    648     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
    649     return EmitFinalDestCopy(valueType, rvalue);
    650   }
    651 
    652   case CK_LValueToRValue:
    653     // If we're loading from a volatile type, force the destination
    654     // into existence.
    655     if (E->getSubExpr()->getType().isVolatileQualified()) {
    656       EnsureDest(E->getType());
    657       return Visit(E->getSubExpr());
    658     }
    659 
    660     // fallthrough
    661 
    662   case CK_NoOp:
    663   case CK_UserDefinedConversion:
    664   case CK_ConstructorConversion:
    665     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    666                                                    E->getType()) &&
    667            "Implicit cast types must be compatible");
    668     Visit(E->getSubExpr());
    669     break;
    670 
    671   case CK_LValueBitCast:
    672     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    673 
    674   case CK_Dependent:
    675   case CK_BitCast:
    676   case CK_ArrayToPointerDecay:
    677   case CK_FunctionToPointerDecay:
    678   case CK_NullToPointer:
    679   case CK_NullToMemberPointer:
    680   case CK_BaseToDerivedMemberPointer:
    681   case CK_DerivedToBaseMemberPointer:
    682   case CK_MemberPointerToBoolean:
    683   case CK_ReinterpretMemberPointer:
    684   case CK_IntegralToPointer:
    685   case CK_PointerToIntegral:
    686   case CK_PointerToBoolean:
    687   case CK_ToVoid:
    688   case CK_VectorSplat:
    689   case CK_IntegralCast:
    690   case CK_IntegralToBoolean:
    691   case CK_IntegralToFloating:
    692   case CK_FloatingToIntegral:
    693   case CK_FloatingToBoolean:
    694   case CK_FloatingCast:
    695   case CK_CPointerToObjCPointerCast:
    696   case CK_BlockPointerToObjCPointerCast:
    697   case CK_AnyPointerToBlockPointerCast:
    698   case CK_ObjCObjectLValueCast:
    699   case CK_FloatingRealToComplex:
    700   case CK_FloatingComplexToReal:
    701   case CK_FloatingComplexToBoolean:
    702   case CK_FloatingComplexCast:
    703   case CK_FloatingComplexToIntegralComplex:
    704   case CK_IntegralRealToComplex:
    705   case CK_IntegralComplexToReal:
    706   case CK_IntegralComplexToBoolean:
    707   case CK_IntegralComplexCast:
    708   case CK_IntegralComplexToFloatingComplex:
    709   case CK_ARCProduceObject:
    710   case CK_ARCConsumeObject:
    711   case CK_ARCReclaimReturnedObject:
    712   case CK_ARCExtendBlockObject:
    713   case CK_CopyAndAutoreleaseBlockObject:
    714   case CK_BuiltinFnToFnPtr:
    715   case CK_ZeroToOCLEvent:
    716     llvm_unreachable("cast kind invalid for aggregate types");
    717   }
    718 }
    719 
    720 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    721   if (E->getCallReturnType()->isReferenceType()) {
    722     EmitAggLoadOfLValue(E);
    723     return;
    724   }
    725 
    726   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    727   EmitMoveFromReturnSlot(E, RV);
    728 }
    729 
    730 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    731   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    732   EmitMoveFromReturnSlot(E, RV);
    733 }
    734 
    735 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    736   CGF.EmitIgnoredExpr(E->getLHS());
    737   Visit(E->getRHS());
    738 }
    739 
    740 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    741   CodeGenFunction::StmtExprEvaluation eval(CGF);
    742   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    743 }
    744 
    745 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    746   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    747     VisitPointerToDataMemberBinaryOperator(E);
    748   else
    749     CGF.ErrorUnsupported(E, "aggregate binary expression");
    750 }
    751 
    752 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    753                                                     const BinaryOperator *E) {
    754   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    755   EmitFinalDestCopy(E->getType(), LV);
    756 }
    757 
    758 /// Is the value of the given expression possibly a reference to or
    759 /// into a __block variable?
    760 static bool isBlockVarRef(const Expr *E) {
    761   // Make sure we look through parens.
    762   E = E->IgnoreParens();
    763 
    764   // Check for a direct reference to a __block variable.
    765   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    766     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
    767     return (var && var->hasAttr<BlocksAttr>());
    768   }
    769 
    770   // More complicated stuff.
    771 
    772   // Binary operators.
    773   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
    774     // For an assignment or pointer-to-member operation, just care
    775     // about the LHS.
    776     if (op->isAssignmentOp() || op->isPtrMemOp())
    777       return isBlockVarRef(op->getLHS());
    778 
    779     // For a comma, just care about the RHS.
    780     if (op->getOpcode() == BO_Comma)
    781       return isBlockVarRef(op->getRHS());
    782 
    783     // FIXME: pointer arithmetic?
    784     return false;
    785 
    786   // Check both sides of a conditional operator.
    787   } else if (const AbstractConditionalOperator *op
    788                = dyn_cast<AbstractConditionalOperator>(E)) {
    789     return isBlockVarRef(op->getTrueExpr())
    790         || isBlockVarRef(op->getFalseExpr());
    791 
    792   // OVEs are required to support BinaryConditionalOperators.
    793   } else if (const OpaqueValueExpr *op
    794                = dyn_cast<OpaqueValueExpr>(E)) {
    795     if (const Expr *src = op->getSourceExpr())
    796       return isBlockVarRef(src);
    797 
    798   // Casts are necessary to get things like (*(int*)&var) = foo().
    799   // We don't really care about the kind of cast here, except
    800   // we don't want to look through l2r casts, because it's okay
    801   // to get the *value* in a __block variable.
    802   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
    803     if (cast->getCastKind() == CK_LValueToRValue)
    804       return false;
    805     return isBlockVarRef(cast->getSubExpr());
    806 
    807   // Handle unary operators.  Again, just aggressively look through
    808   // it, ignoring the operation.
    809   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
    810     return isBlockVarRef(uop->getSubExpr());
    811 
    812   // Look into the base of a field access.
    813   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
    814     return isBlockVarRef(mem->getBase());
    815 
    816   // Look into the base of a subscript.
    817   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
    818     return isBlockVarRef(sub->getBase());
    819   }
    820 
    821   return false;
    822 }
    823 
    824 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    825   // For an assignment to work, the value on the right has
    826   // to be compatible with the value on the left.
    827   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    828                                                  E->getRHS()->getType())
    829          && "Invalid assignment");
    830 
    831   // If the LHS might be a __block variable, and the RHS can
    832   // potentially cause a block copy, we need to evaluate the RHS first
    833   // so that the assignment goes the right place.
    834   // This is pretty semantically fragile.
    835   if (isBlockVarRef(E->getLHS()) &&
    836       E->getRHS()->HasSideEffects(CGF.getContext())) {
    837     // Ensure that we have a destination, and evaluate the RHS into that.
    838     EnsureDest(E->getRHS()->getType());
    839     Visit(E->getRHS());
    840 
    841     // Now emit the LHS and copy into it.
    842     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
    843 
    844     // That copy is an atomic copy if the LHS is atomic.
    845     if (LHS.getType()->isAtomicType()) {
    846       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
    847       return;
    848     }
    849 
    850     EmitCopy(E->getLHS()->getType(),
    851              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    852                                      needsGC(E->getLHS()->getType()),
    853                                      AggValueSlot::IsAliased),
    854              Dest);
    855     return;
    856   }
    857 
    858   LValue LHS = CGF.EmitLValue(E->getLHS());
    859 
    860   // If we have an atomic type, evaluate into the destination and then
    861   // do an atomic copy.
    862   if (LHS.getType()->isAtomicType()) {
    863     EnsureDest(E->getRHS()->getType());
    864     Visit(E->getRHS());
    865     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
    866     return;
    867   }
    868 
    869   // Codegen the RHS so that it stores directly into the LHS.
    870   AggValueSlot LHSSlot =
    871     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    872                             needsGC(E->getLHS()->getType()),
    873                             AggValueSlot::IsAliased);
    874   // A non-volatile aggregate destination might have volatile member.
    875   if (!LHSSlot.isVolatile() &&
    876       CGF.hasVolatileMember(E->getLHS()->getType()))
    877     LHSSlot.setVolatile(true);
    878 
    879   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
    880 
    881   // Copy into the destination if the assignment isn't ignored.
    882   EmitFinalDestCopy(E->getType(), LHS);
    883 }
    884 
    885 void AggExprEmitter::
    886 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    887   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    888   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    889   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    890 
    891   // Bind the common expression if necessary.
    892   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    893 
    894   CodeGenFunction::ConditionalEvaluation eval(CGF);
    895   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
    896 
    897   // Save whether the destination's lifetime is externally managed.
    898   bool isExternallyDestructed = Dest.isExternallyDestructed();
    899 
    900   eval.begin(CGF);
    901   CGF.EmitBlock(LHSBlock);
    902   Visit(E->getTrueExpr());
    903   eval.end(CGF);
    904 
    905   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    906   CGF.Builder.CreateBr(ContBlock);
    907 
    908   // If the result of an agg expression is unused, then the emission
    909   // of the LHS might need to create a destination slot.  That's fine
    910   // with us, and we can safely emit the RHS into the same slot, but
    911   // we shouldn't claim that it's already being destructed.
    912   Dest.setExternallyDestructed(isExternallyDestructed);
    913 
    914   eval.begin(CGF);
    915   CGF.EmitBlock(RHSBlock);
    916   Visit(E->getFalseExpr());
    917   eval.end(CGF);
    918 
    919   CGF.EmitBlock(ContBlock);
    920 }
    921 
    922 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    923   Visit(CE->getChosenSubExpr());
    924 }
    925 
    926 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    927   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
    928   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
    929 
    930   if (!ArgPtr) {
    931     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    932     return;
    933   }
    934 
    935   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    936 }
    937 
    938 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    939   // Ensure that we have a slot, but if we already do, remember
    940   // whether it was externally destructed.
    941   bool wasExternallyDestructed = Dest.isExternallyDestructed();
    942   EnsureDest(E->getType());
    943 
    944   // We're going to push a destructor if there isn't already one.
    945   Dest.setExternallyDestructed();
    946 
    947   Visit(E->getSubExpr());
    948 
    949   // Push that destructor we promised.
    950   if (!wasExternallyDestructed)
    951     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
    952 }
    953 
    954 void
    955 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    956   AggValueSlot Slot = EnsureSlot(E->getType());
    957   CGF.EmitCXXConstructExpr(E, Slot);
    958 }
    959 
    960 void
    961 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
    962   AggValueSlot Slot = EnsureSlot(E->getType());
    963   CGF.EmitLambdaExpr(E, Slot);
    964 }
    965 
    966 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
    967   CGF.enterFullExpression(E);
    968   CodeGenFunction::RunCleanupsScope cleanups(CGF);
    969   Visit(E->getSubExpr());
    970 }
    971 
    972 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    973   QualType T = E->getType();
    974   AggValueSlot Slot = EnsureSlot(T);
    975   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    976 }
    977 
    978 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    979   QualType T = E->getType();
    980   AggValueSlot Slot = EnsureSlot(T);
    981   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    982 }
    983 
    984 /// isSimpleZero - If emitting this value will obviously just cause a store of
    985 /// zero to memory, return true.  This can return false if uncertain, so it just
    986 /// handles simple cases.
    987 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
    988   E = E->IgnoreParens();
    989 
    990   // 0
    991   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    992     return IL->getValue() == 0;
    993   // +0.0
    994   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    995     return FL->getValue().isPosZero();
    996   // int()
    997   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
    998       CGF.getTypes().isZeroInitializable(E->getType()))
    999     return true;
   1000   // (int*)0 - Null pointer expressions.
   1001   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
   1002     return ICE->getCastKind() == CK_NullToPointer;
   1003   // '\0'
   1004   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
   1005     return CL->getValue() == 0;
   1006 
   1007   // Otherwise, hard case: conservatively return false.
   1008   return false;
   1009 }
   1010 
   1011 
   1012 void
   1013 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
   1014   QualType type = LV.getType();
   1015   // FIXME: Ignore result?
   1016   // FIXME: Are initializers affected by volatile?
   1017   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
   1018     // Storing "i32 0" to a zero'd memory location is a noop.
   1019     return;
   1020   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
   1021     return EmitNullInitializationToLValue(LV);
   1022   } else if (type->isReferenceType()) {
   1023     RValue RV = CGF.EmitReferenceBindingToExpr(E);
   1024     return CGF.EmitStoreThroughLValue(RV, LV);
   1025   }
   1026 
   1027   switch (CGF.getEvaluationKind(type)) {
   1028   case TEK_Complex:
   1029     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
   1030     return;
   1031   case TEK_Aggregate:
   1032     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
   1033                                                AggValueSlot::IsDestructed,
   1034                                       AggValueSlot::DoesNotNeedGCBarriers,
   1035                                                AggValueSlot::IsNotAliased,
   1036                                                Dest.isZeroed()));
   1037     return;
   1038   case TEK_Scalar:
   1039     if (LV.isSimple()) {
   1040       CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
   1041     } else {
   1042       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
   1043     }
   1044     return;
   1045   }
   1046   llvm_unreachable("bad evaluation kind");
   1047 }
   1048 
   1049 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
   1050   QualType type = lv.getType();
   1051 
   1052   // If the destination slot is already zeroed out before the aggregate is
   1053   // copied into it, we don't have to emit any zeros here.
   1054   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
   1055     return;
   1056 
   1057   if (CGF.hasScalarEvaluationKind(type)) {
   1058     // For non-aggregates, we can store the appropriate null constant.
   1059     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
   1060     // Note that the following is not equivalent to
   1061     // EmitStoreThroughBitfieldLValue for ARC types.
   1062     if (lv.isBitField()) {
   1063       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
   1064     } else {
   1065       assert(lv.isSimple());
   1066       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
   1067     }
   1068   } else {
   1069     // There's a potential optimization opportunity in combining
   1070     // memsets; that would be easy for arrays, but relatively
   1071     // difficult for structures with the current code.
   1072     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
   1073   }
   1074 }
   1075 
   1076 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1077 #if 0
   1078   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
   1079   // (Length of globals? Chunks of zeroed-out space?).
   1080   //
   1081   // If we can, prefer a copy from a global; this is a lot less code for long
   1082   // globals, and it's easier for the current optimizers to analyze.
   1083   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
   1084     llvm::GlobalVariable* GV =
   1085     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
   1086                              llvm::GlobalValue::InternalLinkage, C, "");
   1087     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
   1088     return;
   1089   }
   1090 #endif
   1091   if (E->hadArrayRangeDesignator())
   1092     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1093 
   1094   AggValueSlot Dest = EnsureSlot(E->getType());
   1095 
   1096   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
   1097                                      Dest.getAlignment());
   1098 
   1099   // Handle initialization of an array.
   1100   if (E->getType()->isArrayType()) {
   1101     if (E->isStringLiteralInit())
   1102       return Visit(E->getInit(0));
   1103 
   1104     QualType elementType =
   1105         CGF.getContext().getAsArrayType(E->getType())->getElementType();
   1106 
   1107     llvm::PointerType *APType =
   1108       cast<llvm::PointerType>(Dest.getAddr()->getType());
   1109     llvm::ArrayType *AType =
   1110       cast<llvm::ArrayType>(APType->getElementType());
   1111 
   1112     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
   1113     return;
   1114   }
   1115 
   1116   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
   1117 
   1118   // Do struct initialization; this code just sets each individual member
   1119   // to the approprate value.  This makes bitfield support automatic;
   1120   // the disadvantage is that the generated code is more difficult for
   1121   // the optimizer, especially with bitfields.
   1122   unsigned NumInitElements = E->getNumInits();
   1123   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
   1124 
   1125   // Prepare a 'this' for CXXDefaultInitExprs.
   1126   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
   1127 
   1128   if (record->isUnion()) {
   1129     // Only initialize one field of a union. The field itself is
   1130     // specified by the initializer list.
   1131     if (!E->getInitializedFieldInUnion()) {
   1132       // Empty union; we have nothing to do.
   1133 
   1134 #ifndef NDEBUG
   1135       // Make sure that it's really an empty and not a failure of
   1136       // semantic analysis.
   1137       for (RecordDecl::field_iterator Field = record->field_begin(),
   1138                                    FieldEnd = record->field_end();
   1139            Field != FieldEnd; ++Field)
   1140         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
   1141 #endif
   1142       return;
   1143     }
   1144 
   1145     // FIXME: volatility
   1146     FieldDecl *Field = E->getInitializedFieldInUnion();
   1147 
   1148     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
   1149     if (NumInitElements) {
   1150       // Store the initializer into the field
   1151       EmitInitializationToLValue(E->getInit(0), FieldLoc);
   1152     } else {
   1153       // Default-initialize to null.
   1154       EmitNullInitializationToLValue(FieldLoc);
   1155     }
   1156 
   1157     return;
   1158   }
   1159 
   1160   // We'll need to enter cleanup scopes in case any of the member
   1161   // initializers throw an exception.
   1162   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
   1163   llvm::Instruction *cleanupDominator = 0;
   1164 
   1165   // Here we iterate over the fields; this makes it simpler to both
   1166   // default-initialize fields and skip over unnamed fields.
   1167   unsigned curInitIndex = 0;
   1168   for (RecordDecl::field_iterator field = record->field_begin(),
   1169                                fieldEnd = record->field_end();
   1170        field != fieldEnd; ++field) {
   1171     // We're done once we hit the flexible array member.
   1172     if (field->getType()->isIncompleteArrayType())
   1173       break;
   1174 
   1175     // Always skip anonymous bitfields.
   1176     if (field->isUnnamedBitfield())
   1177       continue;
   1178 
   1179     // We're done if we reach the end of the explicit initializers, we
   1180     // have a zeroed object, and the rest of the fields are
   1181     // zero-initializable.
   1182     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
   1183         CGF.getTypes().isZeroInitializable(E->getType()))
   1184       break;
   1185 
   1186 
   1187     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
   1188     // We never generate write-barries for initialized fields.
   1189     LV.setNonGC(true);
   1190 
   1191     if (curInitIndex < NumInitElements) {
   1192       // Store the initializer into the field.
   1193       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
   1194     } else {
   1195       // We're out of initalizers; default-initialize to null
   1196       EmitNullInitializationToLValue(LV);
   1197     }
   1198 
   1199     // Push a destructor if necessary.
   1200     // FIXME: if we have an array of structures, all explicitly
   1201     // initialized, we can end up pushing a linear number of cleanups.
   1202     bool pushedCleanup = false;
   1203     if (QualType::DestructionKind dtorKind
   1204           = field->getType().isDestructedType()) {
   1205       assert(LV.isSimple());
   1206       if (CGF.needsEHCleanup(dtorKind)) {
   1207         if (!cleanupDominator)
   1208           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
   1209 
   1210         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
   1211                         CGF.getDestroyer(dtorKind), false);
   1212         cleanups.push_back(CGF.EHStack.stable_begin());
   1213         pushedCleanup = true;
   1214       }
   1215     }
   1216 
   1217     // If the GEP didn't get used because of a dead zero init or something
   1218     // else, clean it up for -O0 builds and general tidiness.
   1219     if (!pushedCleanup && LV.isSimple())
   1220       if (llvm::GetElementPtrInst *GEP =
   1221             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
   1222         if (GEP->use_empty())
   1223           GEP->eraseFromParent();
   1224   }
   1225 
   1226   // Deactivate all the partial cleanups in reverse order, which
   1227   // generally means popping them.
   1228   for (unsigned i = cleanups.size(); i != 0; --i)
   1229     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
   1230 
   1231   // Destroy the placeholder if we made one.
   1232   if (cleanupDominator)
   1233     cleanupDominator->eraseFromParent();
   1234 }
   1235 
   1236 //===----------------------------------------------------------------------===//
   1237 //                        Entry Points into this File
   1238 //===----------------------------------------------------------------------===//
   1239 
   1240 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
   1241 /// non-zero bytes that will be stored when outputting the initializer for the
   1242 /// specified initializer expression.
   1243 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
   1244   E = E->IgnoreParens();
   1245 
   1246   // 0 and 0.0 won't require any non-zero stores!
   1247   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
   1248 
   1249   // If this is an initlist expr, sum up the size of sizes of the (present)
   1250   // elements.  If this is something weird, assume the whole thing is non-zero.
   1251   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
   1252   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
   1253     return CGF.getContext().getTypeSizeInChars(E->getType());
   1254 
   1255   // InitListExprs for structs have to be handled carefully.  If there are
   1256   // reference members, we need to consider the size of the reference, not the
   1257   // referencee.  InitListExprs for unions and arrays can't have references.
   1258   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
   1259     if (!RT->isUnionType()) {
   1260       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
   1261       CharUnits NumNonZeroBytes = CharUnits::Zero();
   1262 
   1263       unsigned ILEElement = 0;
   1264       for (RecordDecl::field_iterator Field = SD->field_begin(),
   1265            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
   1266         // We're done once we hit the flexible array member or run out of
   1267         // InitListExpr elements.
   1268         if (Field->getType()->isIncompleteArrayType() ||
   1269             ILEElement == ILE->getNumInits())
   1270           break;
   1271         if (Field->isUnnamedBitfield())
   1272           continue;
   1273 
   1274         const Expr *E = ILE->getInit(ILEElement++);
   1275 
   1276         // Reference values are always non-null and have the width of a pointer.
   1277         if (Field->getType()->isReferenceType())
   1278           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
   1279               CGF.getTarget().getPointerWidth(0));
   1280         else
   1281           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
   1282       }
   1283 
   1284       return NumNonZeroBytes;
   1285     }
   1286   }
   1287 
   1288 
   1289   CharUnits NumNonZeroBytes = CharUnits::Zero();
   1290   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1291     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
   1292   return NumNonZeroBytes;
   1293 }
   1294 
   1295 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
   1296 /// zeros in it, emit a memset and avoid storing the individual zeros.
   1297 ///
   1298 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
   1299                                      CodeGenFunction &CGF) {
   1300   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
   1301   // volatile stores.
   1302   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
   1303 
   1304   // C++ objects with a user-declared constructor don't need zero'ing.
   1305   if (CGF.getLangOpts().CPlusPlus)
   1306     if (const RecordType *RT = CGF.getContext()
   1307                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
   1308       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1309       if (RD->hasUserDeclaredConstructor())
   1310         return;
   1311     }
   1312 
   1313   // If the type is 16-bytes or smaller, prefer individual stores over memset.
   1314   std::pair<CharUnits, CharUnits> TypeInfo =
   1315     CGF.getContext().getTypeInfoInChars(E->getType());
   1316   if (TypeInfo.first <= CharUnits::fromQuantity(16))
   1317     return;
   1318 
   1319   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
   1320   // we prefer to emit memset + individual stores for the rest.
   1321   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
   1322   if (NumNonZeroBytes*4 > TypeInfo.first)
   1323     return;
   1324 
   1325   // Okay, it seems like a good idea to use an initial memset, emit the call.
   1326   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
   1327   CharUnits Align = TypeInfo.second;
   1328 
   1329   llvm::Value *Loc = Slot.getAddr();
   1330 
   1331   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
   1332   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
   1333                            Align.getQuantity(), false);
   1334 
   1335   // Tell the AggExprEmitter that the slot is known zero.
   1336   Slot.setZeroed();
   1337 }
   1338 
   1339 
   1340 
   1341 
   1342 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1343 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1344 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1345 /// true, DestPtr cannot be 0.
   1346 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
   1347   assert(E && hasAggregateEvaluationKind(E->getType()) &&
   1348          "Invalid aggregate expression to emit");
   1349   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
   1350          "slot has bits but no address");
   1351 
   1352   // Optimize the slot if possible.
   1353   CheckAggExprForMemSetUse(Slot, E, *this);
   1354 
   1355   AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
   1356 }
   1357 
   1358 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1359   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
   1360   llvm::Value *Temp = CreateMemTemp(E->getType());
   1361   LValue LV = MakeAddrLValue(Temp, E->getType());
   1362   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
   1363                                          AggValueSlot::DoesNotNeedGCBarriers,
   1364                                          AggValueSlot::IsNotAliased));
   1365   return LV;
   1366 }
   1367 
   1368 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
   1369                                         llvm::Value *SrcPtr, QualType Ty,
   1370                                         bool isVolatile,
   1371                                         CharUnits alignment,
   1372                                         bool isAssignment) {
   1373   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1374 
   1375   if (getLangOpts().CPlusPlus) {
   1376     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1377       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1378       assert((Record->hasTrivialCopyConstructor() ||
   1379               Record->hasTrivialCopyAssignment() ||
   1380               Record->hasTrivialMoveConstructor() ||
   1381               Record->hasTrivialMoveAssignment()) &&
   1382              "Trying to aggregate-copy a type without a trivial copy/move "
   1383              "constructor or assignment operator");
   1384       // Ignore empty classes in C++.
   1385       if (Record->isEmpty())
   1386         return;
   1387     }
   1388   }
   1389 
   1390   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1391   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1392   // read from another object that overlaps in anyway the storage of the first
   1393   // object, then the overlap shall be exact and the two objects shall have
   1394   // qualified or unqualified versions of a compatible type."
   1395   //
   1396   // memcpy is not defined if the source and destination pointers are exactly
   1397   // equal, but other compilers do this optimization, and almost every memcpy
   1398   // implementation handles this case safely.  If there is a libc that does not
   1399   // safely handle this, we can add a target hook.
   1400 
   1401   // Get data size and alignment info for this aggregate. If this is an
   1402   // assignment don't copy the tail padding. Otherwise copying it is fine.
   1403   std::pair<CharUnits, CharUnits> TypeInfo;
   1404   if (isAssignment)
   1405     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
   1406   else
   1407     TypeInfo = getContext().getTypeInfoInChars(Ty);
   1408 
   1409   if (alignment.isZero())
   1410     alignment = TypeInfo.second;
   1411 
   1412   // FIXME: Handle variable sized types.
   1413 
   1414   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1415   // appear to be `extra' memory ops:
   1416   //
   1417   // volatile struct { int i; } a, b;
   1418   //
   1419   // int main() {
   1420   //   a = b;
   1421   //   a = b;
   1422   // }
   1423   //
   1424   // we need to use a different call here.  We use isVolatile to indicate when
   1425   // either the source or the destination is volatile.
   1426 
   1427   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
   1428   llvm::Type *DBP =
   1429     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
   1430   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
   1431 
   1432   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
   1433   llvm::Type *SBP =
   1434     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
   1435   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
   1436 
   1437   // Don't do any of the memmove_collectable tests if GC isn't set.
   1438   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
   1439     // fall through
   1440   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1441     RecordDecl *Record = RecordTy->getDecl();
   1442     if (Record->hasObjectMember()) {
   1443       CharUnits size = TypeInfo.first;
   1444       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1445       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1446       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1447                                                     SizeVal);
   1448       return;
   1449     }
   1450   } else if (Ty->isArrayType()) {
   1451     QualType BaseType = getContext().getBaseElementType(Ty);
   1452     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1453       if (RecordTy->getDecl()->hasObjectMember()) {
   1454         CharUnits size = TypeInfo.first;
   1455         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1456         llvm::Value *SizeVal =
   1457           llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1458         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1459                                                       SizeVal);
   1460         return;
   1461       }
   1462     }
   1463   }
   1464 
   1465   // Determine the metadata to describe the position of any padding in this
   1466   // memcpy, as well as the TBAA tags for the members of the struct, in case
   1467   // the optimizer wishes to expand it in to scalar memory operations.
   1468   llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
   1469 
   1470   Builder.CreateMemCpy(DestPtr, SrcPtr,
   1471                        llvm::ConstantInt::get(IntPtrTy,
   1472                                               TypeInfo.first.getQuantity()),
   1473                        alignment.getQuantity(), isVolatile,
   1474                        /*TBAATag=*/0, TBAAStructTag);
   1475 }
   1476