Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2001 September 15
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains C code routines that are called by the SQLite parser
     13 ** when syntax rules are reduced.  The routines in this file handle the
     14 ** following kinds of SQL syntax:
     15 **
     16 **     CREATE TABLE
     17 **     DROP TABLE
     18 **     CREATE INDEX
     19 **     DROP INDEX
     20 **     creating ID lists
     21 **     BEGIN TRANSACTION
     22 **     COMMIT
     23 **     ROLLBACK
     24 */
     25 #include "sqliteInt.h"
     26 
     27 #include "pager.h"
     28 #include "btree.h"
     29 
     30 /*
     31 ** This routine is called when a new SQL statement is beginning to
     32 ** be parsed.  Initialize the pParse structure as needed.
     33 */
     34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
     35   pParse->explain = (u8)explainFlag;
     36   pParse->nVar = 0;
     37 }
     38 
     39 #ifndef SQLITE_OMIT_SHARED_CACHE
     40 /*
     41 ** The TableLock structure is only used by the sqlite3TableLock() and
     42 ** codeTableLocks() functions.
     43 */
     44 struct TableLock {
     45   int iDb;             /* The database containing the table to be locked */
     46   int iTab;            /* The root page of the table to be locked */
     47   u8 isWriteLock;      /* True for write lock.  False for a read lock */
     48   const char *zName;   /* Name of the table */
     49 };
     50 
     51 /*
     52 ** Record the fact that we want to lock a table at run-time.
     53 **
     54 ** The table to be locked has root page iTab and is found in database iDb.
     55 ** A read or a write lock can be taken depending on isWritelock.
     56 **
     57 ** This routine just records the fact that the lock is desired.  The
     58 ** code to make the lock occur is generated by a later call to
     59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
     60 */
     61 void sqlite3TableLock(
     62   Parse *pParse,     /* Parsing context */
     63   int iDb,           /* Index of the database containing the table to lock */
     64   int iTab,          /* Root page number of the table to be locked */
     65   u8 isWriteLock,    /* True for a write lock */
     66   const char *zName  /* Name of the table to be locked */
     67 ){
     68   Parse *pToplevel = sqlite3ParseToplevel(pParse);
     69   int i;
     70   int nBytes;
     71   TableLock *p;
     72   assert( iDb>=0 );
     73 
     74   for(i=0; i<pToplevel->nTableLock; i++){
     75     p = &pToplevel->aTableLock[i];
     76     if( p->iDb==iDb && p->iTab==iTab ){
     77       p->isWriteLock = (p->isWriteLock || isWriteLock);
     78       return;
     79     }
     80   }
     81 
     82   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
     83   pToplevel->aTableLock =
     84       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
     85   if( pToplevel->aTableLock ){
     86     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
     87     p->iDb = iDb;
     88     p->iTab = iTab;
     89     p->isWriteLock = isWriteLock;
     90     p->zName = zName;
     91   }else{
     92     pToplevel->nTableLock = 0;
     93     pToplevel->db->mallocFailed = 1;
     94   }
     95 }
     96 
     97 /*
     98 ** Code an OP_TableLock instruction for each table locked by the
     99 ** statement (configured by calls to sqlite3TableLock()).
    100 */
    101 static void codeTableLocks(Parse *pParse){
    102   int i;
    103   Vdbe *pVdbe;
    104 
    105   pVdbe = sqlite3GetVdbe(pParse);
    106   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
    107 
    108   for(i=0; i<pParse->nTableLock; i++){
    109     TableLock *p = &pParse->aTableLock[i];
    110     int p1 = p->iDb;
    111     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
    112                       p->zName, P4_STATIC);
    113   }
    114 }
    115 #else
    116   #define codeTableLocks(x)
    117 #endif
    118 
    119 /*
    120 ** This routine is called after a single SQL statement has been
    121 ** parsed and a VDBE program to execute that statement has been
    122 ** prepared.  This routine puts the finishing touches on the
    123 ** VDBE program and resets the pParse structure for the next
    124 ** parse.
    125 **
    126 ** Note that if an error occurred, it might be the case that
    127 ** no VDBE code was generated.
    128 */
    129 void sqlite3FinishCoding(Parse *pParse){
    130   sqlite3 *db;
    131   Vdbe *v;
    132 
    133   db = pParse->db;
    134   if( db->mallocFailed ) return;
    135   if( pParse->nested ) return;
    136   if( pParse->nErr ) return;
    137 
    138   /* Begin by generating some termination code at the end of the
    139   ** vdbe program
    140   */
    141   v = sqlite3GetVdbe(pParse);
    142   assert( !pParse->isMultiWrite
    143        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
    144   if( v ){
    145     sqlite3VdbeAddOp0(v, OP_Halt);
    146 
    147     /* The cookie mask contains one bit for each database file open.
    148     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
    149     ** set for each database that is used.  Generate code to start a
    150     ** transaction on each used database and to verify the schema cookie
    151     ** on each used database.
    152     */
    153     if( pParse->cookieGoto>0 ){
    154       yDbMask mask;
    155       int iDb;
    156       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
    157       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
    158         if( (mask & pParse->cookieMask)==0 ) continue;
    159         sqlite3VdbeUsesBtree(v, iDb);
    160         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
    161         if( db->init.busy==0 ){
    162           assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    163           sqlite3VdbeAddOp3(v, OP_VerifyCookie,
    164                             iDb, pParse->cookieValue[iDb],
    165                             db->aDb[iDb].pSchema->iGeneration);
    166         }
    167       }
    168 #ifndef SQLITE_OMIT_VIRTUALTABLE
    169       {
    170         int i;
    171         for(i=0; i<pParse->nVtabLock; i++){
    172           char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
    173           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
    174         }
    175         pParse->nVtabLock = 0;
    176       }
    177 #endif
    178 
    179       /* Once all the cookies have been verified and transactions opened,
    180       ** obtain the required table-locks. This is a no-op unless the
    181       ** shared-cache feature is enabled.
    182       */
    183       codeTableLocks(pParse);
    184 
    185       /* Initialize any AUTOINCREMENT data structures required.
    186       */
    187       sqlite3AutoincrementBegin(pParse);
    188 
    189       /* Finally, jump back to the beginning of the executable code. */
    190       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
    191     }
    192   }
    193 
    194 
    195   /* Get the VDBE program ready for execution
    196   */
    197   if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
    198 #ifdef SQLITE_DEBUG
    199     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    200     sqlite3VdbeTrace(v, trace);
    201 #endif
    202     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    203     /* A minimum of one cursor is required if autoincrement is used
    204     *  See ticket [a696379c1f08866] */
    205     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    206     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
    207                          pParse->nTab, pParse->nMaxArg, pParse->explain,
    208                          pParse->isMultiWrite && pParse->mayAbort);
    209     pParse->rc = SQLITE_DONE;
    210     pParse->colNamesSet = 0;
    211   }else{
    212     pParse->rc = SQLITE_ERROR;
    213   }
    214   pParse->nTab = 0;
    215   pParse->nMem = 0;
    216   pParse->nSet = 0;
    217   pParse->nVar = 0;
    218   pParse->cookieMask = 0;
    219   pParse->cookieGoto = 0;
    220 }
    221 
    222 /*
    223 ** Run the parser and code generator recursively in order to generate
    224 ** code for the SQL statement given onto the end of the pParse context
    225 ** currently under construction.  When the parser is run recursively
    226 ** this way, the final OP_Halt is not appended and other initialization
    227 ** and finalization steps are omitted because those are handling by the
    228 ** outermost parser.
    229 **
    230 ** Not everything is nestable.  This facility is designed to permit
    231 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
    232 ** care if you decide to try to use this routine for some other purposes.
    233 */
    234 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
    235   va_list ap;
    236   char *zSql;
    237   char *zErrMsg = 0;
    238   sqlite3 *db = pParse->db;
    239 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
    240   char saveBuf[SAVE_SZ];
    241 
    242   if( pParse->nErr ) return;
    243   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
    244   va_start(ap, zFormat);
    245   zSql = sqlite3VMPrintf(db, zFormat, ap);
    246   va_end(ap);
    247   if( zSql==0 ){
    248     return;   /* A malloc must have failed */
    249   }
    250   pParse->nested++;
    251   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
    252   memset(&pParse->nVar, 0, SAVE_SZ);
    253   sqlite3RunParser(pParse, zSql, &zErrMsg);
    254   sqlite3DbFree(db, zErrMsg);
    255   sqlite3DbFree(db, zSql);
    256   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
    257   pParse->nested--;
    258 }
    259 
    260 /*
    261 ** Locate the in-memory structure that describes a particular database
    262 ** table given the name of that table and (optionally) the name of the
    263 ** database containing the table.  Return NULL if not found.
    264 **
    265 ** If zDatabase is 0, all databases are searched for the table and the
    266 ** first matching table is returned.  (No checking for duplicate table
    267 ** names is done.)  The search order is TEMP first, then MAIN, then any
    268 ** auxiliary databases added using the ATTACH command.
    269 **
    270 ** See also sqlite3LocateTable().
    271 */
    272 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
    273   Table *p = 0;
    274   int i;
    275   int nName;
    276   assert( zName!=0 );
    277   nName = sqlite3Strlen30(zName);
    278   /* All mutexes are required for schema access.  Make sure we hold them. */
    279   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
    280   for(i=OMIT_TEMPDB; i<db->nDb; i++){
    281     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    282     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    283     assert( sqlite3SchemaMutexHeld(db, j, 0) );
    284     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
    285     if( p ) break;
    286   }
    287   return p;
    288 }
    289 
    290 /*
    291 ** Locate the in-memory structure that describes a particular database
    292 ** table given the name of that table and (optionally) the name of the
    293 ** database containing the table.  Return NULL if not found.  Also leave an
    294 ** error message in pParse->zErrMsg.
    295 **
    296 ** The difference between this routine and sqlite3FindTable() is that this
    297 ** routine leaves an error message in pParse->zErrMsg where
    298 ** sqlite3FindTable() does not.
    299 */
    300 Table *sqlite3LocateTable(
    301   Parse *pParse,         /* context in which to report errors */
    302   int isView,            /* True if looking for a VIEW rather than a TABLE */
    303   const char *zName,     /* Name of the table we are looking for */
    304   const char *zDbase     /* Name of the database.  Might be NULL */
    305 ){
    306   Table *p;
    307 
    308   /* Read the database schema. If an error occurs, leave an error message
    309   ** and code in pParse and return NULL. */
    310   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    311     return 0;
    312   }
    313 
    314   p = sqlite3FindTable(pParse->db, zName, zDbase);
    315   if( p==0 ){
    316     const char *zMsg = isView ? "no such view" : "no such table";
    317     if( zDbase ){
    318       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    319     }else{
    320       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    321     }
    322     pParse->checkSchema = 1;
    323   }
    324   return p;
    325 }
    326 
    327 /*
    328 ** Locate the in-memory structure that describes
    329 ** a particular index given the name of that index
    330 ** and the name of the database that contains the index.
    331 ** Return NULL if not found.
    332 **
    333 ** If zDatabase is 0, all databases are searched for the
    334 ** table and the first matching index is returned.  (No checking
    335 ** for duplicate index names is done.)  The search order is
    336 ** TEMP first, then MAIN, then any auxiliary databases added
    337 ** using the ATTACH command.
    338 */
    339 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
    340   Index *p = 0;
    341   int i;
    342   int nName = sqlite3Strlen30(zName);
    343   /* All mutexes are required for schema access.  Make sure we hold them. */
    344   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
    345   for(i=OMIT_TEMPDB; i<db->nDb; i++){
    346     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    347     Schema *pSchema = db->aDb[j].pSchema;
    348     assert( pSchema );
    349     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
    350     assert( sqlite3SchemaMutexHeld(db, j, 0) );
    351     p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
    352     if( p ) break;
    353   }
    354   return p;
    355 }
    356 
    357 /*
    358 ** Reclaim the memory used by an index
    359 */
    360 static void freeIndex(sqlite3 *db, Index *p){
    361 #ifndef SQLITE_OMIT_ANALYZE
    362   sqlite3DeleteIndexSamples(db, p);
    363 #endif
    364   sqlite3DbFree(db, p->zColAff);
    365   sqlite3DbFree(db, p);
    366 }
    367 
    368 /*
    369 ** For the index called zIdxName which is found in the database iDb,
    370 ** unlike that index from its Table then remove the index from
    371 ** the index hash table and free all memory structures associated
    372 ** with the index.
    373 */
    374 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
    375   Index *pIndex;
    376   int len;
    377   Hash *pHash;
    378 
    379   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    380   pHash = &db->aDb[iDb].pSchema->idxHash;
    381   len = sqlite3Strlen30(zIdxName);
    382   pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
    383   if( ALWAYS(pIndex) ){
    384     if( pIndex->pTable->pIndex==pIndex ){
    385       pIndex->pTable->pIndex = pIndex->pNext;
    386     }else{
    387       Index *p;
    388       /* Justification of ALWAYS();  The index must be on the list of
    389       ** indices. */
    390       p = pIndex->pTable->pIndex;
    391       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
    392       if( ALWAYS(p && p->pNext==pIndex) ){
    393         p->pNext = pIndex->pNext;
    394       }
    395     }
    396     freeIndex(db, pIndex);
    397   }
    398   db->flags |= SQLITE_InternChanges;
    399 }
    400 
    401 /*
    402 ** Erase all schema information from the in-memory hash tables of
    403 ** a single database.  This routine is called to reclaim memory
    404 ** before the database closes.  It is also called during a rollback
    405 ** if there were schema changes during the transaction or if a
    406 ** schema-cookie mismatch occurs.
    407 **
    408 ** If iDb<0 then reset the internal schema tables for all database
    409 ** files.  If iDb>=0 then reset the internal schema for only the
    410 ** single file indicated.
    411 */
    412 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
    413   int i, j;
    414   assert( iDb<db->nDb );
    415 
    416   if( iDb>=0 ){
    417     /* Case 1:  Reset the single schema identified by iDb */
    418     Db *pDb = &db->aDb[iDb];
    419     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    420     assert( pDb->pSchema!=0 );
    421     sqlite3SchemaClear(pDb->pSchema);
    422 
    423     /* If any database other than TEMP is reset, then also reset TEMP
    424     ** since TEMP might be holding triggers that reference tables in the
    425     ** other database.
    426     */
    427     if( iDb!=1 ){
    428       pDb = &db->aDb[1];
    429       assert( pDb->pSchema!=0 );
    430       sqlite3SchemaClear(pDb->pSchema);
    431     }
    432     return;
    433   }
    434   /* Case 2 (from here to the end): Reset all schemas for all attached
    435   ** databases. */
    436   assert( iDb<0 );
    437   sqlite3BtreeEnterAll(db);
    438   for(i=0; i<db->nDb; i++){
    439     Db *pDb = &db->aDb[i];
    440     if( pDb->pSchema ){
    441       sqlite3SchemaClear(pDb->pSchema);
    442     }
    443   }
    444   db->flags &= ~SQLITE_InternChanges;
    445   sqlite3VtabUnlockList(db);
    446   sqlite3BtreeLeaveAll(db);
    447 
    448   /* If one or more of the auxiliary database files has been closed,
    449   ** then remove them from the auxiliary database list.  We take the
    450   ** opportunity to do this here since we have just deleted all of the
    451   ** schema hash tables and therefore do not have to make any changes
    452   ** to any of those tables.
    453   */
    454   for(i=j=2; i<db->nDb; i++){
    455     struct Db *pDb = &db->aDb[i];
    456     if( pDb->pBt==0 ){
    457       sqlite3DbFree(db, pDb->zName);
    458       pDb->zName = 0;
    459       continue;
    460     }
    461     if( j<i ){
    462       db->aDb[j] = db->aDb[i];
    463     }
    464     j++;
    465   }
    466   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
    467   db->nDb = j;
    468   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
    469     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
    470     sqlite3DbFree(db, db->aDb);
    471     db->aDb = db->aDbStatic;
    472   }
    473 }
    474 
    475 /*
    476 ** This routine is called when a commit occurs.
    477 */
    478 void sqlite3CommitInternalChanges(sqlite3 *db){
    479   db->flags &= ~SQLITE_InternChanges;
    480 }
    481 
    482 /*
    483 ** Delete memory allocated for the column names of a table or view (the
    484 ** Table.aCol[] array).
    485 */
    486 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
    487   int i;
    488   Column *pCol;
    489   assert( pTable!=0 );
    490   if( (pCol = pTable->aCol)!=0 ){
    491     for(i=0; i<pTable->nCol; i++, pCol++){
    492       sqlite3DbFree(db, pCol->zName);
    493       sqlite3ExprDelete(db, pCol->pDflt);
    494       sqlite3DbFree(db, pCol->zDflt);
    495       sqlite3DbFree(db, pCol->zType);
    496       sqlite3DbFree(db, pCol->zColl);
    497     }
    498     sqlite3DbFree(db, pTable->aCol);
    499   }
    500 }
    501 
    502 /*
    503 ** Remove the memory data structures associated with the given
    504 ** Table.  No changes are made to disk by this routine.
    505 **
    506 ** This routine just deletes the data structure.  It does not unlink
    507 ** the table data structure from the hash table.  But it does destroy
    508 ** memory structures of the indices and foreign keys associated with
    509 ** the table.
    510 */
    511 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
    512   Index *pIndex, *pNext;
    513 
    514   assert( !pTable || pTable->nRef>0 );
    515 
    516   /* Do not delete the table until the reference count reaches zero. */
    517   if( !pTable ) return;
    518   if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
    519 
    520   /* Delete all indices associated with this table. */
    521   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    522     pNext = pIndex->pNext;
    523     assert( pIndex->pSchema==pTable->pSchema );
    524     if( !db || db->pnBytesFreed==0 ){
    525       char *zName = pIndex->zName;
    526       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
    527 	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
    528       );
    529       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
    530       assert( pOld==pIndex || pOld==0 );
    531     }
    532     freeIndex(db, pIndex);
    533   }
    534 
    535   /* Delete any foreign keys attached to this table. */
    536   sqlite3FkDelete(db, pTable);
    537 
    538   /* Delete the Table structure itself.
    539   */
    540   sqliteDeleteColumnNames(db, pTable);
    541   sqlite3DbFree(db, pTable->zName);
    542   sqlite3DbFree(db, pTable->zColAff);
    543   sqlite3SelectDelete(db, pTable->pSelect);
    544 #ifndef SQLITE_OMIT_CHECK
    545   sqlite3ExprDelete(db, pTable->pCheck);
    546 #endif
    547 #ifndef SQLITE_OMIT_VIRTUALTABLE
    548   sqlite3VtabClear(db, pTable);
    549 #endif
    550   sqlite3DbFree(db, pTable);
    551 }
    552 
    553 /*
    554 ** Unlink the given table from the hash tables and the delete the
    555 ** table structure with all its indices and foreign keys.
    556 */
    557 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
    558   Table *p;
    559   Db *pDb;
    560 
    561   assert( db!=0 );
    562   assert( iDb>=0 && iDb<db->nDb );
    563   assert( zTabName );
    564   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    565   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
    566   pDb = &db->aDb[iDb];
    567   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
    568                         sqlite3Strlen30(zTabName),0);
    569   sqlite3DeleteTable(db, p);
    570   db->flags |= SQLITE_InternChanges;
    571 }
    572 
    573 /*
    574 ** Given a token, return a string that consists of the text of that
    575 ** token.  Space to hold the returned string
    576 ** is obtained from sqliteMalloc() and must be freed by the calling
    577 ** function.
    578 **
    579 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
    580 ** surround the body of the token are removed.
    581 **
    582 ** Tokens are often just pointers into the original SQL text and so
    583 ** are not \000 terminated and are not persistent.  The returned string
    584 ** is \000 terminated and is persistent.
    585 */
    586 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
    587   char *zName;
    588   if( pName ){
    589     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
    590     sqlite3Dequote(zName);
    591   }else{
    592     zName = 0;
    593   }
    594   return zName;
    595 }
    596 
    597 /*
    598 ** Open the sqlite_master table stored in database number iDb for
    599 ** writing. The table is opened using cursor 0.
    600 */
    601 void sqlite3OpenMasterTable(Parse *p, int iDb){
    602   Vdbe *v = sqlite3GetVdbe(p);
    603   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
    604   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
    605   sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32);  /* 5 column table */
    606   if( p->nTab==0 ){
    607     p->nTab = 1;
    608   }
    609 }
    610 
    611 /*
    612 ** Parameter zName points to a nul-terminated buffer containing the name
    613 ** of a database ("main", "temp" or the name of an attached db). This
    614 ** function returns the index of the named database in db->aDb[], or
    615 ** -1 if the named db cannot be found.
    616 */
    617 int sqlite3FindDbName(sqlite3 *db, const char *zName){
    618   int i = -1;         /* Database number */
    619   if( zName ){
    620     Db *pDb;
    621     int n = sqlite3Strlen30(zName);
    622     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
    623       if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
    624           0==sqlite3StrICmp(pDb->zName, zName) ){
    625         break;
    626       }
    627     }
    628   }
    629   return i;
    630 }
    631 
    632 /*
    633 ** The token *pName contains the name of a database (either "main" or
    634 ** "temp" or the name of an attached db). This routine returns the
    635 ** index of the named database in db->aDb[], or -1 if the named db
    636 ** does not exist.
    637 */
    638 int sqlite3FindDb(sqlite3 *db, Token *pName){
    639   int i;                               /* Database number */
    640   char *zName;                         /* Name we are searching for */
    641   zName = sqlite3NameFromToken(db, pName);
    642   i = sqlite3FindDbName(db, zName);
    643   sqlite3DbFree(db, zName);
    644   return i;
    645 }
    646 
    647 /* The table or view or trigger name is passed to this routine via tokens
    648 ** pName1 and pName2. If the table name was fully qualified, for example:
    649 **
    650 ** CREATE TABLE xxx.yyy (...);
    651 **
    652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
    653 ** the table name is not fully qualified, i.e.:
    654 **
    655 ** CREATE TABLE yyy(...);
    656 **
    657 ** Then pName1 is set to "yyy" and pName2 is "".
    658 **
    659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
    660 ** pName2) that stores the unqualified table name.  The index of the
    661 ** database "xxx" is returned.
    662 */
    663 int sqlite3TwoPartName(
    664   Parse *pParse,      /* Parsing and code generating context */
    665   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
    666   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
    667   Token **pUnqual     /* Write the unqualified object name here */
    668 ){
    669   int iDb;                    /* Database holding the object */
    670   sqlite3 *db = pParse->db;
    671 
    672   if( ALWAYS(pName2!=0) && pName2->n>0 ){
    673     if( db->init.busy ) {
    674       sqlite3ErrorMsg(pParse, "corrupt database");
    675       pParse->nErr++;
    676       return -1;
    677     }
    678     *pUnqual = pName2;
    679     iDb = sqlite3FindDb(db, pName1);
    680     if( iDb<0 ){
    681       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
    682       pParse->nErr++;
    683       return -1;
    684     }
    685   }else{
    686     assert( db->init.iDb==0 || db->init.busy );
    687     iDb = db->init.iDb;
    688     *pUnqual = pName1;
    689   }
    690   return iDb;
    691 }
    692 
    693 /*
    694 ** This routine is used to check if the UTF-8 string zName is a legal
    695 ** unqualified name for a new schema object (table, index, view or
    696 ** trigger). All names are legal except those that begin with the string
    697 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
    698 ** is reserved for internal use.
    699 */
    700 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
    701   if( !pParse->db->init.busy && pParse->nested==0
    702           && (pParse->db->flags & SQLITE_WriteSchema)==0
    703           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
    704     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
    705     return SQLITE_ERROR;
    706   }
    707   return SQLITE_OK;
    708 }
    709 
    710 /*
    711 ** Begin constructing a new table representation in memory.  This is
    712 ** the first of several action routines that get called in response
    713 ** to a CREATE TABLE statement.  In particular, this routine is called
    714 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
    715 ** flag is true if the table should be stored in the auxiliary database
    716 ** file instead of in the main database file.  This is normally the case
    717 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
    718 ** CREATE and TABLE.
    719 **
    720 ** The new table record is initialized and put in pParse->pNewTable.
    721 ** As more of the CREATE TABLE statement is parsed, additional action
    722 ** routines will be called to add more information to this record.
    723 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
    724 ** is called to complete the construction of the new table record.
    725 */
    726 void sqlite3StartTable(
    727   Parse *pParse,   /* Parser context */
    728   Token *pName1,   /* First part of the name of the table or view */
    729   Token *pName2,   /* Second part of the name of the table or view */
    730   int isTemp,      /* True if this is a TEMP table */
    731   int isView,      /* True if this is a VIEW */
    732   int isVirtual,   /* True if this is a VIRTUAL table */
    733   int noErr        /* Do nothing if table already exists */
    734 ){
    735   Table *pTable;
    736   char *zName = 0; /* The name of the new table */
    737   sqlite3 *db = pParse->db;
    738   Vdbe *v;
    739   int iDb;         /* Database number to create the table in */
    740   Token *pName;    /* Unqualified name of the table to create */
    741 
    742   /* The table or view name to create is passed to this routine via tokens
    743   ** pName1 and pName2. If the table name was fully qualified, for example:
    744   **
    745   ** CREATE TABLE xxx.yyy (...);
    746   **
    747   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
    748   ** the table name is not fully qualified, i.e.:
    749   **
    750   ** CREATE TABLE yyy(...);
    751   **
    752   ** Then pName1 is set to "yyy" and pName2 is "".
    753   **
    754   ** The call below sets the pName pointer to point at the token (pName1 or
    755   ** pName2) that stores the unqualified table name. The variable iDb is
    756   ** set to the index of the database that the table or view is to be
    757   ** created in.
    758   */
    759   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    760   if( iDb<0 ) return;
    761   if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
    762     /* If creating a temp table, the name may not be qualified. Unless
    763     ** the database name is "temp" anyway.  */
    764     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
    765     return;
    766   }
    767   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
    768 
    769   pParse->sNameToken = *pName;
    770   zName = sqlite3NameFromToken(db, pName);
    771   if( zName==0 ) return;
    772   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    773     goto begin_table_error;
    774   }
    775   if( db->init.iDb==1 ) isTemp = 1;
    776 #ifndef SQLITE_OMIT_AUTHORIZATION
    777   assert( (isTemp & 1)==isTemp );
    778   {
    779     int code;
    780     char *zDb = db->aDb[iDb].zName;
    781     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
    782       goto begin_table_error;
    783     }
    784     if( isView ){
    785       if( !OMIT_TEMPDB && isTemp ){
    786         code = SQLITE_CREATE_TEMP_VIEW;
    787       }else{
    788         code = SQLITE_CREATE_VIEW;
    789       }
    790     }else{
    791       if( !OMIT_TEMPDB && isTemp ){
    792         code = SQLITE_CREATE_TEMP_TABLE;
    793       }else{
    794         code = SQLITE_CREATE_TABLE;
    795       }
    796     }
    797     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
    798       goto begin_table_error;
    799     }
    800   }
    801 #endif
    802 
    803   /* Make sure the new table name does not collide with an existing
    804   ** index or table name in the same database.  Issue an error message if
    805   ** it does. The exception is if the statement being parsed was passed
    806   ** to an sqlite3_declare_vtab() call. In that case only the column names
    807   ** and types will be used, so there is no need to test for namespace
    808   ** collisions.
    809   */
    810   if( !IN_DECLARE_VTAB ){
    811     char *zDb = db->aDb[iDb].zName;
    812     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    813       goto begin_table_error;
    814     }
    815     pTable = sqlite3FindTable(db, zName, zDb);
    816     if( pTable ){
    817       if( !noErr ){
    818         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
    819       }else{
    820         assert( !db->init.busy );
    821         sqlite3CodeVerifySchema(pParse, iDb);
    822       }
    823       goto begin_table_error;
    824     }
    825     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
    826       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
    827       goto begin_table_error;
    828     }
    829   }
    830 
    831   pTable = sqlite3DbMallocZero(db, sizeof(Table));
    832   if( pTable==0 ){
    833     db->mallocFailed = 1;
    834     pParse->rc = SQLITE_NOMEM;
    835     pParse->nErr++;
    836     goto begin_table_error;
    837   }
    838   pTable->zName = zName;
    839   pTable->iPKey = -1;
    840   pTable->pSchema = db->aDb[iDb].pSchema;
    841   pTable->nRef = 1;
    842   pTable->nRowEst = 1000000;
    843   assert( pParse->pNewTable==0 );
    844   pParse->pNewTable = pTable;
    845 
    846   /* If this is the magic sqlite_sequence table used by autoincrement,
    847   ** then record a pointer to this table in the main database structure
    848   ** so that INSERT can find the table easily.
    849   */
    850 #ifndef SQLITE_OMIT_AUTOINCREMENT
    851   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
    852     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    853     pTable->pSchema->pSeqTab = pTable;
    854   }
    855 #endif
    856 
    857   /* Begin generating the code that will insert the table record into
    858   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
    859   ** and allocate the record number for the table entry now.  Before any
    860   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
    861   ** indices to be created and the table record must come before the
    862   ** indices.  Hence, the record number for the table must be allocated
    863   ** now.
    864   */
    865   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    866     int j1;
    867     int fileFormat;
    868     int reg1, reg2, reg3;
    869     sqlite3BeginWriteOperation(pParse, 0, iDb);
    870 
    871 #ifndef SQLITE_OMIT_VIRTUALTABLE
    872     if( isVirtual ){
    873       sqlite3VdbeAddOp0(v, OP_VBegin);
    874     }
    875 #endif
    876 
    877     /* If the file format and encoding in the database have not been set,
    878     ** set them now.
    879     */
    880     reg1 = pParse->regRowid = ++pParse->nMem;
    881     reg2 = pParse->regRoot = ++pParse->nMem;
    882     reg3 = ++pParse->nMem;
    883     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
    884     sqlite3VdbeUsesBtree(v, iDb);
    885     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
    886     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
    887                   1 : SQLITE_MAX_FILE_FORMAT;
    888     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
    889     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
    890     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
    891     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
    892     sqlite3VdbeJumpHere(v, j1);
    893 
    894     /* This just creates a place-holder record in the sqlite_master table.
    895     ** The record created does not contain anything yet.  It will be replaced
    896     ** by the real entry in code generated at sqlite3EndTable().
    897     **
    898     ** The rowid for the new entry is left in register pParse->regRowid.
    899     ** The root page number of the new table is left in reg pParse->regRoot.
    900     ** The rowid and root page number values are needed by the code that
    901     ** sqlite3EndTable will generate.
    902     */
    903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    904     if( isView || isVirtual ){
    905       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
    906     }else
    907 #endif
    908     {
    909       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    910     }
    911     sqlite3OpenMasterTable(pParse, iDb);
    912     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    913     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
    914     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    915     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    916     sqlite3VdbeAddOp0(v, OP_Close);
    917   }
    918 
    919   /* Normal (non-error) return. */
    920   return;
    921 
    922   /* If an error occurs, we jump here */
    923 begin_table_error:
    924   sqlite3DbFree(db, zName);
    925   return;
    926 }
    927 
    928 /*
    929 ** This macro is used to compare two strings in a case-insensitive manner.
    930 ** It is slightly faster than calling sqlite3StrICmp() directly, but
    931 ** produces larger code.
    932 **
    933 ** WARNING: This macro is not compatible with the strcmp() family. It
    934 ** returns true if the two strings are equal, otherwise false.
    935 */
    936 #define STRICMP(x, y) (\
    937 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
    938 sqlite3UpperToLower[*(unsigned char *)(y)]     \
    939 && sqlite3StrICmp((x)+1,(y)+1)==0 )
    940 
    941 /*
    942 ** Add a new column to the table currently being constructed.
    943 **
    944 ** The parser calls this routine once for each column declaration
    945 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
    946 ** first to get things going.  Then this routine is called for each
    947 ** column.
    948 */
    949 void sqlite3AddColumn(Parse *pParse, Token *pName){
    950   Table *p;
    951   int i;
    952   char *z;
    953   Column *pCol;
    954   sqlite3 *db = pParse->db;
    955   if( (p = pParse->pNewTable)==0 ) return;
    956 #if SQLITE_MAX_COLUMN
    957   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    958     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
    959     return;
    960   }
    961 #endif
    962   z = sqlite3NameFromToken(db, pName);
    963   if( z==0 ) return;
    964   for(i=0; i<p->nCol; i++){
    965     if( STRICMP(z, p->aCol[i].zName) ){
    966       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
    967       sqlite3DbFree(db, z);
    968       return;
    969     }
    970   }
    971   if( (p->nCol & 0x7)==0 ){
    972     Column *aNew;
    973     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
    974     if( aNew==0 ){
    975       sqlite3DbFree(db, z);
    976       return;
    977     }
    978     p->aCol = aNew;
    979   }
    980   pCol = &p->aCol[p->nCol];
    981   memset(pCol, 0, sizeof(p->aCol[0]));
    982   pCol->zName = z;
    983 
    984   /* If there is no type specified, columns have the default affinity
    985   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
    986   ** be called next to set pCol->affinity correctly.
    987   */
    988   pCol->affinity = SQLITE_AFF_NONE;
    989   p->nCol++;
    990 }
    991 
    992 /*
    993 ** This routine is called by the parser while in the middle of
    994 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
    995 ** been seen on a column.  This routine sets the notNull flag on
    996 ** the column currently under construction.
    997 */
    998 void sqlite3AddNotNull(Parse *pParse, int onError){
    999   Table *p;
   1000   p = pParse->pNewTable;
   1001   if( p==0 || NEVER(p->nCol<1) ) return;
   1002   p->aCol[p->nCol-1].notNull = (u8)onError;
   1003 }
   1004 
   1005 /*
   1006 ** Scan the column type name zType (length nType) and return the
   1007 ** associated affinity type.
   1008 **
   1009 ** This routine does a case-independent search of zType for the
   1010 ** substrings in the following table. If one of the substrings is
   1011 ** found, the corresponding affinity is returned. If zType contains
   1012 ** more than one of the substrings, entries toward the top of
   1013 ** the table take priority. For example, if zType is 'BLOBINT',
   1014 ** SQLITE_AFF_INTEGER is returned.
   1015 **
   1016 ** Substring     | Affinity
   1017 ** --------------------------------
   1018 ** 'INT'         | SQLITE_AFF_INTEGER
   1019 ** 'CHAR'        | SQLITE_AFF_TEXT
   1020 ** 'CLOB'        | SQLITE_AFF_TEXT
   1021 ** 'TEXT'        | SQLITE_AFF_TEXT
   1022 ** 'BLOB'        | SQLITE_AFF_NONE
   1023 ** 'REAL'        | SQLITE_AFF_REAL
   1024 ** 'FLOA'        | SQLITE_AFF_REAL
   1025 ** 'DOUB'        | SQLITE_AFF_REAL
   1026 **
   1027 ** If none of the substrings in the above table are found,
   1028 ** SQLITE_AFF_NUMERIC is returned.
   1029 */
   1030 char sqlite3AffinityType(const char *zIn){
   1031   u32 h = 0;
   1032   char aff = SQLITE_AFF_NUMERIC;
   1033 
   1034   if( zIn ) while( zIn[0] ){
   1035     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
   1036     zIn++;
   1037     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
   1038       aff = SQLITE_AFF_TEXT;
   1039     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
   1040       aff = SQLITE_AFF_TEXT;
   1041     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
   1042       aff = SQLITE_AFF_TEXT;
   1043     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
   1044         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
   1045       aff = SQLITE_AFF_NONE;
   1046 #ifndef SQLITE_OMIT_FLOATING_POINT
   1047     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
   1048         && aff==SQLITE_AFF_NUMERIC ){
   1049       aff = SQLITE_AFF_REAL;
   1050     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
   1051         && aff==SQLITE_AFF_NUMERIC ){
   1052       aff = SQLITE_AFF_REAL;
   1053     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
   1054         && aff==SQLITE_AFF_NUMERIC ){
   1055       aff = SQLITE_AFF_REAL;
   1056 #endif
   1057     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
   1058       aff = SQLITE_AFF_INTEGER;
   1059       break;
   1060     }
   1061   }
   1062 
   1063   return aff;
   1064 }
   1065 
   1066 /*
   1067 ** This routine is called by the parser while in the middle of
   1068 ** parsing a CREATE TABLE statement.  The pFirst token is the first
   1069 ** token in the sequence of tokens that describe the type of the
   1070 ** column currently under construction.   pLast is the last token
   1071 ** in the sequence.  Use this information to construct a string
   1072 ** that contains the typename of the column and store that string
   1073 ** in zType.
   1074 */
   1075 void sqlite3AddColumnType(Parse *pParse, Token *pType){
   1076   Table *p;
   1077   Column *pCol;
   1078 
   1079   p = pParse->pNewTable;
   1080   if( p==0 || NEVER(p->nCol<1) ) return;
   1081   pCol = &p->aCol[p->nCol-1];
   1082   assert( pCol->zType==0 );
   1083   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
   1084   pCol->affinity = sqlite3AffinityType(pCol->zType);
   1085 }
   1086 
   1087 /*
   1088 ** The expression is the default value for the most recently added column
   1089 ** of the table currently under construction.
   1090 **
   1091 ** Default value expressions must be constant.  Raise an exception if this
   1092 ** is not the case.
   1093 **
   1094 ** This routine is called by the parser while in the middle of
   1095 ** parsing a CREATE TABLE statement.
   1096 */
   1097 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
   1098   Table *p;
   1099   Column *pCol;
   1100   sqlite3 *db = pParse->db;
   1101   p = pParse->pNewTable;
   1102   if( p!=0 ){
   1103     pCol = &(p->aCol[p->nCol-1]);
   1104     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
   1105       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
   1106           pCol->zName);
   1107     }else{
   1108       /* A copy of pExpr is used instead of the original, as pExpr contains
   1109       ** tokens that point to volatile memory. The 'span' of the expression
   1110       ** is required by pragma table_info.
   1111       */
   1112       sqlite3ExprDelete(db, pCol->pDflt);
   1113       pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
   1114       sqlite3DbFree(db, pCol->zDflt);
   1115       pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
   1116                                      (int)(pSpan->zEnd - pSpan->zStart));
   1117     }
   1118   }
   1119   sqlite3ExprDelete(db, pSpan->pExpr);
   1120 }
   1121 
   1122 /*
   1123 ** Designate the PRIMARY KEY for the table.  pList is a list of names
   1124 ** of columns that form the primary key.  If pList is NULL, then the
   1125 ** most recently added column of the table is the primary key.
   1126 **
   1127 ** A table can have at most one primary key.  If the table already has
   1128 ** a primary key (and this is the second primary key) then create an
   1129 ** error.
   1130 **
   1131 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
   1132 ** then we will try to use that column as the rowid.  Set the Table.iPKey
   1133 ** field of the table under construction to be the index of the
   1134 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
   1135 ** no INTEGER PRIMARY KEY.
   1136 **
   1137 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
   1138 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
   1139 */
   1140 void sqlite3AddPrimaryKey(
   1141   Parse *pParse,    /* Parsing context */
   1142   ExprList *pList,  /* List of field names to be indexed */
   1143   int onError,      /* What to do with a uniqueness conflict */
   1144   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
   1145   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
   1146 ){
   1147   Table *pTab = pParse->pNewTable;
   1148   char *zType = 0;
   1149   int iCol = -1, i;
   1150   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
   1151   if( pTab->tabFlags & TF_HasPrimaryKey ){
   1152     sqlite3ErrorMsg(pParse,
   1153       "table \"%s\" has more than one primary key", pTab->zName);
   1154     goto primary_key_exit;
   1155   }
   1156   pTab->tabFlags |= TF_HasPrimaryKey;
   1157   if( pList==0 ){
   1158     iCol = pTab->nCol - 1;
   1159     pTab->aCol[iCol].isPrimKey = 1;
   1160   }else{
   1161     for(i=0; i<pList->nExpr; i++){
   1162       for(iCol=0; iCol<pTab->nCol; iCol++){
   1163         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
   1164           break;
   1165         }
   1166       }
   1167       if( iCol<pTab->nCol ){
   1168         pTab->aCol[iCol].isPrimKey = 1;
   1169       }
   1170     }
   1171     if( pList->nExpr>1 ) iCol = -1;
   1172   }
   1173   if( iCol>=0 && iCol<pTab->nCol ){
   1174     zType = pTab->aCol[iCol].zType;
   1175   }
   1176   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
   1177         && sortOrder==SQLITE_SO_ASC ){
   1178     pTab->iPKey = iCol;
   1179     pTab->keyConf = (u8)onError;
   1180     assert( autoInc==0 || autoInc==1 );
   1181     pTab->tabFlags |= autoInc*TF_Autoincrement;
   1182   }else if( autoInc ){
   1183 #ifndef SQLITE_OMIT_AUTOINCREMENT
   1184     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
   1185        "INTEGER PRIMARY KEY");
   1186 #endif
   1187   }else{
   1188     Index *p;
   1189     p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
   1190     if( p ){
   1191       p->autoIndex = 2;
   1192     }
   1193     pList = 0;
   1194   }
   1195 
   1196 primary_key_exit:
   1197   sqlite3ExprListDelete(pParse->db, pList);
   1198   return;
   1199 }
   1200 
   1201 /*
   1202 ** Add a new CHECK constraint to the table currently under construction.
   1203 */
   1204 void sqlite3AddCheckConstraint(
   1205   Parse *pParse,    /* Parsing context */
   1206   Expr *pCheckExpr  /* The check expression */
   1207 ){
   1208   sqlite3 *db = pParse->db;
   1209 #ifndef SQLITE_OMIT_CHECK
   1210   Table *pTab = pParse->pNewTable;
   1211   if( pTab && !IN_DECLARE_VTAB ){
   1212     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
   1213   }else
   1214 #endif
   1215   {
   1216     sqlite3ExprDelete(db, pCheckExpr);
   1217   }
   1218 }
   1219 
   1220 /*
   1221 ** Set the collation function of the most recently parsed table column
   1222 ** to the CollSeq given.
   1223 */
   1224 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
   1225   Table *p;
   1226   int i;
   1227   char *zColl;              /* Dequoted name of collation sequence */
   1228   sqlite3 *db;
   1229 
   1230   if( (p = pParse->pNewTable)==0 ) return;
   1231   i = p->nCol-1;
   1232   db = pParse->db;
   1233   zColl = sqlite3NameFromToken(db, pToken);
   1234   if( !zColl ) return;
   1235 
   1236   if( sqlite3LocateCollSeq(pParse, zColl) ){
   1237     Index *pIdx;
   1238     p->aCol[i].zColl = zColl;
   1239 
   1240     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
   1241     ** then an index may have been created on this column before the
   1242     ** collation type was added. Correct this if it is the case.
   1243     */
   1244     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
   1245       assert( pIdx->nColumn==1 );
   1246       if( pIdx->aiColumn[0]==i ){
   1247         pIdx->azColl[0] = p->aCol[i].zColl;
   1248       }
   1249     }
   1250   }else{
   1251     sqlite3DbFree(db, zColl);
   1252   }
   1253 }
   1254 
   1255 /*
   1256 ** This function returns the collation sequence for database native text
   1257 ** encoding identified by the string zName, length nName.
   1258 **
   1259 ** If the requested collation sequence is not available, or not available
   1260 ** in the database native encoding, the collation factory is invoked to
   1261 ** request it. If the collation factory does not supply such a sequence,
   1262 ** and the sequence is available in another text encoding, then that is
   1263 ** returned instead.
   1264 **
   1265 ** If no versions of the requested collations sequence are available, or
   1266 ** another error occurs, NULL is returned and an error message written into
   1267 ** pParse.
   1268 **
   1269 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
   1270 ** invokes the collation factory if the named collation cannot be found
   1271 ** and generates an error message.
   1272 **
   1273 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
   1274 */
   1275 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
   1276   sqlite3 *db = pParse->db;
   1277   u8 enc = ENC(db);
   1278   u8 initbusy = db->init.busy;
   1279   CollSeq *pColl;
   1280 
   1281   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
   1282   if( !initbusy && (!pColl || !pColl->xCmp) ){
   1283     pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
   1284     if( !pColl ){
   1285       sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
   1286     }
   1287   }
   1288 
   1289   return pColl;
   1290 }
   1291 
   1292 
   1293 /*
   1294 ** Generate code that will increment the schema cookie.
   1295 **
   1296 ** The schema cookie is used to determine when the schema for the
   1297 ** database changes.  After each schema change, the cookie value
   1298 ** changes.  When a process first reads the schema it records the
   1299 ** cookie.  Thereafter, whenever it goes to access the database,
   1300 ** it checks the cookie to make sure the schema has not changed
   1301 ** since it was last read.
   1302 **
   1303 ** This plan is not completely bullet-proof.  It is possible for
   1304 ** the schema to change multiple times and for the cookie to be
   1305 ** set back to prior value.  But schema changes are infrequent
   1306 ** and the probability of hitting the same cookie value is only
   1307 ** 1 chance in 2^32.  So we're safe enough.
   1308 */
   1309 void sqlite3ChangeCookie(Parse *pParse, int iDb){
   1310   int r1 = sqlite3GetTempReg(pParse);
   1311   sqlite3 *db = pParse->db;
   1312   Vdbe *v = pParse->pVdbe;
   1313   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1314   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
   1315   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
   1316   sqlite3ReleaseTempReg(pParse, r1);
   1317 }
   1318 
   1319 /*
   1320 ** Measure the number of characters needed to output the given
   1321 ** identifier.  The number returned includes any quotes used
   1322 ** but does not include the null terminator.
   1323 **
   1324 ** The estimate is conservative.  It might be larger that what is
   1325 ** really needed.
   1326 */
   1327 static int identLength(const char *z){
   1328   int n;
   1329   for(n=0; *z; n++, z++){
   1330     if( *z=='"' ){ n++; }
   1331   }
   1332   return n + 2;
   1333 }
   1334 
   1335 /*
   1336 ** The first parameter is a pointer to an output buffer. The second
   1337 ** parameter is a pointer to an integer that contains the offset at
   1338 ** which to write into the output buffer. This function copies the
   1339 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
   1340 ** to the specified offset in the buffer and updates *pIdx to refer
   1341 ** to the first byte after the last byte written before returning.
   1342 **
   1343 ** If the string zSignedIdent consists entirely of alpha-numeric
   1344 ** characters, does not begin with a digit and is not an SQL keyword,
   1345 ** then it is copied to the output buffer exactly as it is. Otherwise,
   1346 ** it is quoted using double-quotes.
   1347 */
   1348 static void identPut(char *z, int *pIdx, char *zSignedIdent){
   1349   unsigned char *zIdent = (unsigned char*)zSignedIdent;
   1350   int i, j, needQuote;
   1351   i = *pIdx;
   1352 
   1353   for(j=0; zIdent[j]; j++){
   1354     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
   1355   }
   1356   needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
   1357   if( !needQuote ){
   1358     needQuote = zIdent[j];
   1359   }
   1360 
   1361   if( needQuote ) z[i++] = '"';
   1362   for(j=0; zIdent[j]; j++){
   1363     z[i++] = zIdent[j];
   1364     if( zIdent[j]=='"' ) z[i++] = '"';
   1365   }
   1366   if( needQuote ) z[i++] = '"';
   1367   z[i] = 0;
   1368   *pIdx = i;
   1369 }
   1370 
   1371 /*
   1372 ** Generate a CREATE TABLE statement appropriate for the given
   1373 ** table.  Memory to hold the text of the statement is obtained
   1374 ** from sqliteMalloc() and must be freed by the calling function.
   1375 */
   1376 static char *createTableStmt(sqlite3 *db, Table *p){
   1377   int i, k, n;
   1378   char *zStmt;
   1379   char *zSep, *zSep2, *zEnd;
   1380   Column *pCol;
   1381   n = 0;
   1382   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
   1383     n += identLength(pCol->zName) + 5;
   1384   }
   1385   n += identLength(p->zName);
   1386   if( n<50 ){
   1387     zSep = "";
   1388     zSep2 = ",";
   1389     zEnd = ")";
   1390   }else{
   1391     zSep = "\n  ";
   1392     zSep2 = ",\n  ";
   1393     zEnd = "\n)";
   1394   }
   1395   n += 35 + 6*p->nCol;
   1396   zStmt = sqlite3DbMallocRaw(0, n);
   1397   if( zStmt==0 ){
   1398     db->mallocFailed = 1;
   1399     return 0;
   1400   }
   1401   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
   1402   k = sqlite3Strlen30(zStmt);
   1403   identPut(zStmt, &k, p->zName);
   1404   zStmt[k++] = '(';
   1405   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
   1406     static const char * const azType[] = {
   1407         /* SQLITE_AFF_TEXT    */ " TEXT",
   1408         /* SQLITE_AFF_NONE    */ "",
   1409         /* SQLITE_AFF_NUMERIC */ " NUM",
   1410         /* SQLITE_AFF_INTEGER */ " INT",
   1411         /* SQLITE_AFF_REAL    */ " REAL"
   1412     };
   1413     int len;
   1414     const char *zType;
   1415 
   1416     sqlite3_snprintf(n-k, &zStmt[k], zSep);
   1417     k += sqlite3Strlen30(&zStmt[k]);
   1418     zSep = zSep2;
   1419     identPut(zStmt, &k, pCol->zName);
   1420     assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
   1421     assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
   1422     testcase( pCol->affinity==SQLITE_AFF_TEXT );
   1423     testcase( pCol->affinity==SQLITE_AFF_NONE );
   1424     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
   1425     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
   1426     testcase( pCol->affinity==SQLITE_AFF_REAL );
   1427 
   1428     zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
   1429     len = sqlite3Strlen30(zType);
   1430     assert( pCol->affinity==SQLITE_AFF_NONE
   1431             || pCol->affinity==sqlite3AffinityType(zType) );
   1432     memcpy(&zStmt[k], zType, len);
   1433     k += len;
   1434     assert( k<=n );
   1435   }
   1436   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
   1437   return zStmt;
   1438 }
   1439 
   1440 /*
   1441 ** This routine is called to report the final ")" that terminates
   1442 ** a CREATE TABLE statement.
   1443 **
   1444 ** The table structure that other action routines have been building
   1445 ** is added to the internal hash tables, assuming no errors have
   1446 ** occurred.
   1447 **
   1448 ** An entry for the table is made in the master table on disk, unless
   1449 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
   1450 ** it means we are reading the sqlite_master table because we just
   1451 ** connected to the database or because the sqlite_master table has
   1452 ** recently changed, so the entry for this table already exists in
   1453 ** the sqlite_master table.  We do not want to create it again.
   1454 **
   1455 ** If the pSelect argument is not NULL, it means that this routine
   1456 ** was called to create a table generated from a
   1457 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
   1458 ** the new table will match the result set of the SELECT.
   1459 */
   1460 void sqlite3EndTable(
   1461   Parse *pParse,          /* Parse context */
   1462   Token *pCons,           /* The ',' token after the last column defn. */
   1463   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
   1464   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
   1465 ){
   1466   Table *p;
   1467   sqlite3 *db = pParse->db;
   1468   int iDb;
   1469 
   1470   if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
   1471     return;
   1472   }
   1473   p = pParse->pNewTable;
   1474   if( p==0 ) return;
   1475 
   1476   assert( !db->init.busy || !pSelect );
   1477 
   1478   iDb = sqlite3SchemaToIndex(db, p->pSchema);
   1479 
   1480 #ifndef SQLITE_OMIT_CHECK
   1481   /* Resolve names in all CHECK constraint expressions.
   1482   */
   1483   if( p->pCheck ){
   1484     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
   1485     NameContext sNC;                /* Name context for pParse->pNewTable */
   1486 
   1487     memset(&sNC, 0, sizeof(sNC));
   1488     memset(&sSrc, 0, sizeof(sSrc));
   1489     sSrc.nSrc = 1;
   1490     sSrc.a[0].zName = p->zName;
   1491     sSrc.a[0].pTab = p;
   1492     sSrc.a[0].iCursor = -1;
   1493     sNC.pParse = pParse;
   1494     sNC.pSrcList = &sSrc;
   1495     sNC.isCheck = 1;
   1496     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
   1497       return;
   1498     }
   1499   }
   1500 #endif /* !defined(SQLITE_OMIT_CHECK) */
   1501 
   1502   /* If the db->init.busy is 1 it means we are reading the SQL off the
   1503   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
   1504   ** So do not write to the disk again.  Extract the root page number
   1505   ** for the table from the db->init.newTnum field.  (The page number
   1506   ** should have been put there by the sqliteOpenCb routine.)
   1507   */
   1508   if( db->init.busy ){
   1509     p->tnum = db->init.newTnum;
   1510   }
   1511 
   1512   /* If not initializing, then create a record for the new table
   1513   ** in the SQLITE_MASTER table of the database.
   1514   **
   1515   ** If this is a TEMPORARY table, write the entry into the auxiliary
   1516   ** file instead of into the main database file.
   1517   */
   1518   if( !db->init.busy ){
   1519     int n;
   1520     Vdbe *v;
   1521     char *zType;    /* "view" or "table" */
   1522     char *zType2;   /* "VIEW" or "TABLE" */
   1523     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
   1524 
   1525     v = sqlite3GetVdbe(pParse);
   1526     if( NEVER(v==0) ) return;
   1527 
   1528     sqlite3VdbeAddOp1(v, OP_Close, 0);
   1529 
   1530     /*
   1531     ** Initialize zType for the new view or table.
   1532     */
   1533     if( p->pSelect==0 ){
   1534       /* A regular table */
   1535       zType = "table";
   1536       zType2 = "TABLE";
   1537 #ifndef SQLITE_OMIT_VIEW
   1538     }else{
   1539       /* A view */
   1540       zType = "view";
   1541       zType2 = "VIEW";
   1542 #endif
   1543     }
   1544 
   1545     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
   1546     ** statement to populate the new table. The root-page number for the
   1547     ** new table is in register pParse->regRoot.
   1548     **
   1549     ** Once the SELECT has been coded by sqlite3Select(), it is in a
   1550     ** suitable state to query for the column names and types to be used
   1551     ** by the new table.
   1552     **
   1553     ** A shared-cache write-lock is not required to write to the new table,
   1554     ** as a schema-lock must have already been obtained to create it. Since
   1555     ** a schema-lock excludes all other database users, the write-lock would
   1556     ** be redundant.
   1557     */
   1558     if( pSelect ){
   1559       SelectDest dest;
   1560       Table *pSelTab;
   1561 
   1562       assert(pParse->nTab==1);
   1563       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
   1564       sqlite3VdbeChangeP5(v, 1);
   1565       pParse->nTab = 2;
   1566       sqlite3SelectDestInit(&dest, SRT_Table, 1);
   1567       sqlite3Select(pParse, pSelect, &dest);
   1568       sqlite3VdbeAddOp1(v, OP_Close, 1);
   1569       if( pParse->nErr==0 ){
   1570         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
   1571         if( pSelTab==0 ) return;
   1572         assert( p->aCol==0 );
   1573         p->nCol = pSelTab->nCol;
   1574         p->aCol = pSelTab->aCol;
   1575         pSelTab->nCol = 0;
   1576         pSelTab->aCol = 0;
   1577         sqlite3DeleteTable(db, pSelTab);
   1578       }
   1579     }
   1580 
   1581     /* Compute the complete text of the CREATE statement */
   1582     if( pSelect ){
   1583       zStmt = createTableStmt(db, p);
   1584     }else{
   1585       n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
   1586       zStmt = sqlite3MPrintf(db,
   1587           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
   1588       );
   1589     }
   1590 
   1591     /* A slot for the record has already been allocated in the
   1592     ** SQLITE_MASTER table.  We just need to update that slot with all
   1593     ** the information we've collected.
   1594     */
   1595     sqlite3NestedParse(pParse,
   1596       "UPDATE %Q.%s "
   1597          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
   1598        "WHERE rowid=#%d",
   1599       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   1600       zType,
   1601       p->zName,
   1602       p->zName,
   1603       pParse->regRoot,
   1604       zStmt,
   1605       pParse->regRowid
   1606     );
   1607     sqlite3DbFree(db, zStmt);
   1608     sqlite3ChangeCookie(pParse, iDb);
   1609 
   1610 #ifndef SQLITE_OMIT_AUTOINCREMENT
   1611     /* Check to see if we need to create an sqlite_sequence table for
   1612     ** keeping track of autoincrement keys.
   1613     */
   1614     if( p->tabFlags & TF_Autoincrement ){
   1615       Db *pDb = &db->aDb[iDb];
   1616       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1617       if( pDb->pSchema->pSeqTab==0 ){
   1618         sqlite3NestedParse(pParse,
   1619           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
   1620           pDb->zName
   1621         );
   1622       }
   1623     }
   1624 #endif
   1625 
   1626     /* Reparse everything to update our internal data structures */
   1627     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
   1628         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
   1629   }
   1630 
   1631 
   1632   /* Add the table to the in-memory representation of the database.
   1633   */
   1634   if( db->init.busy ){
   1635     Table *pOld;
   1636     Schema *pSchema = p->pSchema;
   1637     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1638     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
   1639                              sqlite3Strlen30(p->zName),p);
   1640     if( pOld ){
   1641       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
   1642       db->mallocFailed = 1;
   1643       return;
   1644     }
   1645     pParse->pNewTable = 0;
   1646     db->nTable++;
   1647     db->flags |= SQLITE_InternChanges;
   1648 
   1649 #ifndef SQLITE_OMIT_ALTERTABLE
   1650     if( !p->pSelect ){
   1651       const char *zName = (const char *)pParse->sNameToken.z;
   1652       int nName;
   1653       assert( !pSelect && pCons && pEnd );
   1654       if( pCons->z==0 ){
   1655         pCons = pEnd;
   1656       }
   1657       nName = (int)((const char *)pCons->z - zName);
   1658       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
   1659     }
   1660 #endif
   1661   }
   1662 }
   1663 
   1664 #ifndef SQLITE_OMIT_VIEW
   1665 /*
   1666 ** The parser calls this routine in order to create a new VIEW
   1667 */
   1668 void sqlite3CreateView(
   1669   Parse *pParse,     /* The parsing context */
   1670   Token *pBegin,     /* The CREATE token that begins the statement */
   1671   Token *pName1,     /* The token that holds the name of the view */
   1672   Token *pName2,     /* The token that holds the name of the view */
   1673   Select *pSelect,   /* A SELECT statement that will become the new view */
   1674   int isTemp,        /* TRUE for a TEMPORARY view */
   1675   int noErr          /* Suppress error messages if VIEW already exists */
   1676 ){
   1677   Table *p;
   1678   int n;
   1679   const char *z;
   1680   Token sEnd;
   1681   DbFixer sFix;
   1682   Token *pName;
   1683   int iDb;
   1684   sqlite3 *db = pParse->db;
   1685 
   1686   if( pParse->nVar>0 ){
   1687     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
   1688     sqlite3SelectDelete(db, pSelect);
   1689     return;
   1690   }
   1691   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
   1692   p = pParse->pNewTable;
   1693   if( p==0 || pParse->nErr ){
   1694     sqlite3SelectDelete(db, pSelect);
   1695     return;
   1696   }
   1697   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
   1698   iDb = sqlite3SchemaToIndex(db, p->pSchema);
   1699   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
   1700     && sqlite3FixSelect(&sFix, pSelect)
   1701   ){
   1702     sqlite3SelectDelete(db, pSelect);
   1703     return;
   1704   }
   1705 
   1706   /* Make a copy of the entire SELECT statement that defines the view.
   1707   ** This will force all the Expr.token.z values to be dynamically
   1708   ** allocated rather than point to the input string - which means that
   1709   ** they will persist after the current sqlite3_exec() call returns.
   1710   */
   1711   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
   1712   sqlite3SelectDelete(db, pSelect);
   1713   if( db->mallocFailed ){
   1714     return;
   1715   }
   1716   if( !db->init.busy ){
   1717     sqlite3ViewGetColumnNames(pParse, p);
   1718   }
   1719 
   1720   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
   1721   ** the end.
   1722   */
   1723   sEnd = pParse->sLastToken;
   1724   if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
   1725     sEnd.z += sEnd.n;
   1726   }
   1727   sEnd.n = 0;
   1728   n = (int)(sEnd.z - pBegin->z);
   1729   z = pBegin->z;
   1730   while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
   1731   sEnd.z = &z[n-1];
   1732   sEnd.n = 1;
   1733 
   1734   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
   1735   sqlite3EndTable(pParse, 0, &sEnd, 0);
   1736   return;
   1737 }
   1738 #endif /* SQLITE_OMIT_VIEW */
   1739 
   1740 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
   1741 /*
   1742 ** The Table structure pTable is really a VIEW.  Fill in the names of
   1743 ** the columns of the view in the pTable structure.  Return the number
   1744 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
   1745 */
   1746 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
   1747   Table *pSelTab;   /* A fake table from which we get the result set */
   1748   Select *pSel;     /* Copy of the SELECT that implements the view */
   1749   int nErr = 0;     /* Number of errors encountered */
   1750   int n;            /* Temporarily holds the number of cursors assigned */
   1751   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
   1752   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
   1753 
   1754   assert( pTable );
   1755 
   1756 #ifndef SQLITE_OMIT_VIRTUALTABLE
   1757   if( sqlite3VtabCallConnect(pParse, pTable) ){
   1758     return SQLITE_ERROR;
   1759   }
   1760   if( IsVirtual(pTable) ) return 0;
   1761 #endif
   1762 
   1763 #ifndef SQLITE_OMIT_VIEW
   1764   /* A positive nCol means the columns names for this view are
   1765   ** already known.
   1766   */
   1767   if( pTable->nCol>0 ) return 0;
   1768 
   1769   /* A negative nCol is a special marker meaning that we are currently
   1770   ** trying to compute the column names.  If we enter this routine with
   1771   ** a negative nCol, it means two or more views form a loop, like this:
   1772   **
   1773   **     CREATE VIEW one AS SELECT * FROM two;
   1774   **     CREATE VIEW two AS SELECT * FROM one;
   1775   **
   1776   ** Actually, the error above is now caught prior to reaching this point.
   1777   ** But the following test is still important as it does come up
   1778   ** in the following:
   1779   **
   1780   **     CREATE TABLE main.ex1(a);
   1781   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
   1782   **     SELECT * FROM temp.ex1;
   1783   */
   1784   if( pTable->nCol<0 ){
   1785     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
   1786     return 1;
   1787   }
   1788   assert( pTable->nCol>=0 );
   1789 
   1790   /* If we get this far, it means we need to compute the table names.
   1791   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
   1792   ** "*" elements in the results set of the view and will assign cursors
   1793   ** to the elements of the FROM clause.  But we do not want these changes
   1794   ** to be permanent.  So the computation is done on a copy of the SELECT
   1795   ** statement that defines the view.
   1796   */
   1797   assert( pTable->pSelect );
   1798   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
   1799   if( pSel ){
   1800     u8 enableLookaside = db->lookaside.bEnabled;
   1801     n = pParse->nTab;
   1802     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
   1803     pTable->nCol = -1;
   1804     db->lookaside.bEnabled = 0;
   1805 #ifndef SQLITE_OMIT_AUTHORIZATION
   1806     xAuth = db->xAuth;
   1807     db->xAuth = 0;
   1808     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
   1809     db->xAuth = xAuth;
   1810 #else
   1811     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
   1812 #endif
   1813     db->lookaside.bEnabled = enableLookaside;
   1814     pParse->nTab = n;
   1815     if( pSelTab ){
   1816       assert( pTable->aCol==0 );
   1817       pTable->nCol = pSelTab->nCol;
   1818       pTable->aCol = pSelTab->aCol;
   1819       pSelTab->nCol = 0;
   1820       pSelTab->aCol = 0;
   1821       sqlite3DeleteTable(db, pSelTab);
   1822       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
   1823       pTable->pSchema->flags |= DB_UnresetViews;
   1824     }else{
   1825       pTable->nCol = 0;
   1826       nErr++;
   1827     }
   1828     sqlite3SelectDelete(db, pSel);
   1829   } else {
   1830     nErr++;
   1831   }
   1832 #endif /* SQLITE_OMIT_VIEW */
   1833   return nErr;
   1834 }
   1835 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
   1836 
   1837 #ifndef SQLITE_OMIT_VIEW
   1838 /*
   1839 ** Clear the column names from every VIEW in database idx.
   1840 */
   1841 static void sqliteViewResetAll(sqlite3 *db, int idx){
   1842   HashElem *i;
   1843   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
   1844   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
   1845   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
   1846     Table *pTab = sqliteHashData(i);
   1847     if( pTab->pSelect ){
   1848       sqliteDeleteColumnNames(db, pTab);
   1849       pTab->aCol = 0;
   1850       pTab->nCol = 0;
   1851     }
   1852   }
   1853   DbClearProperty(db, idx, DB_UnresetViews);
   1854 }
   1855 #else
   1856 # define sqliteViewResetAll(A,B)
   1857 #endif /* SQLITE_OMIT_VIEW */
   1858 
   1859 /*
   1860 ** This function is called by the VDBE to adjust the internal schema
   1861 ** used by SQLite when the btree layer moves a table root page. The
   1862 ** root-page of a table or index in database iDb has changed from iFrom
   1863 ** to iTo.
   1864 **
   1865 ** Ticket #1728:  The symbol table might still contain information
   1866 ** on tables and/or indices that are the process of being deleted.
   1867 ** If you are unlucky, one of those deleted indices or tables might
   1868 ** have the same rootpage number as the real table or index that is
   1869 ** being moved.  So we cannot stop searching after the first match
   1870 ** because the first match might be for one of the deleted indices
   1871 ** or tables and not the table/index that is actually being moved.
   1872 ** We must continue looping until all tables and indices with
   1873 ** rootpage==iFrom have been converted to have a rootpage of iTo
   1874 ** in order to be certain that we got the right one.
   1875 */
   1876 #ifndef SQLITE_OMIT_AUTOVACUUM
   1877 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
   1878   HashElem *pElem;
   1879   Hash *pHash;
   1880   Db *pDb;
   1881 
   1882   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   1883   pDb = &db->aDb[iDb];
   1884   pHash = &pDb->pSchema->tblHash;
   1885   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
   1886     Table *pTab = sqliteHashData(pElem);
   1887     if( pTab->tnum==iFrom ){
   1888       pTab->tnum = iTo;
   1889     }
   1890   }
   1891   pHash = &pDb->pSchema->idxHash;
   1892   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
   1893     Index *pIdx = sqliteHashData(pElem);
   1894     if( pIdx->tnum==iFrom ){
   1895       pIdx->tnum = iTo;
   1896     }
   1897   }
   1898 }
   1899 #endif
   1900 
   1901 /*
   1902 ** Write code to erase the table with root-page iTable from database iDb.
   1903 ** Also write code to modify the sqlite_master table and internal schema
   1904 ** if a root-page of another table is moved by the btree-layer whilst
   1905 ** erasing iTable (this can happen with an auto-vacuum database).
   1906 */
   1907 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
   1908   Vdbe *v = sqlite3GetVdbe(pParse);
   1909   int r1 = sqlite3GetTempReg(pParse);
   1910   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
   1911   sqlite3MayAbort(pParse);
   1912 #ifndef SQLITE_OMIT_AUTOVACUUM
   1913   /* OP_Destroy stores an in integer r1. If this integer
   1914   ** is non-zero, then it is the root page number of a table moved to
   1915   ** location iTable. The following code modifies the sqlite_master table to
   1916   ** reflect this.
   1917   **
   1918   ** The "#NNN" in the SQL is a special constant that means whatever value
   1919   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
   1920   ** token for additional information.
   1921   */
   1922   sqlite3NestedParse(pParse,
   1923      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
   1924      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
   1925 #endif
   1926   sqlite3ReleaseTempReg(pParse, r1);
   1927 }
   1928 
   1929 /*
   1930 ** Write VDBE code to erase table pTab and all associated indices on disk.
   1931 ** Code to update the sqlite_master tables and internal schema definitions
   1932 ** in case a root-page belonging to another table is moved by the btree layer
   1933 ** is also added (this can happen with an auto-vacuum database).
   1934 */
   1935 static void destroyTable(Parse *pParse, Table *pTab){
   1936 #ifdef SQLITE_OMIT_AUTOVACUUM
   1937   Index *pIdx;
   1938   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   1939   destroyRootPage(pParse, pTab->tnum, iDb);
   1940   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   1941     destroyRootPage(pParse, pIdx->tnum, iDb);
   1942   }
   1943 #else
   1944   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
   1945   ** is not defined), then it is important to call OP_Destroy on the
   1946   ** table and index root-pages in order, starting with the numerically
   1947   ** largest root-page number. This guarantees that none of the root-pages
   1948   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
   1949   ** following were coded:
   1950   **
   1951   ** OP_Destroy 4 0
   1952   ** ...
   1953   ** OP_Destroy 5 0
   1954   **
   1955   ** and root page 5 happened to be the largest root-page number in the
   1956   ** database, then root page 5 would be moved to page 4 by the
   1957   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
   1958   ** a free-list page.
   1959   */
   1960   int iTab = pTab->tnum;
   1961   int iDestroyed = 0;
   1962 
   1963   while( 1 ){
   1964     Index *pIdx;
   1965     int iLargest = 0;
   1966 
   1967     if( iDestroyed==0 || iTab<iDestroyed ){
   1968       iLargest = iTab;
   1969     }
   1970     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   1971       int iIdx = pIdx->tnum;
   1972       assert( pIdx->pSchema==pTab->pSchema );
   1973       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
   1974         iLargest = iIdx;
   1975       }
   1976     }
   1977     if( iLargest==0 ){
   1978       return;
   1979     }else{
   1980       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   1981       destroyRootPage(pParse, iLargest, iDb);
   1982       iDestroyed = iLargest;
   1983     }
   1984   }
   1985 #endif
   1986 }
   1987 
   1988 /*
   1989 ** This routine is called to do the work of a DROP TABLE statement.
   1990 ** pName is the name of the table to be dropped.
   1991 */
   1992 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
   1993   Table *pTab;
   1994   Vdbe *v;
   1995   sqlite3 *db = pParse->db;
   1996   int iDb;
   1997 
   1998   if( db->mallocFailed ){
   1999     goto exit_drop_table;
   2000   }
   2001   assert( pParse->nErr==0 );
   2002   assert( pName->nSrc==1 );
   2003   if( noErr ) db->suppressErr++;
   2004   pTab = sqlite3LocateTable(pParse, isView,
   2005                             pName->a[0].zName, pName->a[0].zDatabase);
   2006   if( noErr ) db->suppressErr--;
   2007 
   2008   if( pTab==0 ){
   2009     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
   2010     goto exit_drop_table;
   2011   }
   2012   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
   2013   assert( iDb>=0 && iDb<db->nDb );
   2014 
   2015   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
   2016   ** it is initialized.
   2017   */
   2018   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
   2019     goto exit_drop_table;
   2020   }
   2021 #ifndef SQLITE_OMIT_AUTHORIZATION
   2022   {
   2023     int code;
   2024     const char *zTab = SCHEMA_TABLE(iDb);
   2025     const char *zDb = db->aDb[iDb].zName;
   2026     const char *zArg2 = 0;
   2027     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
   2028       goto exit_drop_table;
   2029     }
   2030     if( isView ){
   2031       if( !OMIT_TEMPDB && iDb==1 ){
   2032         code = SQLITE_DROP_TEMP_VIEW;
   2033       }else{
   2034         code = SQLITE_DROP_VIEW;
   2035       }
   2036 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2037     }else if( IsVirtual(pTab) ){
   2038       code = SQLITE_DROP_VTABLE;
   2039       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
   2040 #endif
   2041     }else{
   2042       if( !OMIT_TEMPDB && iDb==1 ){
   2043         code = SQLITE_DROP_TEMP_TABLE;
   2044       }else{
   2045         code = SQLITE_DROP_TABLE;
   2046       }
   2047     }
   2048     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
   2049       goto exit_drop_table;
   2050     }
   2051     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
   2052       goto exit_drop_table;
   2053     }
   2054   }
   2055 #endif
   2056   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
   2057     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
   2058     goto exit_drop_table;
   2059   }
   2060 
   2061 #ifndef SQLITE_OMIT_VIEW
   2062   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
   2063   ** on a table.
   2064   */
   2065   if( isView && pTab->pSelect==0 ){
   2066     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
   2067     goto exit_drop_table;
   2068   }
   2069   if( !isView && pTab->pSelect ){
   2070     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
   2071     goto exit_drop_table;
   2072   }
   2073 #endif
   2074 
   2075   /* Generate code to remove the table from the master table
   2076   ** on disk.
   2077   */
   2078   v = sqlite3GetVdbe(pParse);
   2079   if( v ){
   2080     Trigger *pTrigger;
   2081     Db *pDb = &db->aDb[iDb];
   2082     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2083 
   2084 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2085     if( IsVirtual(pTab) ){
   2086       sqlite3VdbeAddOp0(v, OP_VBegin);
   2087     }
   2088 #endif
   2089     sqlite3FkDropTable(pParse, pName, pTab);
   2090 
   2091     /* Drop all triggers associated with the table being dropped. Code
   2092     ** is generated to remove entries from sqlite_master and/or
   2093     ** sqlite_temp_master if required.
   2094     */
   2095     pTrigger = sqlite3TriggerList(pParse, pTab);
   2096     while( pTrigger ){
   2097       assert( pTrigger->pSchema==pTab->pSchema ||
   2098           pTrigger->pSchema==db->aDb[1].pSchema );
   2099       sqlite3DropTriggerPtr(pParse, pTrigger);
   2100       pTrigger = pTrigger->pNext;
   2101     }
   2102 
   2103 #ifndef SQLITE_OMIT_AUTOINCREMENT
   2104     /* Remove any entries of the sqlite_sequence table associated with
   2105     ** the table being dropped. This is done before the table is dropped
   2106     ** at the btree level, in case the sqlite_sequence table needs to
   2107     ** move as a result of the drop (can happen in auto-vacuum mode).
   2108     */
   2109     if( pTab->tabFlags & TF_Autoincrement ){
   2110       sqlite3NestedParse(pParse,
   2111         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
   2112         pDb->zName, pTab->zName
   2113       );
   2114     }
   2115 #endif
   2116 
   2117     /* Drop all SQLITE_MASTER table and index entries that refer to the
   2118     ** table. The program name loops through the master table and deletes
   2119     ** every row that refers to a table of the same name as the one being
   2120     ** dropped. Triggers are handled seperately because a trigger can be
   2121     ** created in the temp database that refers to a table in another
   2122     ** database.
   2123     */
   2124     sqlite3NestedParse(pParse,
   2125         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
   2126         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
   2127 
   2128     /* Drop any statistics from the sqlite_stat1 table, if it exists */
   2129     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
   2130       sqlite3NestedParse(pParse,
   2131         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
   2132       );
   2133     }
   2134 
   2135     if( !isView && !IsVirtual(pTab) ){
   2136       destroyTable(pParse, pTab);
   2137     }
   2138 
   2139     /* Remove the table entry from SQLite's internal schema and modify
   2140     ** the schema cookie.
   2141     */
   2142     if( IsVirtual(pTab) ){
   2143       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
   2144     }
   2145     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
   2146     sqlite3ChangeCookie(pParse, iDb);
   2147   }
   2148   sqliteViewResetAll(db, iDb);
   2149 
   2150 exit_drop_table:
   2151   sqlite3SrcListDelete(db, pName);
   2152 }
   2153 
   2154 /*
   2155 ** This routine is called to create a new foreign key on the table
   2156 ** currently under construction.  pFromCol determines which columns
   2157 ** in the current table point to the foreign key.  If pFromCol==0 then
   2158 ** connect the key to the last column inserted.  pTo is the name of
   2159 ** the table referred to.  pToCol is a list of tables in the other
   2160 ** pTo table that the foreign key points to.  flags contains all
   2161 ** information about the conflict resolution algorithms specified
   2162 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
   2163 **
   2164 ** An FKey structure is created and added to the table currently
   2165 ** under construction in the pParse->pNewTable field.
   2166 **
   2167 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
   2168 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
   2169 */
   2170 void sqlite3CreateForeignKey(
   2171   Parse *pParse,       /* Parsing context */
   2172   ExprList *pFromCol,  /* Columns in this table that point to other table */
   2173   Token *pTo,          /* Name of the other table */
   2174   ExprList *pToCol,    /* Columns in the other table */
   2175   int flags            /* Conflict resolution algorithms. */
   2176 ){
   2177   sqlite3 *db = pParse->db;
   2178 #ifndef SQLITE_OMIT_FOREIGN_KEY
   2179   FKey *pFKey = 0;
   2180   FKey *pNextTo;
   2181   Table *p = pParse->pNewTable;
   2182   int nByte;
   2183   int i;
   2184   int nCol;
   2185   char *z;
   2186 
   2187   assert( pTo!=0 );
   2188   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
   2189   if( pFromCol==0 ){
   2190     int iCol = p->nCol-1;
   2191     if( NEVER(iCol<0) ) goto fk_end;
   2192     if( pToCol && pToCol->nExpr!=1 ){
   2193       sqlite3ErrorMsg(pParse, "foreign key on %s"
   2194          " should reference only one column of table %T",
   2195          p->aCol[iCol].zName, pTo);
   2196       goto fk_end;
   2197     }
   2198     nCol = 1;
   2199   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
   2200     sqlite3ErrorMsg(pParse,
   2201         "number of columns in foreign key does not match the number of "
   2202         "columns in the referenced table");
   2203     goto fk_end;
   2204   }else{
   2205     nCol = pFromCol->nExpr;
   2206   }
   2207   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
   2208   if( pToCol ){
   2209     for(i=0; i<pToCol->nExpr; i++){
   2210       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
   2211     }
   2212   }
   2213   pFKey = sqlite3DbMallocZero(db, nByte );
   2214   if( pFKey==0 ){
   2215     goto fk_end;
   2216   }
   2217   pFKey->pFrom = p;
   2218   pFKey->pNextFrom = p->pFKey;
   2219   z = (char*)&pFKey->aCol[nCol];
   2220   pFKey->zTo = z;
   2221   memcpy(z, pTo->z, pTo->n);
   2222   z[pTo->n] = 0;
   2223   sqlite3Dequote(z);
   2224   z += pTo->n+1;
   2225   pFKey->nCol = nCol;
   2226   if( pFromCol==0 ){
   2227     pFKey->aCol[0].iFrom = p->nCol-1;
   2228   }else{
   2229     for(i=0; i<nCol; i++){
   2230       int j;
   2231       for(j=0; j<p->nCol; j++){
   2232         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
   2233           pFKey->aCol[i].iFrom = j;
   2234           break;
   2235         }
   2236       }
   2237       if( j>=p->nCol ){
   2238         sqlite3ErrorMsg(pParse,
   2239           "unknown column \"%s\" in foreign key definition",
   2240           pFromCol->a[i].zName);
   2241         goto fk_end;
   2242       }
   2243     }
   2244   }
   2245   if( pToCol ){
   2246     for(i=0; i<nCol; i++){
   2247       int n = sqlite3Strlen30(pToCol->a[i].zName);
   2248       pFKey->aCol[i].zCol = z;
   2249       memcpy(z, pToCol->a[i].zName, n);
   2250       z[n] = 0;
   2251       z += n+1;
   2252     }
   2253   }
   2254   pFKey->isDeferred = 0;
   2255   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
   2256   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
   2257 
   2258   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
   2259   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
   2260       pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
   2261   );
   2262   if( pNextTo==pFKey ){
   2263     db->mallocFailed = 1;
   2264     goto fk_end;
   2265   }
   2266   if( pNextTo ){
   2267     assert( pNextTo->pPrevTo==0 );
   2268     pFKey->pNextTo = pNextTo;
   2269     pNextTo->pPrevTo = pFKey;
   2270   }
   2271 
   2272   /* Link the foreign key to the table as the last step.
   2273   */
   2274   p->pFKey = pFKey;
   2275   pFKey = 0;
   2276 
   2277 fk_end:
   2278   sqlite3DbFree(db, pFKey);
   2279 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
   2280   sqlite3ExprListDelete(db, pFromCol);
   2281   sqlite3ExprListDelete(db, pToCol);
   2282 }
   2283 
   2284 /*
   2285 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
   2286 ** clause is seen as part of a foreign key definition.  The isDeferred
   2287 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
   2288 ** The behavior of the most recently created foreign key is adjusted
   2289 ** accordingly.
   2290 */
   2291 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
   2292 #ifndef SQLITE_OMIT_FOREIGN_KEY
   2293   Table *pTab;
   2294   FKey *pFKey;
   2295   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
   2296   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
   2297   pFKey->isDeferred = (u8)isDeferred;
   2298 #endif
   2299 }
   2300 
   2301 /*
   2302 ** Generate code that will erase and refill index *pIdx.  This is
   2303 ** used to initialize a newly created index or to recompute the
   2304 ** content of an index in response to a REINDEX command.
   2305 **
   2306 ** if memRootPage is not negative, it means that the index is newly
   2307 ** created.  The register specified by memRootPage contains the
   2308 ** root page number of the index.  If memRootPage is negative, then
   2309 ** the index already exists and must be cleared before being refilled and
   2310 ** the root page number of the index is taken from pIndex->tnum.
   2311 */
   2312 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
   2313   Table *pTab = pIndex->pTable;  /* The table that is indexed */
   2314   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
   2315   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
   2316   int addr1;                     /* Address of top of loop */
   2317   int tnum;                      /* Root page of index */
   2318   Vdbe *v;                       /* Generate code into this virtual machine */
   2319   KeyInfo *pKey;                 /* KeyInfo for index */
   2320   int regIdxKey;                 /* Registers containing the index key */
   2321   int regRecord;                 /* Register holding assemblied index record */
   2322   sqlite3 *db = pParse->db;      /* The database connection */
   2323   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
   2324 
   2325 #ifndef SQLITE_OMIT_AUTHORIZATION
   2326   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
   2327       db->aDb[iDb].zName ) ){
   2328     return;
   2329   }
   2330 #endif
   2331 
   2332   /* Require a write-lock on the table to perform this operation */
   2333   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
   2334 
   2335   v = sqlite3GetVdbe(pParse);
   2336   if( v==0 ) return;
   2337   if( memRootPage>=0 ){
   2338     tnum = memRootPage;
   2339   }else{
   2340     tnum = pIndex->tnum;
   2341     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
   2342   }
   2343   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
   2344   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
   2345                     (char *)pKey, P4_KEYINFO_HANDOFF);
   2346   if( memRootPage>=0 ){
   2347     sqlite3VdbeChangeP5(v, 1);
   2348   }
   2349   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
   2350   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
   2351   regRecord = sqlite3GetTempReg(pParse);
   2352   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
   2353   if( pIndex->onError!=OE_None ){
   2354     const int regRowid = regIdxKey + pIndex->nColumn;
   2355     const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
   2356     void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
   2357 
   2358     /* The registers accessed by the OP_IsUnique opcode were allocated
   2359     ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
   2360     ** call above. Just before that function was freed they were released
   2361     ** (made available to the compiler for reuse) using
   2362     ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
   2363     ** opcode use the values stored within seems dangerous. However, since
   2364     ** we can be sure that no other temp registers have been allocated
   2365     ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
   2366     */
   2367     sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
   2368     sqlite3HaltConstraint(
   2369         pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
   2370   }
   2371   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
   2372   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
   2373   sqlite3ReleaseTempReg(pParse, regRecord);
   2374   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
   2375   sqlite3VdbeJumpHere(v, addr1);
   2376   sqlite3VdbeAddOp1(v, OP_Close, iTab);
   2377   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
   2378 }
   2379 
   2380 /*
   2381 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
   2382 ** and pTblList is the name of the table that is to be indexed.  Both will
   2383 ** be NULL for a primary key or an index that is created to satisfy a
   2384 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
   2385 ** as the table to be indexed.  pParse->pNewTable is a table that is
   2386 ** currently being constructed by a CREATE TABLE statement.
   2387 **
   2388 ** pList is a list of columns to be indexed.  pList will be NULL if this
   2389 ** is a primary key or unique-constraint on the most recent column added
   2390 ** to the table currently under construction.
   2391 **
   2392 ** If the index is created successfully, return a pointer to the new Index
   2393 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
   2394 ** as the tables primary key (Index.autoIndex==2).
   2395 */
   2396 Index *sqlite3CreateIndex(
   2397   Parse *pParse,     /* All information about this parse */
   2398   Token *pName1,     /* First part of index name. May be NULL */
   2399   Token *pName2,     /* Second part of index name. May be NULL */
   2400   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
   2401   ExprList *pList,   /* A list of columns to be indexed */
   2402   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
   2403   Token *pStart,     /* The CREATE token that begins this statement */
   2404   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
   2405   int sortOrder,     /* Sort order of primary key when pList==NULL */
   2406   int ifNotExist     /* Omit error if index already exists */
   2407 ){
   2408   Index *pRet = 0;     /* Pointer to return */
   2409   Table *pTab = 0;     /* Table to be indexed */
   2410   Index *pIndex = 0;   /* The index to be created */
   2411   char *zName = 0;     /* Name of the index */
   2412   int nName;           /* Number of characters in zName */
   2413   int i, j;
   2414   Token nullId;        /* Fake token for an empty ID list */
   2415   DbFixer sFix;        /* For assigning database names to pTable */
   2416   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
   2417   sqlite3 *db = pParse->db;
   2418   Db *pDb;             /* The specific table containing the indexed database */
   2419   int iDb;             /* Index of the database that is being written */
   2420   Token *pName = 0;    /* Unqualified name of the index to create */
   2421   struct ExprList_item *pListItem; /* For looping over pList */
   2422   int nCol;
   2423   int nExtra = 0;
   2424   char *zExtra;
   2425 
   2426   assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
   2427   assert( pParse->nErr==0 );      /* Never called with prior errors */
   2428   if( db->mallocFailed || IN_DECLARE_VTAB ){
   2429     goto exit_create_index;
   2430   }
   2431   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   2432     goto exit_create_index;
   2433   }
   2434 
   2435   /*
   2436   ** Find the table that is to be indexed.  Return early if not found.
   2437   */
   2438   if( pTblName!=0 ){
   2439 
   2440     /* Use the two-part index name to determine the database
   2441     ** to search for the table. 'Fix' the table name to this db
   2442     ** before looking up the table.
   2443     */
   2444     assert( pName1 && pName2 );
   2445     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
   2446     if( iDb<0 ) goto exit_create_index;
   2447 
   2448 #ifndef SQLITE_OMIT_TEMPDB
   2449     /* If the index name was unqualified, check if the the table
   2450     ** is a temp table. If so, set the database to 1. Do not do this
   2451     ** if initialising a database schema.
   2452     */
   2453     if( !db->init.busy ){
   2454       pTab = sqlite3SrcListLookup(pParse, pTblName);
   2455       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
   2456         iDb = 1;
   2457       }
   2458     }
   2459 #endif
   2460 
   2461     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
   2462         sqlite3FixSrcList(&sFix, pTblName)
   2463     ){
   2464       /* Because the parser constructs pTblName from a single identifier,
   2465       ** sqlite3FixSrcList can never fail. */
   2466       assert(0);
   2467     }
   2468     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
   2469         pTblName->a[0].zDatabase);
   2470     if( !pTab || db->mallocFailed ) goto exit_create_index;
   2471     assert( db->aDb[iDb].pSchema==pTab->pSchema );
   2472   }else{
   2473     assert( pName==0 );
   2474     pTab = pParse->pNewTable;
   2475     if( !pTab ) goto exit_create_index;
   2476     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
   2477   }
   2478   pDb = &db->aDb[iDb];
   2479 
   2480   assert( pTab!=0 );
   2481   assert( pParse->nErr==0 );
   2482   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
   2483        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
   2484     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
   2485     goto exit_create_index;
   2486   }
   2487 #ifndef SQLITE_OMIT_VIEW
   2488   if( pTab->pSelect ){
   2489     sqlite3ErrorMsg(pParse, "views may not be indexed");
   2490     goto exit_create_index;
   2491   }
   2492 #endif
   2493 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2494   if( IsVirtual(pTab) ){
   2495     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
   2496     goto exit_create_index;
   2497   }
   2498 #endif
   2499 
   2500   /*
   2501   ** Find the name of the index.  Make sure there is not already another
   2502   ** index or table with the same name.
   2503   **
   2504   ** Exception:  If we are reading the names of permanent indices from the
   2505   ** sqlite_master table (because some other process changed the schema) and
   2506   ** one of the index names collides with the name of a temporary table or
   2507   ** index, then we will continue to process this index.
   2508   **
   2509   ** If pName==0 it means that we are
   2510   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
   2511   ** own name.
   2512   */
   2513   if( pName ){
   2514     zName = sqlite3NameFromToken(db, pName);
   2515     if( zName==0 ) goto exit_create_index;
   2516     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
   2517       goto exit_create_index;
   2518     }
   2519     if( !db->init.busy ){
   2520       if( sqlite3FindTable(db, zName, 0)!=0 ){
   2521         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
   2522         goto exit_create_index;
   2523       }
   2524     }
   2525     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
   2526       if( !ifNotExist ){
   2527         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
   2528       }else{
   2529         assert( !db->init.busy );
   2530         sqlite3CodeVerifySchema(pParse, iDb);
   2531       }
   2532       goto exit_create_index;
   2533     }
   2534   }else{
   2535     int n;
   2536     Index *pLoop;
   2537     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
   2538     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
   2539     if( zName==0 ){
   2540       goto exit_create_index;
   2541     }
   2542   }
   2543 
   2544   /* Check for authorization to create an index.
   2545   */
   2546 #ifndef SQLITE_OMIT_AUTHORIZATION
   2547   {
   2548     const char *zDb = pDb->zName;
   2549     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
   2550       goto exit_create_index;
   2551     }
   2552     i = SQLITE_CREATE_INDEX;
   2553     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
   2554     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
   2555       goto exit_create_index;
   2556     }
   2557   }
   2558 #endif
   2559 
   2560   /* If pList==0, it means this routine was called to make a primary
   2561   ** key out of the last column added to the table under construction.
   2562   ** So create a fake list to simulate this.
   2563   */
   2564   if( pList==0 ){
   2565     nullId.z = pTab->aCol[pTab->nCol-1].zName;
   2566     nullId.n = sqlite3Strlen30((char*)nullId.z);
   2567     pList = sqlite3ExprListAppend(pParse, 0, 0);
   2568     if( pList==0 ) goto exit_create_index;
   2569     sqlite3ExprListSetName(pParse, pList, &nullId, 0);
   2570     pList->a[0].sortOrder = (u8)sortOrder;
   2571   }
   2572 
   2573   /* Figure out how many bytes of space are required to store explicitly
   2574   ** specified collation sequence names.
   2575   */
   2576   for(i=0; i<pList->nExpr; i++){
   2577     Expr *pExpr = pList->a[i].pExpr;
   2578     if( pExpr ){
   2579       CollSeq *pColl = pExpr->pColl;
   2580       /* Either pColl!=0 or there was an OOM failure.  But if an OOM
   2581       ** failure we have quit before reaching this point. */
   2582       if( ALWAYS(pColl) ){
   2583         nExtra += (1 + sqlite3Strlen30(pColl->zName));
   2584       }
   2585     }
   2586   }
   2587 
   2588   /*
   2589   ** Allocate the index structure.
   2590   */
   2591   nName = sqlite3Strlen30(zName);
   2592   nCol = pList->nExpr;
   2593   pIndex = sqlite3DbMallocZero(db,
   2594       sizeof(Index) +              /* Index structure  */
   2595       sizeof(int)*nCol +           /* Index.aiColumn   */
   2596       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
   2597       sizeof(char *)*nCol +        /* Index.azColl     */
   2598       sizeof(u8)*nCol +            /* Index.aSortOrder */
   2599       nName + 1 +                  /* Index.zName      */
   2600       nExtra                       /* Collation sequence names */
   2601   );
   2602   if( db->mallocFailed ){
   2603     goto exit_create_index;
   2604   }
   2605   pIndex->azColl = (char**)(&pIndex[1]);
   2606   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
   2607   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
   2608   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
   2609   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
   2610   zExtra = (char *)(&pIndex->zName[nName+1]);
   2611   memcpy(pIndex->zName, zName, nName+1);
   2612   pIndex->pTable = pTab;
   2613   pIndex->nColumn = pList->nExpr;
   2614   pIndex->onError = (u8)onError;
   2615   pIndex->autoIndex = (u8)(pName==0);
   2616   pIndex->pSchema = db->aDb[iDb].pSchema;
   2617   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   2618 
   2619   /* Check to see if we should honor DESC requests on index columns
   2620   */
   2621   if( pDb->pSchema->file_format>=4 ){
   2622     sortOrderMask = -1;   /* Honor DESC */
   2623   }else{
   2624     sortOrderMask = 0;    /* Ignore DESC */
   2625   }
   2626 
   2627   /* Scan the names of the columns of the table to be indexed and
   2628   ** load the column indices into the Index structure.  Report an error
   2629   ** if any column is not found.
   2630   **
   2631   ** TODO:  Add a test to make sure that the same column is not named
   2632   ** more than once within the same index.  Only the first instance of
   2633   ** the column will ever be used by the optimizer.  Note that using the
   2634   ** same column more than once cannot be an error because that would
   2635   ** break backwards compatibility - it needs to be a warning.
   2636   */
   2637   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
   2638     const char *zColName = pListItem->zName;
   2639     Column *pTabCol;
   2640     int requestedSortOrder;
   2641     char *zColl;                   /* Collation sequence name */
   2642 
   2643     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
   2644       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
   2645     }
   2646     if( j>=pTab->nCol ){
   2647       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
   2648         pTab->zName, zColName);
   2649       pParse->checkSchema = 1;
   2650       goto exit_create_index;
   2651     }
   2652     pIndex->aiColumn[i] = j;
   2653     /* Justification of the ALWAYS(pListItem->pExpr->pColl):  Because of
   2654     ** the way the "idxlist" non-terminal is constructed by the parser,
   2655     ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
   2656     ** must exist or else there must have been an OOM error.  But if there
   2657     ** was an OOM error, we would never reach this point. */
   2658     if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
   2659       int nColl;
   2660       zColl = pListItem->pExpr->pColl->zName;
   2661       nColl = sqlite3Strlen30(zColl) + 1;
   2662       assert( nExtra>=nColl );
   2663       memcpy(zExtra, zColl, nColl);
   2664       zColl = zExtra;
   2665       zExtra += nColl;
   2666       nExtra -= nColl;
   2667     }else{
   2668       zColl = pTab->aCol[j].zColl;
   2669       if( !zColl ){
   2670         zColl = db->pDfltColl->zName;
   2671       }
   2672     }
   2673     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
   2674       goto exit_create_index;
   2675     }
   2676     pIndex->azColl[i] = zColl;
   2677     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
   2678     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
   2679   }
   2680   sqlite3DefaultRowEst(pIndex);
   2681 
   2682   if( pTab==pParse->pNewTable ){
   2683     /* This routine has been called to create an automatic index as a
   2684     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
   2685     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
   2686     ** i.e. one of:
   2687     **
   2688     ** CREATE TABLE t(x PRIMARY KEY, y);
   2689     ** CREATE TABLE t(x, y, UNIQUE(x, y));
   2690     **
   2691     ** Either way, check to see if the table already has such an index. If
   2692     ** so, don't bother creating this one. This only applies to
   2693     ** automatically created indices. Users can do as they wish with
   2694     ** explicit indices.
   2695     **
   2696     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
   2697     ** (and thus suppressing the second one) even if they have different
   2698     ** sort orders.
   2699     **
   2700     ** If there are different collating sequences or if the columns of
   2701     ** the constraint occur in different orders, then the constraints are
   2702     ** considered distinct and both result in separate indices.
   2703     */
   2704     Index *pIdx;
   2705     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   2706       int k;
   2707       assert( pIdx->onError!=OE_None );
   2708       assert( pIdx->autoIndex );
   2709       assert( pIndex->onError!=OE_None );
   2710 
   2711       if( pIdx->nColumn!=pIndex->nColumn ) continue;
   2712       for(k=0; k<pIdx->nColumn; k++){
   2713         const char *z1;
   2714         const char *z2;
   2715         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
   2716         z1 = pIdx->azColl[k];
   2717         z2 = pIndex->azColl[k];
   2718         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
   2719       }
   2720       if( k==pIdx->nColumn ){
   2721         if( pIdx->onError!=pIndex->onError ){
   2722           /* This constraint creates the same index as a previous
   2723           ** constraint specified somewhere in the CREATE TABLE statement.
   2724           ** However the ON CONFLICT clauses are different. If both this
   2725           ** constraint and the previous equivalent constraint have explicit
   2726           ** ON CONFLICT clauses this is an error. Otherwise, use the
   2727           ** explicitly specified behaviour for the index.
   2728           */
   2729           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
   2730             sqlite3ErrorMsg(pParse,
   2731                 "conflicting ON CONFLICT clauses specified", 0);
   2732           }
   2733           if( pIdx->onError==OE_Default ){
   2734             pIdx->onError = pIndex->onError;
   2735           }
   2736         }
   2737         goto exit_create_index;
   2738       }
   2739     }
   2740   }
   2741 
   2742   /* Link the new Index structure to its table and to the other
   2743   ** in-memory database structures.
   2744   */
   2745   if( db->init.busy ){
   2746     Index *p;
   2747     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
   2748     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
   2749                           pIndex->zName, sqlite3Strlen30(pIndex->zName),
   2750                           pIndex);
   2751     if( p ){
   2752       assert( p==pIndex );  /* Malloc must have failed */
   2753       db->mallocFailed = 1;
   2754       goto exit_create_index;
   2755     }
   2756     db->flags |= SQLITE_InternChanges;
   2757     if( pTblName!=0 ){
   2758       pIndex->tnum = db->init.newTnum;
   2759     }
   2760   }
   2761 
   2762   /* If the db->init.busy is 0 then create the index on disk.  This
   2763   ** involves writing the index into the master table and filling in the
   2764   ** index with the current table contents.
   2765   **
   2766   ** The db->init.busy is 0 when the user first enters a CREATE INDEX
   2767   ** command.  db->init.busy is 1 when a database is opened and
   2768   ** CREATE INDEX statements are read out of the master table.  In
   2769   ** the latter case the index already exists on disk, which is why
   2770   ** we don't want to recreate it.
   2771   **
   2772   ** If pTblName==0 it means this index is generated as a primary key
   2773   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
   2774   ** has just been created, it contains no data and the index initialization
   2775   ** step can be skipped.
   2776   */
   2777   else{ /* if( db->init.busy==0 ) */
   2778     Vdbe *v;
   2779     char *zStmt;
   2780     int iMem = ++pParse->nMem;
   2781 
   2782     v = sqlite3GetVdbe(pParse);
   2783     if( v==0 ) goto exit_create_index;
   2784 
   2785 
   2786     /* Create the rootpage for the index
   2787     */
   2788     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2789     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
   2790 
   2791     /* Gather the complete text of the CREATE INDEX statement into
   2792     ** the zStmt variable
   2793     */
   2794     if( pStart ){
   2795       assert( pEnd!=0 );
   2796       /* A named index with an explicit CREATE INDEX statement */
   2797       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
   2798         onError==OE_None ? "" : " UNIQUE",
   2799         pEnd->z - pName->z + 1,
   2800         pName->z);
   2801     }else{
   2802       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
   2803       /* zStmt = sqlite3MPrintf(""); */
   2804       zStmt = 0;
   2805     }
   2806 
   2807     /* Add an entry in sqlite_master for this index
   2808     */
   2809     sqlite3NestedParse(pParse,
   2810         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
   2811         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   2812         pIndex->zName,
   2813         pTab->zName,
   2814         iMem,
   2815         zStmt
   2816     );
   2817     sqlite3DbFree(db, zStmt);
   2818 
   2819     /* Fill the index with data and reparse the schema. Code an OP_Expire
   2820     ** to invalidate all pre-compiled statements.
   2821     */
   2822     if( pTblName ){
   2823       sqlite3RefillIndex(pParse, pIndex, iMem);
   2824       sqlite3ChangeCookie(pParse, iDb);
   2825       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
   2826          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
   2827          P4_DYNAMIC);
   2828       sqlite3VdbeAddOp1(v, OP_Expire, 0);
   2829     }
   2830   }
   2831 
   2832   /* When adding an index to the list of indices for a table, make
   2833   ** sure all indices labeled OE_Replace come after all those labeled
   2834   ** OE_Ignore.  This is necessary for the correct constraint check
   2835   ** processing (in sqlite3GenerateConstraintChecks()) as part of
   2836   ** UPDATE and INSERT statements.
   2837   */
   2838   if( db->init.busy || pTblName==0 ){
   2839     if( onError!=OE_Replace || pTab->pIndex==0
   2840          || pTab->pIndex->onError==OE_Replace){
   2841       pIndex->pNext = pTab->pIndex;
   2842       pTab->pIndex = pIndex;
   2843     }else{
   2844       Index *pOther = pTab->pIndex;
   2845       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
   2846         pOther = pOther->pNext;
   2847       }
   2848       pIndex->pNext = pOther->pNext;
   2849       pOther->pNext = pIndex;
   2850     }
   2851     pRet = pIndex;
   2852     pIndex = 0;
   2853   }
   2854 
   2855   /* Clean up before exiting */
   2856 exit_create_index:
   2857   if( pIndex ){
   2858     sqlite3DbFree(db, pIndex->zColAff);
   2859     sqlite3DbFree(db, pIndex);
   2860   }
   2861   sqlite3ExprListDelete(db, pList);
   2862   sqlite3SrcListDelete(db, pTblName);
   2863   sqlite3DbFree(db, zName);
   2864   return pRet;
   2865 }
   2866 
   2867 /*
   2868 ** Fill the Index.aiRowEst[] array with default information - information
   2869 ** to be used when we have not run the ANALYZE command.
   2870 **
   2871 ** aiRowEst[0] is suppose to contain the number of elements in the index.
   2872 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
   2873 ** number of rows in the table that match any particular value of the
   2874 ** first column of the index.  aiRowEst[2] is an estimate of the number
   2875 ** of rows that match any particular combiniation of the first 2 columns
   2876 ** of the index.  And so forth.  It must always be the case that
   2877 *
   2878 **           aiRowEst[N]<=aiRowEst[N-1]
   2879 **           aiRowEst[N]>=1
   2880 **
   2881 ** Apart from that, we have little to go on besides intuition as to
   2882 ** how aiRowEst[] should be initialized.  The numbers generated here
   2883 ** are based on typical values found in actual indices.
   2884 */
   2885 void sqlite3DefaultRowEst(Index *pIdx){
   2886   unsigned *a = pIdx->aiRowEst;
   2887   int i;
   2888   unsigned n;
   2889   assert( a!=0 );
   2890   a[0] = pIdx->pTable->nRowEst;
   2891   if( a[0]<10 ) a[0] = 10;
   2892   n = 10;
   2893   for(i=1; i<=pIdx->nColumn; i++){
   2894     a[i] = n;
   2895     if( n>5 ) n--;
   2896   }
   2897   if( pIdx->onError!=OE_None ){
   2898     a[pIdx->nColumn] = 1;
   2899   }
   2900 }
   2901 
   2902 /*
   2903 ** This routine will drop an existing named index.  This routine
   2904 ** implements the DROP INDEX statement.
   2905 */
   2906 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
   2907   Index *pIndex;
   2908   Vdbe *v;
   2909   sqlite3 *db = pParse->db;
   2910   int iDb;
   2911 
   2912   assert( pParse->nErr==0 );   /* Never called with prior errors */
   2913   if( db->mallocFailed ){
   2914     goto exit_drop_index;
   2915   }
   2916   assert( pName->nSrc==1 );
   2917   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   2918     goto exit_drop_index;
   2919   }
   2920   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
   2921   if( pIndex==0 ){
   2922     if( !ifExists ){
   2923       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
   2924     }else{
   2925       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
   2926     }
   2927     pParse->checkSchema = 1;
   2928     goto exit_drop_index;
   2929   }
   2930   if( pIndex->autoIndex ){
   2931     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
   2932       "or PRIMARY KEY constraint cannot be dropped", 0);
   2933     goto exit_drop_index;
   2934   }
   2935   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
   2936 #ifndef SQLITE_OMIT_AUTHORIZATION
   2937   {
   2938     int code = SQLITE_DROP_INDEX;
   2939     Table *pTab = pIndex->pTable;
   2940     const char *zDb = db->aDb[iDb].zName;
   2941     const char *zTab = SCHEMA_TABLE(iDb);
   2942     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
   2943       goto exit_drop_index;
   2944     }
   2945     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
   2946     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
   2947       goto exit_drop_index;
   2948     }
   2949   }
   2950 #endif
   2951 
   2952   /* Generate code to remove the index and from the master table */
   2953   v = sqlite3GetVdbe(pParse);
   2954   if( v ){
   2955     sqlite3BeginWriteOperation(pParse, 1, iDb);
   2956     sqlite3NestedParse(pParse,
   2957        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
   2958        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
   2959        pIndex->zName
   2960     );
   2961     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
   2962       sqlite3NestedParse(pParse,
   2963         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
   2964         db->aDb[iDb].zName, pIndex->zName
   2965       );
   2966     }
   2967     sqlite3ChangeCookie(pParse, iDb);
   2968     destroyRootPage(pParse, pIndex->tnum, iDb);
   2969     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
   2970   }
   2971 
   2972 exit_drop_index:
   2973   sqlite3SrcListDelete(db, pName);
   2974 }
   2975 
   2976 /*
   2977 ** pArray is a pointer to an array of objects.  Each object in the
   2978 ** array is szEntry bytes in size.  This routine allocates a new
   2979 ** object on the end of the array.
   2980 **
   2981 ** *pnEntry is the number of entries already in use.  *pnAlloc is
   2982 ** the previously allocated size of the array.  initSize is the
   2983 ** suggested initial array size allocation.
   2984 **
   2985 ** The index of the new entry is returned in *pIdx.
   2986 **
   2987 ** This routine returns a pointer to the array of objects.  This
   2988 ** might be the same as the pArray parameter or it might be a different
   2989 ** pointer if the array was resized.
   2990 */
   2991 void *sqlite3ArrayAllocate(
   2992   sqlite3 *db,      /* Connection to notify of malloc failures */
   2993   void *pArray,     /* Array of objects.  Might be reallocated */
   2994   int szEntry,      /* Size of each object in the array */
   2995   int initSize,     /* Suggested initial allocation, in elements */
   2996   int *pnEntry,     /* Number of objects currently in use */
   2997   int *pnAlloc,     /* Current size of the allocation, in elements */
   2998   int *pIdx         /* Write the index of a new slot here */
   2999 ){
   3000   char *z;
   3001   if( *pnEntry >= *pnAlloc ){
   3002     void *pNew;
   3003     int newSize;
   3004     newSize = (*pnAlloc)*2 + initSize;
   3005     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
   3006     if( pNew==0 ){
   3007       *pIdx = -1;
   3008       return pArray;
   3009     }
   3010     *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
   3011     pArray = pNew;
   3012   }
   3013   z = (char*)pArray;
   3014   memset(&z[*pnEntry * szEntry], 0, szEntry);
   3015   *pIdx = *pnEntry;
   3016   ++*pnEntry;
   3017   return pArray;
   3018 }
   3019 
   3020 /*
   3021 ** Append a new element to the given IdList.  Create a new IdList if
   3022 ** need be.
   3023 **
   3024 ** A new IdList is returned, or NULL if malloc() fails.
   3025 */
   3026 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
   3027   int i;
   3028   if( pList==0 ){
   3029     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
   3030     if( pList==0 ) return 0;
   3031     pList->nAlloc = 0;
   3032   }
   3033   pList->a = sqlite3ArrayAllocate(
   3034       db,
   3035       pList->a,
   3036       sizeof(pList->a[0]),
   3037       5,
   3038       &pList->nId,
   3039       &pList->nAlloc,
   3040       &i
   3041   );
   3042   if( i<0 ){
   3043     sqlite3IdListDelete(db, pList);
   3044     return 0;
   3045   }
   3046   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
   3047   return pList;
   3048 }
   3049 
   3050 /*
   3051 ** Delete an IdList.
   3052 */
   3053 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
   3054   int i;
   3055   if( pList==0 ) return;
   3056   for(i=0; i<pList->nId; i++){
   3057     sqlite3DbFree(db, pList->a[i].zName);
   3058   }
   3059   sqlite3DbFree(db, pList->a);
   3060   sqlite3DbFree(db, pList);
   3061 }
   3062 
   3063 /*
   3064 ** Return the index in pList of the identifier named zId.  Return -1
   3065 ** if not found.
   3066 */
   3067 int sqlite3IdListIndex(IdList *pList, const char *zName){
   3068   int i;
   3069   if( pList==0 ) return -1;
   3070   for(i=0; i<pList->nId; i++){
   3071     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
   3072   }
   3073   return -1;
   3074 }
   3075 
   3076 /*
   3077 ** Expand the space allocated for the given SrcList object by
   3078 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
   3079 ** New slots are zeroed.
   3080 **
   3081 ** For example, suppose a SrcList initially contains two entries: A,B.
   3082 ** To append 3 new entries onto the end, do this:
   3083 **
   3084 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
   3085 **
   3086 ** After the call above it would contain:  A, B, nil, nil, nil.
   3087 ** If the iStart argument had been 1 instead of 2, then the result
   3088 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
   3089 ** the iStart value would be 0.  The result then would
   3090 ** be: nil, nil, nil, A, B.
   3091 **
   3092 ** If a memory allocation fails the SrcList is unchanged.  The
   3093 ** db->mallocFailed flag will be set to true.
   3094 */
   3095 SrcList *sqlite3SrcListEnlarge(
   3096   sqlite3 *db,       /* Database connection to notify of OOM errors */
   3097   SrcList *pSrc,     /* The SrcList to be enlarged */
   3098   int nExtra,        /* Number of new slots to add to pSrc->a[] */
   3099   int iStart         /* Index in pSrc->a[] of first new slot */
   3100 ){
   3101   int i;
   3102 
   3103   /* Sanity checking on calling parameters */
   3104   assert( iStart>=0 );
   3105   assert( nExtra>=1 );
   3106   assert( pSrc!=0 );
   3107   assert( iStart<=pSrc->nSrc );
   3108 
   3109   /* Allocate additional space if needed */
   3110   if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
   3111     SrcList *pNew;
   3112     int nAlloc = pSrc->nSrc+nExtra;
   3113     int nGot;
   3114     pNew = sqlite3DbRealloc(db, pSrc,
   3115                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
   3116     if( pNew==0 ){
   3117       assert( db->mallocFailed );
   3118       return pSrc;
   3119     }
   3120     pSrc = pNew;
   3121     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
   3122     pSrc->nAlloc = (u16)nGot;
   3123   }
   3124 
   3125   /* Move existing slots that come after the newly inserted slots
   3126   ** out of the way */
   3127   for(i=pSrc->nSrc-1; i>=iStart; i--){
   3128     pSrc->a[i+nExtra] = pSrc->a[i];
   3129   }
   3130   pSrc->nSrc += (i16)nExtra;
   3131 
   3132   /* Zero the newly allocated slots */
   3133   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
   3134   for(i=iStart; i<iStart+nExtra; i++){
   3135     pSrc->a[i].iCursor = -1;
   3136   }
   3137 
   3138   /* Return a pointer to the enlarged SrcList */
   3139   return pSrc;
   3140 }
   3141 
   3142 
   3143 /*
   3144 ** Append a new table name to the given SrcList.  Create a new SrcList if
   3145 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
   3146 **
   3147 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
   3148 ** SrcList might be the same as the SrcList that was input or it might be
   3149 ** a new one.  If an OOM error does occurs, then the prior value of pList
   3150 ** that is input to this routine is automatically freed.
   3151 **
   3152 ** If pDatabase is not null, it means that the table has an optional
   3153 ** database name prefix.  Like this:  "database.table".  The pDatabase
   3154 ** points to the table name and the pTable points to the database name.
   3155 ** The SrcList.a[].zName field is filled with the table name which might
   3156 ** come from pTable (if pDatabase is NULL) or from pDatabase.
   3157 ** SrcList.a[].zDatabase is filled with the database name from pTable,
   3158 ** or with NULL if no database is specified.
   3159 **
   3160 ** In other words, if call like this:
   3161 **
   3162 **         sqlite3SrcListAppend(D,A,B,0);
   3163 **
   3164 ** Then B is a table name and the database name is unspecified.  If called
   3165 ** like this:
   3166 **
   3167 **         sqlite3SrcListAppend(D,A,B,C);
   3168 **
   3169 ** Then C is the table name and B is the database name.  If C is defined
   3170 ** then so is B.  In other words, we never have a case where:
   3171 **
   3172 **         sqlite3SrcListAppend(D,A,0,C);
   3173 **
   3174 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
   3175 ** before being added to the SrcList.
   3176 */
   3177 SrcList *sqlite3SrcListAppend(
   3178   sqlite3 *db,        /* Connection to notify of malloc failures */
   3179   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
   3180   Token *pTable,      /* Table to append */
   3181   Token *pDatabase    /* Database of the table */
   3182 ){
   3183   struct SrcList_item *pItem;
   3184   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
   3185   if( pList==0 ){
   3186     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
   3187     if( pList==0 ) return 0;
   3188     pList->nAlloc = 1;
   3189   }
   3190   pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
   3191   if( db->mallocFailed ){
   3192     sqlite3SrcListDelete(db, pList);
   3193     return 0;
   3194   }
   3195   pItem = &pList->a[pList->nSrc-1];
   3196   if( pDatabase && pDatabase->z==0 ){
   3197     pDatabase = 0;
   3198   }
   3199   if( pDatabase ){
   3200     Token *pTemp = pDatabase;
   3201     pDatabase = pTable;
   3202     pTable = pTemp;
   3203   }
   3204   pItem->zName = sqlite3NameFromToken(db, pTable);
   3205   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
   3206   return pList;
   3207 }
   3208 
   3209 /*
   3210 ** Assign VdbeCursor index numbers to all tables in a SrcList
   3211 */
   3212 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
   3213   int i;
   3214   struct SrcList_item *pItem;
   3215   assert(pList || pParse->db->mallocFailed );
   3216   if( pList ){
   3217     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
   3218       if( pItem->iCursor>=0 ) break;
   3219       pItem->iCursor = pParse->nTab++;
   3220       if( pItem->pSelect ){
   3221         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
   3222       }
   3223     }
   3224   }
   3225 }
   3226 
   3227 /*
   3228 ** Delete an entire SrcList including all its substructure.
   3229 */
   3230 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
   3231   int i;
   3232   struct SrcList_item *pItem;
   3233   if( pList==0 ) return;
   3234   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
   3235     sqlite3DbFree(db, pItem->zDatabase);
   3236     sqlite3DbFree(db, pItem->zName);
   3237     sqlite3DbFree(db, pItem->zAlias);
   3238     sqlite3DbFree(db, pItem->zIndex);
   3239     sqlite3DeleteTable(db, pItem->pTab);
   3240     sqlite3SelectDelete(db, pItem->pSelect);
   3241     sqlite3ExprDelete(db, pItem->pOn);
   3242     sqlite3IdListDelete(db, pItem->pUsing);
   3243   }
   3244   sqlite3DbFree(db, pList);
   3245 }
   3246 
   3247 /*
   3248 ** This routine is called by the parser to add a new term to the
   3249 ** end of a growing FROM clause.  The "p" parameter is the part of
   3250 ** the FROM clause that has already been constructed.  "p" is NULL
   3251 ** if this is the first term of the FROM clause.  pTable and pDatabase
   3252 ** are the name of the table and database named in the FROM clause term.
   3253 ** pDatabase is NULL if the database name qualifier is missing - the
   3254 ** usual case.  If the term has a alias, then pAlias points to the
   3255 ** alias token.  If the term is a subquery, then pSubquery is the
   3256 ** SELECT statement that the subquery encodes.  The pTable and
   3257 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
   3258 ** parameters are the content of the ON and USING clauses.
   3259 **
   3260 ** Return a new SrcList which encodes is the FROM with the new
   3261 ** term added.
   3262 */
   3263 SrcList *sqlite3SrcListAppendFromTerm(
   3264   Parse *pParse,          /* Parsing context */
   3265   SrcList *p,             /* The left part of the FROM clause already seen */
   3266   Token *pTable,          /* Name of the table to add to the FROM clause */
   3267   Token *pDatabase,       /* Name of the database containing pTable */
   3268   Token *pAlias,          /* The right-hand side of the AS subexpression */
   3269   Select *pSubquery,      /* A subquery used in place of a table name */
   3270   Expr *pOn,              /* The ON clause of a join */
   3271   IdList *pUsing          /* The USING clause of a join */
   3272 ){
   3273   struct SrcList_item *pItem;
   3274   sqlite3 *db = pParse->db;
   3275   if( !p && (pOn || pUsing) ){
   3276     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
   3277       (pOn ? "ON" : "USING")
   3278     );
   3279     goto append_from_error;
   3280   }
   3281   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
   3282   if( p==0 || NEVER(p->nSrc==0) ){
   3283     goto append_from_error;
   3284   }
   3285   pItem = &p->a[p->nSrc-1];
   3286   assert( pAlias!=0 );
   3287   if( pAlias->n ){
   3288     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
   3289   }
   3290   pItem->pSelect = pSubquery;
   3291   pItem->pOn = pOn;
   3292   pItem->pUsing = pUsing;
   3293   return p;
   3294 
   3295  append_from_error:
   3296   assert( p==0 );
   3297   sqlite3ExprDelete(db, pOn);
   3298   sqlite3IdListDelete(db, pUsing);
   3299   sqlite3SelectDelete(db, pSubquery);
   3300   return 0;
   3301 }
   3302 
   3303 /*
   3304 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
   3305 ** element of the source-list passed as the second argument.
   3306 */
   3307 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
   3308   assert( pIndexedBy!=0 );
   3309   if( p && ALWAYS(p->nSrc>0) ){
   3310     struct SrcList_item *pItem = &p->a[p->nSrc-1];
   3311     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
   3312     if( pIndexedBy->n==1 && !pIndexedBy->z ){
   3313       /* A "NOT INDEXED" clause was supplied. See parse.y
   3314       ** construct "indexed_opt" for details. */
   3315       pItem->notIndexed = 1;
   3316     }else{
   3317       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
   3318     }
   3319   }
   3320 }
   3321 
   3322 /*
   3323 ** When building up a FROM clause in the parser, the join operator
   3324 ** is initially attached to the left operand.  But the code generator
   3325 ** expects the join operator to be on the right operand.  This routine
   3326 ** Shifts all join operators from left to right for an entire FROM
   3327 ** clause.
   3328 **
   3329 ** Example: Suppose the join is like this:
   3330 **
   3331 **           A natural cross join B
   3332 **
   3333 ** The operator is "natural cross join".  The A and B operands are stored
   3334 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
   3335 ** operator with A.  This routine shifts that operator over to B.
   3336 */
   3337 void sqlite3SrcListShiftJoinType(SrcList *p){
   3338   if( p && p->a ){
   3339     int i;
   3340     for(i=p->nSrc-1; i>0; i--){
   3341       p->a[i].jointype = p->a[i-1].jointype;
   3342     }
   3343     p->a[0].jointype = 0;
   3344   }
   3345 }
   3346 
   3347 /*
   3348 ** Begin a transaction
   3349 */
   3350 void sqlite3BeginTransaction(Parse *pParse, int type){
   3351   sqlite3 *db;
   3352   Vdbe *v;
   3353   int i;
   3354 
   3355   assert( pParse!=0 );
   3356   db = pParse->db;
   3357   assert( db!=0 );
   3358 /*  if( db->aDb[0].pBt==0 ) return; */
   3359   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
   3360     return;
   3361   }
   3362   v = sqlite3GetVdbe(pParse);
   3363   if( !v ) return;
   3364   if( type!=TK_DEFERRED ){
   3365     for(i=0; i<db->nDb; i++){
   3366       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
   3367       sqlite3VdbeUsesBtree(v, i);
   3368     }
   3369   }
   3370   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
   3371 }
   3372 
   3373 /*
   3374 ** Commit a transaction
   3375 */
   3376 void sqlite3CommitTransaction(Parse *pParse){
   3377   sqlite3 *db;
   3378   Vdbe *v;
   3379 
   3380   assert( pParse!=0 );
   3381   db = pParse->db;
   3382   assert( db!=0 );
   3383 /*  if( db->aDb[0].pBt==0 ) return; */
   3384   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
   3385     return;
   3386   }
   3387   v = sqlite3GetVdbe(pParse);
   3388   if( v ){
   3389     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
   3390   }
   3391 }
   3392 
   3393 /*
   3394 ** Rollback a transaction
   3395 */
   3396 void sqlite3RollbackTransaction(Parse *pParse){
   3397   sqlite3 *db;
   3398   Vdbe *v;
   3399 
   3400   assert( pParse!=0 );
   3401   db = pParse->db;
   3402   assert( db!=0 );
   3403 /*  if( db->aDb[0].pBt==0 ) return; */
   3404   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
   3405     return;
   3406   }
   3407   v = sqlite3GetVdbe(pParse);
   3408   if( v ){
   3409     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
   3410   }
   3411 }
   3412 
   3413 /*
   3414 ** This function is called by the parser when it parses a command to create,
   3415 ** release or rollback an SQL savepoint.
   3416 */
   3417 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
   3418   char *zName = sqlite3NameFromToken(pParse->db, pName);
   3419   if( zName ){
   3420     Vdbe *v = sqlite3GetVdbe(pParse);
   3421 #ifndef SQLITE_OMIT_AUTHORIZATION
   3422     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
   3423     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
   3424 #endif
   3425     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
   3426       sqlite3DbFree(pParse->db, zName);
   3427       return;
   3428     }
   3429     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
   3430   }
   3431 }
   3432 
   3433 /*
   3434 ** Make sure the TEMP database is open and available for use.  Return
   3435 ** the number of errors.  Leave any error messages in the pParse structure.
   3436 */
   3437 int sqlite3OpenTempDatabase(Parse *pParse){
   3438   sqlite3 *db = pParse->db;
   3439   if( db->aDb[1].pBt==0 && !pParse->explain ){
   3440     int rc;
   3441     Btree *pBt;
   3442     static const int flags =
   3443           SQLITE_OPEN_READWRITE |
   3444           SQLITE_OPEN_CREATE |
   3445           SQLITE_OPEN_EXCLUSIVE |
   3446           SQLITE_OPEN_DELETEONCLOSE |
   3447           SQLITE_OPEN_TEMP_DB;
   3448 
   3449     rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
   3450     if( rc!=SQLITE_OK ){
   3451       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
   3452         "file for storing temporary tables");
   3453       pParse->rc = rc;
   3454       return 1;
   3455     }
   3456     db->aDb[1].pBt = pBt;
   3457     assert( db->aDb[1].pSchema );
   3458     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
   3459       db->mallocFailed = 1;
   3460       return 1;
   3461     }
   3462   }
   3463   return 0;
   3464 }
   3465 
   3466 /*
   3467 ** Generate VDBE code that will verify the schema cookie and start
   3468 ** a read-transaction for all named database files.
   3469 **
   3470 ** It is important that all schema cookies be verified and all
   3471 ** read transactions be started before anything else happens in
   3472 ** the VDBE program.  But this routine can be called after much other
   3473 ** code has been generated.  So here is what we do:
   3474 **
   3475 ** The first time this routine is called, we code an OP_Goto that
   3476 ** will jump to a subroutine at the end of the program.  Then we
   3477 ** record every database that needs its schema verified in the
   3478 ** pParse->cookieMask field.  Later, after all other code has been
   3479 ** generated, the subroutine that does the cookie verifications and
   3480 ** starts the transactions will be coded and the OP_Goto P2 value
   3481 ** will be made to point to that subroutine.  The generation of the
   3482 ** cookie verification subroutine code happens in sqlite3FinishCoding().
   3483 **
   3484 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
   3485 ** schema on any databases.  This can be used to position the OP_Goto
   3486 ** early in the code, before we know if any database tables will be used.
   3487 */
   3488 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
   3489   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3490 
   3491   if( pToplevel->cookieGoto==0 ){
   3492     Vdbe *v = sqlite3GetVdbe(pToplevel);
   3493     if( v==0 ) return;  /* This only happens if there was a prior error */
   3494     pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
   3495   }
   3496   if( iDb>=0 ){
   3497     sqlite3 *db = pToplevel->db;
   3498     yDbMask mask;
   3499 
   3500     assert( iDb<db->nDb );
   3501     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
   3502     assert( iDb<SQLITE_MAX_ATTACHED+2 );
   3503     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
   3504     mask = ((yDbMask)1)<<iDb;
   3505     if( (pToplevel->cookieMask & mask)==0 ){
   3506       pToplevel->cookieMask |= mask;
   3507       pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
   3508       if( !OMIT_TEMPDB && iDb==1 ){
   3509         sqlite3OpenTempDatabase(pToplevel);
   3510       }
   3511     }
   3512   }
   3513 }
   3514 
   3515 /*
   3516 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
   3517 ** attached database. Otherwise, invoke it for the database named zDb only.
   3518 */
   3519 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
   3520   sqlite3 *db = pParse->db;
   3521   int i;
   3522   for(i=0; i<db->nDb; i++){
   3523     Db *pDb = &db->aDb[i];
   3524     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
   3525       sqlite3CodeVerifySchema(pParse, i);
   3526     }
   3527   }
   3528 }
   3529 
   3530 /*
   3531 ** Generate VDBE code that prepares for doing an operation that
   3532 ** might change the database.
   3533 **
   3534 ** This routine starts a new transaction if we are not already within
   3535 ** a transaction.  If we are already within a transaction, then a checkpoint
   3536 ** is set if the setStatement parameter is true.  A checkpoint should
   3537 ** be set for operations that might fail (due to a constraint) part of
   3538 ** the way through and which will need to undo some writes without having to
   3539 ** rollback the whole transaction.  For operations where all constraints
   3540 ** can be checked before any changes are made to the database, it is never
   3541 ** necessary to undo a write and the checkpoint should not be set.
   3542 */
   3543 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
   3544   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3545   sqlite3CodeVerifySchema(pParse, iDb);
   3546   pToplevel->writeMask |= ((yDbMask)1)<<iDb;
   3547   pToplevel->isMultiWrite |= setStatement;
   3548 }
   3549 
   3550 /*
   3551 ** Indicate that the statement currently under construction might write
   3552 ** more than one entry (example: deleting one row then inserting another,
   3553 ** inserting multiple rows in a table, or inserting a row and index entries.)
   3554 ** If an abort occurs after some of these writes have completed, then it will
   3555 ** be necessary to undo the completed writes.
   3556 */
   3557 void sqlite3MultiWrite(Parse *pParse){
   3558   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3559   pToplevel->isMultiWrite = 1;
   3560 }
   3561 
   3562 /*
   3563 ** The code generator calls this routine if is discovers that it is
   3564 ** possible to abort a statement prior to completion.  In order to
   3565 ** perform this abort without corrupting the database, we need to make
   3566 ** sure that the statement is protected by a statement transaction.
   3567 **
   3568 ** Technically, we only need to set the mayAbort flag if the
   3569 ** isMultiWrite flag was previously set.  There is a time dependency
   3570 ** such that the abort must occur after the multiwrite.  This makes
   3571 ** some statements involving the REPLACE conflict resolution algorithm
   3572 ** go a little faster.  But taking advantage of this time dependency
   3573 ** makes it more difficult to prove that the code is correct (in
   3574 ** particular, it prevents us from writing an effective
   3575 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
   3576 ** to take the safe route and skip the optimization.
   3577 */
   3578 void sqlite3MayAbort(Parse *pParse){
   3579   Parse *pToplevel = sqlite3ParseToplevel(pParse);
   3580   pToplevel->mayAbort = 1;
   3581 }
   3582 
   3583 /*
   3584 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
   3585 ** error. The onError parameter determines which (if any) of the statement
   3586 ** and/or current transaction is rolled back.
   3587 */
   3588 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
   3589   Vdbe *v = sqlite3GetVdbe(pParse);
   3590   if( onError==OE_Abort ){
   3591     sqlite3MayAbort(pParse);
   3592   }
   3593   sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
   3594 }
   3595 
   3596 /*
   3597 ** Check to see if pIndex uses the collating sequence pColl.  Return
   3598 ** true if it does and false if it does not.
   3599 */
   3600 #ifndef SQLITE_OMIT_REINDEX
   3601 static int collationMatch(const char *zColl, Index *pIndex){
   3602   int i;
   3603   assert( zColl!=0 );
   3604   for(i=0; i<pIndex->nColumn; i++){
   3605     const char *z = pIndex->azColl[i];
   3606     assert( z!=0 );
   3607     if( 0==sqlite3StrICmp(z, zColl) ){
   3608       return 1;
   3609     }
   3610   }
   3611   return 0;
   3612 }
   3613 #endif
   3614 
   3615 /*
   3616 ** Recompute all indices of pTab that use the collating sequence pColl.
   3617 ** If pColl==0 then recompute all indices of pTab.
   3618 */
   3619 #ifndef SQLITE_OMIT_REINDEX
   3620 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
   3621   Index *pIndex;              /* An index associated with pTab */
   3622 
   3623   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
   3624     if( zColl==0 || collationMatch(zColl, pIndex) ){
   3625       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   3626       sqlite3BeginWriteOperation(pParse, 0, iDb);
   3627       sqlite3RefillIndex(pParse, pIndex, -1);
   3628     }
   3629   }
   3630 }
   3631 #endif
   3632 
   3633 /*
   3634 ** Recompute all indices of all tables in all databases where the
   3635 ** indices use the collating sequence pColl.  If pColl==0 then recompute
   3636 ** all indices everywhere.
   3637 */
   3638 #ifndef SQLITE_OMIT_REINDEX
   3639 static void reindexDatabases(Parse *pParse, char const *zColl){
   3640   Db *pDb;                    /* A single database */
   3641   int iDb;                    /* The database index number */
   3642   sqlite3 *db = pParse->db;   /* The database connection */
   3643   HashElem *k;                /* For looping over tables in pDb */
   3644   Table *pTab;                /* A table in the database */
   3645 
   3646   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
   3647   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
   3648     assert( pDb!=0 );
   3649     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
   3650       pTab = (Table*)sqliteHashData(k);
   3651       reindexTable(pParse, pTab, zColl);
   3652     }
   3653   }
   3654 }
   3655 #endif
   3656 
   3657 /*
   3658 ** Generate code for the REINDEX command.
   3659 **
   3660 **        REINDEX                            -- 1
   3661 **        REINDEX  <collation>               -- 2
   3662 **        REINDEX  ?<database>.?<tablename>  -- 3
   3663 **        REINDEX  ?<database>.?<indexname>  -- 4
   3664 **
   3665 ** Form 1 causes all indices in all attached databases to be rebuilt.
   3666 ** Form 2 rebuilds all indices in all databases that use the named
   3667 ** collating function.  Forms 3 and 4 rebuild the named index or all
   3668 ** indices associated with the named table.
   3669 */
   3670 #ifndef SQLITE_OMIT_REINDEX
   3671 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
   3672   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
   3673   char *z;                    /* Name of a table or index */
   3674   const char *zDb;            /* Name of the database */
   3675   Table *pTab;                /* A table in the database */
   3676   Index *pIndex;              /* An index associated with pTab */
   3677   int iDb;                    /* The database index number */
   3678   sqlite3 *db = pParse->db;   /* The database connection */
   3679   Token *pObjName;            /* Name of the table or index to be reindexed */
   3680 
   3681   /* Read the database schema. If an error occurs, leave an error message
   3682   ** and code in pParse and return NULL. */
   3683   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   3684     return;
   3685   }
   3686 
   3687   if( pName1==0 ){
   3688     reindexDatabases(pParse, 0);
   3689     return;
   3690   }else if( NEVER(pName2==0) || pName2->z==0 ){
   3691     char *zColl;
   3692     assert( pName1->z );
   3693     zColl = sqlite3NameFromToken(pParse->db, pName1);
   3694     if( !zColl ) return;
   3695     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
   3696     if( pColl ){
   3697       reindexDatabases(pParse, zColl);
   3698       sqlite3DbFree(db, zColl);
   3699       return;
   3700     }
   3701     sqlite3DbFree(db, zColl);
   3702   }
   3703   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
   3704   if( iDb<0 ) return;
   3705   z = sqlite3NameFromToken(db, pObjName);
   3706   if( z==0 ) return;
   3707   zDb = db->aDb[iDb].zName;
   3708   pTab = sqlite3FindTable(db, z, zDb);
   3709   if( pTab ){
   3710     reindexTable(pParse, pTab, 0);
   3711     sqlite3DbFree(db, z);
   3712     return;
   3713   }
   3714   pIndex = sqlite3FindIndex(db, z, zDb);
   3715   sqlite3DbFree(db, z);
   3716   if( pIndex ){
   3717     sqlite3BeginWriteOperation(pParse, 0, iDb);
   3718     sqlite3RefillIndex(pParse, pIndex, -1);
   3719     return;
   3720   }
   3721   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
   3722 }
   3723 #endif
   3724 
   3725 /*
   3726 ** Return a dynamicly allocated KeyInfo structure that can be used
   3727 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
   3728 **
   3729 ** If successful, a pointer to the new structure is returned. In this case
   3730 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
   3731 ** pointer. If an error occurs (out of memory or missing collation
   3732 ** sequence), NULL is returned and the state of pParse updated to reflect
   3733 ** the error.
   3734 */
   3735 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
   3736   int i;
   3737   int nCol = pIdx->nColumn;
   3738   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
   3739   sqlite3 *db = pParse->db;
   3740   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
   3741 
   3742   if( pKey ){
   3743     pKey->db = pParse->db;
   3744     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
   3745     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
   3746     for(i=0; i<nCol; i++){
   3747       char *zColl = pIdx->azColl[i];
   3748       assert( zColl );
   3749       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
   3750       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
   3751     }
   3752     pKey->nField = (u16)nCol;
   3753   }
   3754 
   3755   if( pParse->nErr ){
   3756     sqlite3DbFree(db, pKey);
   3757     pKey = 0;
   3758   }
   3759   return pKey;
   3760 }
   3761 
   3762 /* Begin preload-cache.patch for Chromium */
   3763 /* See declaration in sqlite3.h for information */
   3764 int sqlite3_preload(sqlite3 *db)
   3765 {
   3766   Pager *pPager;
   3767   Btree *pBt;
   3768   int rc;
   3769   int i;
   3770   int dbsLoaded = 0;
   3771 
   3772   for(i=0; i<db->nDb; i++) {
   3773     pBt = db->aDb[i].pBt;
   3774     if( !pBt )
   3775       continue;
   3776     pPager = sqlite3BtreePager(pBt);
   3777     if( pPager ) {
   3778       rc = sqlite3PagerLoadall(pPager);
   3779       if (rc == SQLITE_OK)
   3780         dbsLoaded++;
   3781     }
   3782   }
   3783   if (dbsLoaded == 0)
   3784     return SQLITE_ERROR;
   3785   return SQLITE_OK;
   3786 }
   3787 /* End preload-cache.patch for Chromium */
   3788