1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the SQLite parser 13 ** when syntax rules are reduced. The routines in this file handle the 14 ** following kinds of SQL syntax: 15 ** 16 ** CREATE TABLE 17 ** DROP TABLE 18 ** CREATE INDEX 19 ** DROP INDEX 20 ** creating ID lists 21 ** BEGIN TRANSACTION 22 ** COMMIT 23 ** ROLLBACK 24 */ 25 #include "sqliteInt.h" 26 27 #include "pager.h" 28 #include "btree.h" 29 30 /* 31 ** This routine is called when a new SQL statement is beginning to 32 ** be parsed. Initialize the pParse structure as needed. 33 */ 34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ 35 pParse->explain = (u8)explainFlag; 36 pParse->nVar = 0; 37 } 38 39 #ifndef SQLITE_OMIT_SHARED_CACHE 40 /* 41 ** The TableLock structure is only used by the sqlite3TableLock() and 42 ** codeTableLocks() functions. 43 */ 44 struct TableLock { 45 int iDb; /* The database containing the table to be locked */ 46 int iTab; /* The root page of the table to be locked */ 47 u8 isWriteLock; /* True for write lock. False for a read lock */ 48 const char *zName; /* Name of the table */ 49 }; 50 51 /* 52 ** Record the fact that we want to lock a table at run-time. 53 ** 54 ** The table to be locked has root page iTab and is found in database iDb. 55 ** A read or a write lock can be taken depending on isWritelock. 56 ** 57 ** This routine just records the fact that the lock is desired. The 58 ** code to make the lock occur is generated by a later call to 59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 60 */ 61 void sqlite3TableLock( 62 Parse *pParse, /* Parsing context */ 63 int iDb, /* Index of the database containing the table to lock */ 64 int iTab, /* Root page number of the table to be locked */ 65 u8 isWriteLock, /* True for a write lock */ 66 const char *zName /* Name of the table to be locked */ 67 ){ 68 Parse *pToplevel = sqlite3ParseToplevel(pParse); 69 int i; 70 int nBytes; 71 TableLock *p; 72 assert( iDb>=0 ); 73 74 for(i=0; i<pToplevel->nTableLock; i++){ 75 p = &pToplevel->aTableLock[i]; 76 if( p->iDb==iDb && p->iTab==iTab ){ 77 p->isWriteLock = (p->isWriteLock || isWriteLock); 78 return; 79 } 80 } 81 82 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 83 pToplevel->aTableLock = 84 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 85 if( pToplevel->aTableLock ){ 86 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 87 p->iDb = iDb; 88 p->iTab = iTab; 89 p->isWriteLock = isWriteLock; 90 p->zName = zName; 91 }else{ 92 pToplevel->nTableLock = 0; 93 pToplevel->db->mallocFailed = 1; 94 } 95 } 96 97 /* 98 ** Code an OP_TableLock instruction for each table locked by the 99 ** statement (configured by calls to sqlite3TableLock()). 100 */ 101 static void codeTableLocks(Parse *pParse){ 102 int i; 103 Vdbe *pVdbe; 104 105 pVdbe = sqlite3GetVdbe(pParse); 106 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 107 108 for(i=0; i<pParse->nTableLock; i++){ 109 TableLock *p = &pParse->aTableLock[i]; 110 int p1 = p->iDb; 111 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 112 p->zName, P4_STATIC); 113 } 114 } 115 #else 116 #define codeTableLocks(x) 117 #endif 118 119 /* 120 ** This routine is called after a single SQL statement has been 121 ** parsed and a VDBE program to execute that statement has been 122 ** prepared. This routine puts the finishing touches on the 123 ** VDBE program and resets the pParse structure for the next 124 ** parse. 125 ** 126 ** Note that if an error occurred, it might be the case that 127 ** no VDBE code was generated. 128 */ 129 void sqlite3FinishCoding(Parse *pParse){ 130 sqlite3 *db; 131 Vdbe *v; 132 133 db = pParse->db; 134 if( db->mallocFailed ) return; 135 if( pParse->nested ) return; 136 if( pParse->nErr ) return; 137 138 /* Begin by generating some termination code at the end of the 139 ** vdbe program 140 */ 141 v = sqlite3GetVdbe(pParse); 142 assert( !pParse->isMultiWrite 143 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 144 if( v ){ 145 sqlite3VdbeAddOp0(v, OP_Halt); 146 147 /* The cookie mask contains one bit for each database file open. 148 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 149 ** set for each database that is used. Generate code to start a 150 ** transaction on each used database and to verify the schema cookie 151 ** on each used database. 152 */ 153 if( pParse->cookieGoto>0 ){ 154 yDbMask mask; 155 int iDb; 156 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); 157 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ 158 if( (mask & pParse->cookieMask)==0 ) continue; 159 sqlite3VdbeUsesBtree(v, iDb); 160 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); 161 if( db->init.busy==0 ){ 162 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 163 sqlite3VdbeAddOp3(v, OP_VerifyCookie, 164 iDb, pParse->cookieValue[iDb], 165 db->aDb[iDb].pSchema->iGeneration); 166 } 167 } 168 #ifndef SQLITE_OMIT_VIRTUALTABLE 169 { 170 int i; 171 for(i=0; i<pParse->nVtabLock; i++){ 172 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 173 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 174 } 175 pParse->nVtabLock = 0; 176 } 177 #endif 178 179 /* Once all the cookies have been verified and transactions opened, 180 ** obtain the required table-locks. This is a no-op unless the 181 ** shared-cache feature is enabled. 182 */ 183 codeTableLocks(pParse); 184 185 /* Initialize any AUTOINCREMENT data structures required. 186 */ 187 sqlite3AutoincrementBegin(pParse); 188 189 /* Finally, jump back to the beginning of the executable code. */ 190 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); 191 } 192 } 193 194 195 /* Get the VDBE program ready for execution 196 */ 197 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ 198 #ifdef SQLITE_DEBUG 199 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; 200 sqlite3VdbeTrace(v, trace); 201 #endif 202 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 203 /* A minimum of one cursor is required if autoincrement is used 204 * See ticket [a696379c1f08866] */ 205 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 206 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, 207 pParse->nTab, pParse->nMaxArg, pParse->explain, 208 pParse->isMultiWrite && pParse->mayAbort); 209 pParse->rc = SQLITE_DONE; 210 pParse->colNamesSet = 0; 211 }else{ 212 pParse->rc = SQLITE_ERROR; 213 } 214 pParse->nTab = 0; 215 pParse->nMem = 0; 216 pParse->nSet = 0; 217 pParse->nVar = 0; 218 pParse->cookieMask = 0; 219 pParse->cookieGoto = 0; 220 } 221 222 /* 223 ** Run the parser and code generator recursively in order to generate 224 ** code for the SQL statement given onto the end of the pParse context 225 ** currently under construction. When the parser is run recursively 226 ** this way, the final OP_Halt is not appended and other initialization 227 ** and finalization steps are omitted because those are handling by the 228 ** outermost parser. 229 ** 230 ** Not everything is nestable. This facility is designed to permit 231 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 232 ** care if you decide to try to use this routine for some other purposes. 233 */ 234 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 235 va_list ap; 236 char *zSql; 237 char *zErrMsg = 0; 238 sqlite3 *db = pParse->db; 239 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 240 char saveBuf[SAVE_SZ]; 241 242 if( pParse->nErr ) return; 243 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 244 va_start(ap, zFormat); 245 zSql = sqlite3VMPrintf(db, zFormat, ap); 246 va_end(ap); 247 if( zSql==0 ){ 248 return; /* A malloc must have failed */ 249 } 250 pParse->nested++; 251 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 252 memset(&pParse->nVar, 0, SAVE_SZ); 253 sqlite3RunParser(pParse, zSql, &zErrMsg); 254 sqlite3DbFree(db, zErrMsg); 255 sqlite3DbFree(db, zSql); 256 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 257 pParse->nested--; 258 } 259 260 /* 261 ** Locate the in-memory structure that describes a particular database 262 ** table given the name of that table and (optionally) the name of the 263 ** database containing the table. Return NULL if not found. 264 ** 265 ** If zDatabase is 0, all databases are searched for the table and the 266 ** first matching table is returned. (No checking for duplicate table 267 ** names is done.) The search order is TEMP first, then MAIN, then any 268 ** auxiliary databases added using the ATTACH command. 269 ** 270 ** See also sqlite3LocateTable(). 271 */ 272 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ 273 Table *p = 0; 274 int i; 275 int nName; 276 assert( zName!=0 ); 277 nName = sqlite3Strlen30(zName); 278 /* All mutexes are required for schema access. Make sure we hold them. */ 279 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 280 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 281 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 282 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 283 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 284 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); 285 if( p ) break; 286 } 287 return p; 288 } 289 290 /* 291 ** Locate the in-memory structure that describes a particular database 292 ** table given the name of that table and (optionally) the name of the 293 ** database containing the table. Return NULL if not found. Also leave an 294 ** error message in pParse->zErrMsg. 295 ** 296 ** The difference between this routine and sqlite3FindTable() is that this 297 ** routine leaves an error message in pParse->zErrMsg where 298 ** sqlite3FindTable() does not. 299 */ 300 Table *sqlite3LocateTable( 301 Parse *pParse, /* context in which to report errors */ 302 int isView, /* True if looking for a VIEW rather than a TABLE */ 303 const char *zName, /* Name of the table we are looking for */ 304 const char *zDbase /* Name of the database. Might be NULL */ 305 ){ 306 Table *p; 307 308 /* Read the database schema. If an error occurs, leave an error message 309 ** and code in pParse and return NULL. */ 310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 311 return 0; 312 } 313 314 p = sqlite3FindTable(pParse->db, zName, zDbase); 315 if( p==0 ){ 316 const char *zMsg = isView ? "no such view" : "no such table"; 317 if( zDbase ){ 318 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 319 }else{ 320 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 321 } 322 pParse->checkSchema = 1; 323 } 324 return p; 325 } 326 327 /* 328 ** Locate the in-memory structure that describes 329 ** a particular index given the name of that index 330 ** and the name of the database that contains the index. 331 ** Return NULL if not found. 332 ** 333 ** If zDatabase is 0, all databases are searched for the 334 ** table and the first matching index is returned. (No checking 335 ** for duplicate index names is done.) The search order is 336 ** TEMP first, then MAIN, then any auxiliary databases added 337 ** using the ATTACH command. 338 */ 339 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 340 Index *p = 0; 341 int i; 342 int nName = sqlite3Strlen30(zName); 343 /* All mutexes are required for schema access. Make sure we hold them. */ 344 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 345 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 346 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 347 Schema *pSchema = db->aDb[j].pSchema; 348 assert( pSchema ); 349 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 350 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 351 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); 352 if( p ) break; 353 } 354 return p; 355 } 356 357 /* 358 ** Reclaim the memory used by an index 359 */ 360 static void freeIndex(sqlite3 *db, Index *p){ 361 #ifndef SQLITE_OMIT_ANALYZE 362 sqlite3DeleteIndexSamples(db, p); 363 #endif 364 sqlite3DbFree(db, p->zColAff); 365 sqlite3DbFree(db, p); 366 } 367 368 /* 369 ** For the index called zIdxName which is found in the database iDb, 370 ** unlike that index from its Table then remove the index from 371 ** the index hash table and free all memory structures associated 372 ** with the index. 373 */ 374 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ 375 Index *pIndex; 376 int len; 377 Hash *pHash; 378 379 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 380 pHash = &db->aDb[iDb].pSchema->idxHash; 381 len = sqlite3Strlen30(zIdxName); 382 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); 383 if( ALWAYS(pIndex) ){ 384 if( pIndex->pTable->pIndex==pIndex ){ 385 pIndex->pTable->pIndex = pIndex->pNext; 386 }else{ 387 Index *p; 388 /* Justification of ALWAYS(); The index must be on the list of 389 ** indices. */ 390 p = pIndex->pTable->pIndex; 391 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } 392 if( ALWAYS(p && p->pNext==pIndex) ){ 393 p->pNext = pIndex->pNext; 394 } 395 } 396 freeIndex(db, pIndex); 397 } 398 db->flags |= SQLITE_InternChanges; 399 } 400 401 /* 402 ** Erase all schema information from the in-memory hash tables of 403 ** a single database. This routine is called to reclaim memory 404 ** before the database closes. It is also called during a rollback 405 ** if there were schema changes during the transaction or if a 406 ** schema-cookie mismatch occurs. 407 ** 408 ** If iDb<0 then reset the internal schema tables for all database 409 ** files. If iDb>=0 then reset the internal schema for only the 410 ** single file indicated. 411 */ 412 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ 413 int i, j; 414 assert( iDb<db->nDb ); 415 416 if( iDb>=0 ){ 417 /* Case 1: Reset the single schema identified by iDb */ 418 Db *pDb = &db->aDb[iDb]; 419 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 420 assert( pDb->pSchema!=0 ); 421 sqlite3SchemaClear(pDb->pSchema); 422 423 /* If any database other than TEMP is reset, then also reset TEMP 424 ** since TEMP might be holding triggers that reference tables in the 425 ** other database. 426 */ 427 if( iDb!=1 ){ 428 pDb = &db->aDb[1]; 429 assert( pDb->pSchema!=0 ); 430 sqlite3SchemaClear(pDb->pSchema); 431 } 432 return; 433 } 434 /* Case 2 (from here to the end): Reset all schemas for all attached 435 ** databases. */ 436 assert( iDb<0 ); 437 sqlite3BtreeEnterAll(db); 438 for(i=0; i<db->nDb; i++){ 439 Db *pDb = &db->aDb[i]; 440 if( pDb->pSchema ){ 441 sqlite3SchemaClear(pDb->pSchema); 442 } 443 } 444 db->flags &= ~SQLITE_InternChanges; 445 sqlite3VtabUnlockList(db); 446 sqlite3BtreeLeaveAll(db); 447 448 /* If one or more of the auxiliary database files has been closed, 449 ** then remove them from the auxiliary database list. We take the 450 ** opportunity to do this here since we have just deleted all of the 451 ** schema hash tables and therefore do not have to make any changes 452 ** to any of those tables. 453 */ 454 for(i=j=2; i<db->nDb; i++){ 455 struct Db *pDb = &db->aDb[i]; 456 if( pDb->pBt==0 ){ 457 sqlite3DbFree(db, pDb->zName); 458 pDb->zName = 0; 459 continue; 460 } 461 if( j<i ){ 462 db->aDb[j] = db->aDb[i]; 463 } 464 j++; 465 } 466 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); 467 db->nDb = j; 468 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 469 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 470 sqlite3DbFree(db, db->aDb); 471 db->aDb = db->aDbStatic; 472 } 473 } 474 475 /* 476 ** This routine is called when a commit occurs. 477 */ 478 void sqlite3CommitInternalChanges(sqlite3 *db){ 479 db->flags &= ~SQLITE_InternChanges; 480 } 481 482 /* 483 ** Delete memory allocated for the column names of a table or view (the 484 ** Table.aCol[] array). 485 */ 486 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ 487 int i; 488 Column *pCol; 489 assert( pTable!=0 ); 490 if( (pCol = pTable->aCol)!=0 ){ 491 for(i=0; i<pTable->nCol; i++, pCol++){ 492 sqlite3DbFree(db, pCol->zName); 493 sqlite3ExprDelete(db, pCol->pDflt); 494 sqlite3DbFree(db, pCol->zDflt); 495 sqlite3DbFree(db, pCol->zType); 496 sqlite3DbFree(db, pCol->zColl); 497 } 498 sqlite3DbFree(db, pTable->aCol); 499 } 500 } 501 502 /* 503 ** Remove the memory data structures associated with the given 504 ** Table. No changes are made to disk by this routine. 505 ** 506 ** This routine just deletes the data structure. It does not unlink 507 ** the table data structure from the hash table. But it does destroy 508 ** memory structures of the indices and foreign keys associated with 509 ** the table. 510 */ 511 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 512 Index *pIndex, *pNext; 513 514 assert( !pTable || pTable->nRef>0 ); 515 516 /* Do not delete the table until the reference count reaches zero. */ 517 if( !pTable ) return; 518 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; 519 520 /* Delete all indices associated with this table. */ 521 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 522 pNext = pIndex->pNext; 523 assert( pIndex->pSchema==pTable->pSchema ); 524 if( !db || db->pnBytesFreed==0 ){ 525 char *zName = pIndex->zName; 526 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 527 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 528 ); 529 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 530 assert( pOld==pIndex || pOld==0 ); 531 } 532 freeIndex(db, pIndex); 533 } 534 535 /* Delete any foreign keys attached to this table. */ 536 sqlite3FkDelete(db, pTable); 537 538 /* Delete the Table structure itself. 539 */ 540 sqliteDeleteColumnNames(db, pTable); 541 sqlite3DbFree(db, pTable->zName); 542 sqlite3DbFree(db, pTable->zColAff); 543 sqlite3SelectDelete(db, pTable->pSelect); 544 #ifndef SQLITE_OMIT_CHECK 545 sqlite3ExprDelete(db, pTable->pCheck); 546 #endif 547 #ifndef SQLITE_OMIT_VIRTUALTABLE 548 sqlite3VtabClear(db, pTable); 549 #endif 550 sqlite3DbFree(db, pTable); 551 } 552 553 /* 554 ** Unlink the given table from the hash tables and the delete the 555 ** table structure with all its indices and foreign keys. 556 */ 557 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 558 Table *p; 559 Db *pDb; 560 561 assert( db!=0 ); 562 assert( iDb>=0 && iDb<db->nDb ); 563 assert( zTabName ); 564 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 565 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ 566 pDb = &db->aDb[iDb]; 567 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 568 sqlite3Strlen30(zTabName),0); 569 sqlite3DeleteTable(db, p); 570 db->flags |= SQLITE_InternChanges; 571 } 572 573 /* 574 ** Given a token, return a string that consists of the text of that 575 ** token. Space to hold the returned string 576 ** is obtained from sqliteMalloc() and must be freed by the calling 577 ** function. 578 ** 579 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that 580 ** surround the body of the token are removed. 581 ** 582 ** Tokens are often just pointers into the original SQL text and so 583 ** are not \000 terminated and are not persistent. The returned string 584 ** is \000 terminated and is persistent. 585 */ 586 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ 587 char *zName; 588 if( pName ){ 589 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); 590 sqlite3Dequote(zName); 591 }else{ 592 zName = 0; 593 } 594 return zName; 595 } 596 597 /* 598 ** Open the sqlite_master table stored in database number iDb for 599 ** writing. The table is opened using cursor 0. 600 */ 601 void sqlite3OpenMasterTable(Parse *p, int iDb){ 602 Vdbe *v = sqlite3GetVdbe(p); 603 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 604 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); 605 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ 606 if( p->nTab==0 ){ 607 p->nTab = 1; 608 } 609 } 610 611 /* 612 ** Parameter zName points to a nul-terminated buffer containing the name 613 ** of a database ("main", "temp" or the name of an attached db). This 614 ** function returns the index of the named database in db->aDb[], or 615 ** -1 if the named db cannot be found. 616 */ 617 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 618 int i = -1; /* Database number */ 619 if( zName ){ 620 Db *pDb; 621 int n = sqlite3Strlen30(zName); 622 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 623 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 624 0==sqlite3StrICmp(pDb->zName, zName) ){ 625 break; 626 } 627 } 628 } 629 return i; 630 } 631 632 /* 633 ** The token *pName contains the name of a database (either "main" or 634 ** "temp" or the name of an attached db). This routine returns the 635 ** index of the named database in db->aDb[], or -1 if the named db 636 ** does not exist. 637 */ 638 int sqlite3FindDb(sqlite3 *db, Token *pName){ 639 int i; /* Database number */ 640 char *zName; /* Name we are searching for */ 641 zName = sqlite3NameFromToken(db, pName); 642 i = sqlite3FindDbName(db, zName); 643 sqlite3DbFree(db, zName); 644 return i; 645 } 646 647 /* The table or view or trigger name is passed to this routine via tokens 648 ** pName1 and pName2. If the table name was fully qualified, for example: 649 ** 650 ** CREATE TABLE xxx.yyy (...); 651 ** 652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 653 ** the table name is not fully qualified, i.e.: 654 ** 655 ** CREATE TABLE yyy(...); 656 ** 657 ** Then pName1 is set to "yyy" and pName2 is "". 658 ** 659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or 660 ** pName2) that stores the unqualified table name. The index of the 661 ** database "xxx" is returned. 662 */ 663 int sqlite3TwoPartName( 664 Parse *pParse, /* Parsing and code generating context */ 665 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 666 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 667 Token **pUnqual /* Write the unqualified object name here */ 668 ){ 669 int iDb; /* Database holding the object */ 670 sqlite3 *db = pParse->db; 671 672 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 673 if( db->init.busy ) { 674 sqlite3ErrorMsg(pParse, "corrupt database"); 675 pParse->nErr++; 676 return -1; 677 } 678 *pUnqual = pName2; 679 iDb = sqlite3FindDb(db, pName1); 680 if( iDb<0 ){ 681 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 682 pParse->nErr++; 683 return -1; 684 } 685 }else{ 686 assert( db->init.iDb==0 || db->init.busy ); 687 iDb = db->init.iDb; 688 *pUnqual = pName1; 689 } 690 return iDb; 691 } 692 693 /* 694 ** This routine is used to check if the UTF-8 string zName is a legal 695 ** unqualified name for a new schema object (table, index, view or 696 ** trigger). All names are legal except those that begin with the string 697 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace 698 ** is reserved for internal use. 699 */ 700 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ 701 if( !pParse->db->init.busy && pParse->nested==0 702 && (pParse->db->flags & SQLITE_WriteSchema)==0 703 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ 704 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); 705 return SQLITE_ERROR; 706 } 707 return SQLITE_OK; 708 } 709 710 /* 711 ** Begin constructing a new table representation in memory. This is 712 ** the first of several action routines that get called in response 713 ** to a CREATE TABLE statement. In particular, this routine is called 714 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp 715 ** flag is true if the table should be stored in the auxiliary database 716 ** file instead of in the main database file. This is normally the case 717 ** when the "TEMP" or "TEMPORARY" keyword occurs in between 718 ** CREATE and TABLE. 719 ** 720 ** The new table record is initialized and put in pParse->pNewTable. 721 ** As more of the CREATE TABLE statement is parsed, additional action 722 ** routines will be called to add more information to this record. 723 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine 724 ** is called to complete the construction of the new table record. 725 */ 726 void sqlite3StartTable( 727 Parse *pParse, /* Parser context */ 728 Token *pName1, /* First part of the name of the table or view */ 729 Token *pName2, /* Second part of the name of the table or view */ 730 int isTemp, /* True if this is a TEMP table */ 731 int isView, /* True if this is a VIEW */ 732 int isVirtual, /* True if this is a VIRTUAL table */ 733 int noErr /* Do nothing if table already exists */ 734 ){ 735 Table *pTable; 736 char *zName = 0; /* The name of the new table */ 737 sqlite3 *db = pParse->db; 738 Vdbe *v; 739 int iDb; /* Database number to create the table in */ 740 Token *pName; /* Unqualified name of the table to create */ 741 742 /* The table or view name to create is passed to this routine via tokens 743 ** pName1 and pName2. If the table name was fully qualified, for example: 744 ** 745 ** CREATE TABLE xxx.yyy (...); 746 ** 747 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 748 ** the table name is not fully qualified, i.e.: 749 ** 750 ** CREATE TABLE yyy(...); 751 ** 752 ** Then pName1 is set to "yyy" and pName2 is "". 753 ** 754 ** The call below sets the pName pointer to point at the token (pName1 or 755 ** pName2) that stores the unqualified table name. The variable iDb is 756 ** set to the index of the database that the table or view is to be 757 ** created in. 758 */ 759 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 760 if( iDb<0 ) return; 761 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ 762 /* If creating a temp table, the name may not be qualified. Unless 763 ** the database name is "temp" anyway. */ 764 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); 765 return; 766 } 767 if( !OMIT_TEMPDB && isTemp ) iDb = 1; 768 769 pParse->sNameToken = *pName; 770 zName = sqlite3NameFromToken(db, pName); 771 if( zName==0 ) return; 772 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 773 goto begin_table_error; 774 } 775 if( db->init.iDb==1 ) isTemp = 1; 776 #ifndef SQLITE_OMIT_AUTHORIZATION 777 assert( (isTemp & 1)==isTemp ); 778 { 779 int code; 780 char *zDb = db->aDb[iDb].zName; 781 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 782 goto begin_table_error; 783 } 784 if( isView ){ 785 if( !OMIT_TEMPDB && isTemp ){ 786 code = SQLITE_CREATE_TEMP_VIEW; 787 }else{ 788 code = SQLITE_CREATE_VIEW; 789 } 790 }else{ 791 if( !OMIT_TEMPDB && isTemp ){ 792 code = SQLITE_CREATE_TEMP_TABLE; 793 }else{ 794 code = SQLITE_CREATE_TABLE; 795 } 796 } 797 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ 798 goto begin_table_error; 799 } 800 } 801 #endif 802 803 /* Make sure the new table name does not collide with an existing 804 ** index or table name in the same database. Issue an error message if 805 ** it does. The exception is if the statement being parsed was passed 806 ** to an sqlite3_declare_vtab() call. In that case only the column names 807 ** and types will be used, so there is no need to test for namespace 808 ** collisions. 809 */ 810 if( !IN_DECLARE_VTAB ){ 811 char *zDb = db->aDb[iDb].zName; 812 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 813 goto begin_table_error; 814 } 815 pTable = sqlite3FindTable(db, zName, zDb); 816 if( pTable ){ 817 if( !noErr ){ 818 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 819 }else{ 820 assert( !db->init.busy ); 821 sqlite3CodeVerifySchema(pParse, iDb); 822 } 823 goto begin_table_error; 824 } 825 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 826 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 827 goto begin_table_error; 828 } 829 } 830 831 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 832 if( pTable==0 ){ 833 db->mallocFailed = 1; 834 pParse->rc = SQLITE_NOMEM; 835 pParse->nErr++; 836 goto begin_table_error; 837 } 838 pTable->zName = zName; 839 pTable->iPKey = -1; 840 pTable->pSchema = db->aDb[iDb].pSchema; 841 pTable->nRef = 1; 842 pTable->nRowEst = 1000000; 843 assert( pParse->pNewTable==0 ); 844 pParse->pNewTable = pTable; 845 846 /* If this is the magic sqlite_sequence table used by autoincrement, 847 ** then record a pointer to this table in the main database structure 848 ** so that INSERT can find the table easily. 849 */ 850 #ifndef SQLITE_OMIT_AUTOINCREMENT 851 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 852 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 853 pTable->pSchema->pSeqTab = pTable; 854 } 855 #endif 856 857 /* Begin generating the code that will insert the table record into 858 ** the SQLITE_MASTER table. Note in particular that we must go ahead 859 ** and allocate the record number for the table entry now. Before any 860 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause 861 ** indices to be created and the table record must come before the 862 ** indices. Hence, the record number for the table must be allocated 863 ** now. 864 */ 865 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ 866 int j1; 867 int fileFormat; 868 int reg1, reg2, reg3; 869 sqlite3BeginWriteOperation(pParse, 0, iDb); 870 871 #ifndef SQLITE_OMIT_VIRTUALTABLE 872 if( isVirtual ){ 873 sqlite3VdbeAddOp0(v, OP_VBegin); 874 } 875 #endif 876 877 /* If the file format and encoding in the database have not been set, 878 ** set them now. 879 */ 880 reg1 = pParse->regRowid = ++pParse->nMem; 881 reg2 = pParse->regRoot = ++pParse->nMem; 882 reg3 = ++pParse->nMem; 883 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 884 sqlite3VdbeUsesBtree(v, iDb); 885 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); 886 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 887 1 : SQLITE_MAX_FILE_FORMAT; 888 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 889 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 890 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); 891 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); 892 sqlite3VdbeJumpHere(v, j1); 893 894 /* This just creates a place-holder record in the sqlite_master table. 895 ** The record created does not contain anything yet. It will be replaced 896 ** by the real entry in code generated at sqlite3EndTable(). 897 ** 898 ** The rowid for the new entry is left in register pParse->regRowid. 899 ** The root page number of the new table is left in reg pParse->regRoot. 900 ** The rowid and root page number values are needed by the code that 901 ** sqlite3EndTable will generate. 902 */ 903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 904 if( isView || isVirtual ){ 905 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); 906 }else 907 #endif 908 { 909 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); 910 } 911 sqlite3OpenMasterTable(pParse, iDb); 912 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); 913 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); 914 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); 915 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 916 sqlite3VdbeAddOp0(v, OP_Close); 917 } 918 919 /* Normal (non-error) return. */ 920 return; 921 922 /* If an error occurs, we jump here */ 923 begin_table_error: 924 sqlite3DbFree(db, zName); 925 return; 926 } 927 928 /* 929 ** This macro is used to compare two strings in a case-insensitive manner. 930 ** It is slightly faster than calling sqlite3StrICmp() directly, but 931 ** produces larger code. 932 ** 933 ** WARNING: This macro is not compatible with the strcmp() family. It 934 ** returns true if the two strings are equal, otherwise false. 935 */ 936 #define STRICMP(x, y) (\ 937 sqlite3UpperToLower[*(unsigned char *)(x)]== \ 938 sqlite3UpperToLower[*(unsigned char *)(y)] \ 939 && sqlite3StrICmp((x)+1,(y)+1)==0 ) 940 941 /* 942 ** Add a new column to the table currently being constructed. 943 ** 944 ** The parser calls this routine once for each column declaration 945 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 946 ** first to get things going. Then this routine is called for each 947 ** column. 948 */ 949 void sqlite3AddColumn(Parse *pParse, Token *pName){ 950 Table *p; 951 int i; 952 char *z; 953 Column *pCol; 954 sqlite3 *db = pParse->db; 955 if( (p = pParse->pNewTable)==0 ) return; 956 #if SQLITE_MAX_COLUMN 957 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 958 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 959 return; 960 } 961 #endif 962 z = sqlite3NameFromToken(db, pName); 963 if( z==0 ) return; 964 for(i=0; i<p->nCol; i++){ 965 if( STRICMP(z, p->aCol[i].zName) ){ 966 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 967 sqlite3DbFree(db, z); 968 return; 969 } 970 } 971 if( (p->nCol & 0x7)==0 ){ 972 Column *aNew; 973 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 974 if( aNew==0 ){ 975 sqlite3DbFree(db, z); 976 return; 977 } 978 p->aCol = aNew; 979 } 980 pCol = &p->aCol[p->nCol]; 981 memset(pCol, 0, sizeof(p->aCol[0])); 982 pCol->zName = z; 983 984 /* If there is no type specified, columns have the default affinity 985 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will 986 ** be called next to set pCol->affinity correctly. 987 */ 988 pCol->affinity = SQLITE_AFF_NONE; 989 p->nCol++; 990 } 991 992 /* 993 ** This routine is called by the parser while in the middle of 994 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 995 ** been seen on a column. This routine sets the notNull flag on 996 ** the column currently under construction. 997 */ 998 void sqlite3AddNotNull(Parse *pParse, int onError){ 999 Table *p; 1000 p = pParse->pNewTable; 1001 if( p==0 || NEVER(p->nCol<1) ) return; 1002 p->aCol[p->nCol-1].notNull = (u8)onError; 1003 } 1004 1005 /* 1006 ** Scan the column type name zType (length nType) and return the 1007 ** associated affinity type. 1008 ** 1009 ** This routine does a case-independent search of zType for the 1010 ** substrings in the following table. If one of the substrings is 1011 ** found, the corresponding affinity is returned. If zType contains 1012 ** more than one of the substrings, entries toward the top of 1013 ** the table take priority. For example, if zType is 'BLOBINT', 1014 ** SQLITE_AFF_INTEGER is returned. 1015 ** 1016 ** Substring | Affinity 1017 ** -------------------------------- 1018 ** 'INT' | SQLITE_AFF_INTEGER 1019 ** 'CHAR' | SQLITE_AFF_TEXT 1020 ** 'CLOB' | SQLITE_AFF_TEXT 1021 ** 'TEXT' | SQLITE_AFF_TEXT 1022 ** 'BLOB' | SQLITE_AFF_NONE 1023 ** 'REAL' | SQLITE_AFF_REAL 1024 ** 'FLOA' | SQLITE_AFF_REAL 1025 ** 'DOUB' | SQLITE_AFF_REAL 1026 ** 1027 ** If none of the substrings in the above table are found, 1028 ** SQLITE_AFF_NUMERIC is returned. 1029 */ 1030 char sqlite3AffinityType(const char *zIn){ 1031 u32 h = 0; 1032 char aff = SQLITE_AFF_NUMERIC; 1033 1034 if( zIn ) while( zIn[0] ){ 1035 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1036 zIn++; 1037 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1038 aff = SQLITE_AFF_TEXT; 1039 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1040 aff = SQLITE_AFF_TEXT; 1041 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1042 aff = SQLITE_AFF_TEXT; 1043 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ 1044 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ 1045 aff = SQLITE_AFF_NONE; 1046 #ifndef SQLITE_OMIT_FLOATING_POINT 1047 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ 1048 && aff==SQLITE_AFF_NUMERIC ){ 1049 aff = SQLITE_AFF_REAL; 1050 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ 1051 && aff==SQLITE_AFF_NUMERIC ){ 1052 aff = SQLITE_AFF_REAL; 1053 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ 1054 && aff==SQLITE_AFF_NUMERIC ){ 1055 aff = SQLITE_AFF_REAL; 1056 #endif 1057 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ 1058 aff = SQLITE_AFF_INTEGER; 1059 break; 1060 } 1061 } 1062 1063 return aff; 1064 } 1065 1066 /* 1067 ** This routine is called by the parser while in the middle of 1068 ** parsing a CREATE TABLE statement. The pFirst token is the first 1069 ** token in the sequence of tokens that describe the type of the 1070 ** column currently under construction. pLast is the last token 1071 ** in the sequence. Use this information to construct a string 1072 ** that contains the typename of the column and store that string 1073 ** in zType. 1074 */ 1075 void sqlite3AddColumnType(Parse *pParse, Token *pType){ 1076 Table *p; 1077 Column *pCol; 1078 1079 p = pParse->pNewTable; 1080 if( p==0 || NEVER(p->nCol<1) ) return; 1081 pCol = &p->aCol[p->nCol-1]; 1082 assert( pCol->zType==0 ); 1083 pCol->zType = sqlite3NameFromToken(pParse->db, pType); 1084 pCol->affinity = sqlite3AffinityType(pCol->zType); 1085 } 1086 1087 /* 1088 ** The expression is the default value for the most recently added column 1089 ** of the table currently under construction. 1090 ** 1091 ** Default value expressions must be constant. Raise an exception if this 1092 ** is not the case. 1093 ** 1094 ** This routine is called by the parser while in the middle of 1095 ** parsing a CREATE TABLE statement. 1096 */ 1097 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1098 Table *p; 1099 Column *pCol; 1100 sqlite3 *db = pParse->db; 1101 p = pParse->pNewTable; 1102 if( p!=0 ){ 1103 pCol = &(p->aCol[p->nCol-1]); 1104 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ 1105 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1106 pCol->zName); 1107 }else{ 1108 /* A copy of pExpr is used instead of the original, as pExpr contains 1109 ** tokens that point to volatile memory. The 'span' of the expression 1110 ** is required by pragma table_info. 1111 */ 1112 sqlite3ExprDelete(db, pCol->pDflt); 1113 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1114 sqlite3DbFree(db, pCol->zDflt); 1115 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1116 (int)(pSpan->zEnd - pSpan->zStart)); 1117 } 1118 } 1119 sqlite3ExprDelete(db, pSpan->pExpr); 1120 } 1121 1122 /* 1123 ** Designate the PRIMARY KEY for the table. pList is a list of names 1124 ** of columns that form the primary key. If pList is NULL, then the 1125 ** most recently added column of the table is the primary key. 1126 ** 1127 ** A table can have at most one primary key. If the table already has 1128 ** a primary key (and this is the second primary key) then create an 1129 ** error. 1130 ** 1131 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, 1132 ** then we will try to use that column as the rowid. Set the Table.iPKey 1133 ** field of the table under construction to be the index of the 1134 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is 1135 ** no INTEGER PRIMARY KEY. 1136 ** 1137 ** If the key is not an INTEGER PRIMARY KEY, then create a unique 1138 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1139 */ 1140 void sqlite3AddPrimaryKey( 1141 Parse *pParse, /* Parsing context */ 1142 ExprList *pList, /* List of field names to be indexed */ 1143 int onError, /* What to do with a uniqueness conflict */ 1144 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1145 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1146 ){ 1147 Table *pTab = pParse->pNewTable; 1148 char *zType = 0; 1149 int iCol = -1, i; 1150 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1151 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1152 sqlite3ErrorMsg(pParse, 1153 "table \"%s\" has more than one primary key", pTab->zName); 1154 goto primary_key_exit; 1155 } 1156 pTab->tabFlags |= TF_HasPrimaryKey; 1157 if( pList==0 ){ 1158 iCol = pTab->nCol - 1; 1159 pTab->aCol[iCol].isPrimKey = 1; 1160 }else{ 1161 for(i=0; i<pList->nExpr; i++){ 1162 for(iCol=0; iCol<pTab->nCol; iCol++){ 1163 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ 1164 break; 1165 } 1166 } 1167 if( iCol<pTab->nCol ){ 1168 pTab->aCol[iCol].isPrimKey = 1; 1169 } 1170 } 1171 if( pList->nExpr>1 ) iCol = -1; 1172 } 1173 if( iCol>=0 && iCol<pTab->nCol ){ 1174 zType = pTab->aCol[iCol].zType; 1175 } 1176 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 1177 && sortOrder==SQLITE_SO_ASC ){ 1178 pTab->iPKey = iCol; 1179 pTab->keyConf = (u8)onError; 1180 assert( autoInc==0 || autoInc==1 ); 1181 pTab->tabFlags |= autoInc*TF_Autoincrement; 1182 }else if( autoInc ){ 1183 #ifndef SQLITE_OMIT_AUTOINCREMENT 1184 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1185 "INTEGER PRIMARY KEY"); 1186 #endif 1187 }else{ 1188 Index *p; 1189 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); 1190 if( p ){ 1191 p->autoIndex = 2; 1192 } 1193 pList = 0; 1194 } 1195 1196 primary_key_exit: 1197 sqlite3ExprListDelete(pParse->db, pList); 1198 return; 1199 } 1200 1201 /* 1202 ** Add a new CHECK constraint to the table currently under construction. 1203 */ 1204 void sqlite3AddCheckConstraint( 1205 Parse *pParse, /* Parsing context */ 1206 Expr *pCheckExpr /* The check expression */ 1207 ){ 1208 sqlite3 *db = pParse->db; 1209 #ifndef SQLITE_OMIT_CHECK 1210 Table *pTab = pParse->pNewTable; 1211 if( pTab && !IN_DECLARE_VTAB ){ 1212 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); 1213 }else 1214 #endif 1215 { 1216 sqlite3ExprDelete(db, pCheckExpr); 1217 } 1218 } 1219 1220 /* 1221 ** Set the collation function of the most recently parsed table column 1222 ** to the CollSeq given. 1223 */ 1224 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ 1225 Table *p; 1226 int i; 1227 char *zColl; /* Dequoted name of collation sequence */ 1228 sqlite3 *db; 1229 1230 if( (p = pParse->pNewTable)==0 ) return; 1231 i = p->nCol-1; 1232 db = pParse->db; 1233 zColl = sqlite3NameFromToken(db, pToken); 1234 if( !zColl ) return; 1235 1236 if( sqlite3LocateCollSeq(pParse, zColl) ){ 1237 Index *pIdx; 1238 p->aCol[i].zColl = zColl; 1239 1240 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", 1241 ** then an index may have been created on this column before the 1242 ** collation type was added. Correct this if it is the case. 1243 */ 1244 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ 1245 assert( pIdx->nColumn==1 ); 1246 if( pIdx->aiColumn[0]==i ){ 1247 pIdx->azColl[0] = p->aCol[i].zColl; 1248 } 1249 } 1250 }else{ 1251 sqlite3DbFree(db, zColl); 1252 } 1253 } 1254 1255 /* 1256 ** This function returns the collation sequence for database native text 1257 ** encoding identified by the string zName, length nName. 1258 ** 1259 ** If the requested collation sequence is not available, or not available 1260 ** in the database native encoding, the collation factory is invoked to 1261 ** request it. If the collation factory does not supply such a sequence, 1262 ** and the sequence is available in another text encoding, then that is 1263 ** returned instead. 1264 ** 1265 ** If no versions of the requested collations sequence are available, or 1266 ** another error occurs, NULL is returned and an error message written into 1267 ** pParse. 1268 ** 1269 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine 1270 ** invokes the collation factory if the named collation cannot be found 1271 ** and generates an error message. 1272 ** 1273 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() 1274 */ 1275 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ 1276 sqlite3 *db = pParse->db; 1277 u8 enc = ENC(db); 1278 u8 initbusy = db->init.busy; 1279 CollSeq *pColl; 1280 1281 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); 1282 if( !initbusy && (!pColl || !pColl->xCmp) ){ 1283 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); 1284 if( !pColl ){ 1285 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); 1286 } 1287 } 1288 1289 return pColl; 1290 } 1291 1292 1293 /* 1294 ** Generate code that will increment the schema cookie. 1295 ** 1296 ** The schema cookie is used to determine when the schema for the 1297 ** database changes. After each schema change, the cookie value 1298 ** changes. When a process first reads the schema it records the 1299 ** cookie. Thereafter, whenever it goes to access the database, 1300 ** it checks the cookie to make sure the schema has not changed 1301 ** since it was last read. 1302 ** 1303 ** This plan is not completely bullet-proof. It is possible for 1304 ** the schema to change multiple times and for the cookie to be 1305 ** set back to prior value. But schema changes are infrequent 1306 ** and the probability of hitting the same cookie value is only 1307 ** 1 chance in 2^32. So we're safe enough. 1308 */ 1309 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1310 int r1 = sqlite3GetTempReg(pParse); 1311 sqlite3 *db = pParse->db; 1312 Vdbe *v = pParse->pVdbe; 1313 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1314 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1315 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1316 sqlite3ReleaseTempReg(pParse, r1); 1317 } 1318 1319 /* 1320 ** Measure the number of characters needed to output the given 1321 ** identifier. The number returned includes any quotes used 1322 ** but does not include the null terminator. 1323 ** 1324 ** The estimate is conservative. It might be larger that what is 1325 ** really needed. 1326 */ 1327 static int identLength(const char *z){ 1328 int n; 1329 for(n=0; *z; n++, z++){ 1330 if( *z=='"' ){ n++; } 1331 } 1332 return n + 2; 1333 } 1334 1335 /* 1336 ** The first parameter is a pointer to an output buffer. The second 1337 ** parameter is a pointer to an integer that contains the offset at 1338 ** which to write into the output buffer. This function copies the 1339 ** nul-terminated string pointed to by the third parameter, zSignedIdent, 1340 ** to the specified offset in the buffer and updates *pIdx to refer 1341 ** to the first byte after the last byte written before returning. 1342 ** 1343 ** If the string zSignedIdent consists entirely of alpha-numeric 1344 ** characters, does not begin with a digit and is not an SQL keyword, 1345 ** then it is copied to the output buffer exactly as it is. Otherwise, 1346 ** it is quoted using double-quotes. 1347 */ 1348 static void identPut(char *z, int *pIdx, char *zSignedIdent){ 1349 unsigned char *zIdent = (unsigned char*)zSignedIdent; 1350 int i, j, needQuote; 1351 i = *pIdx; 1352 1353 for(j=0; zIdent[j]; j++){ 1354 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; 1355 } 1356 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; 1357 if( !needQuote ){ 1358 needQuote = zIdent[j]; 1359 } 1360 1361 if( needQuote ) z[i++] = '"'; 1362 for(j=0; zIdent[j]; j++){ 1363 z[i++] = zIdent[j]; 1364 if( zIdent[j]=='"' ) z[i++] = '"'; 1365 } 1366 if( needQuote ) z[i++] = '"'; 1367 z[i] = 0; 1368 *pIdx = i; 1369 } 1370 1371 /* 1372 ** Generate a CREATE TABLE statement appropriate for the given 1373 ** table. Memory to hold the text of the statement is obtained 1374 ** from sqliteMalloc() and must be freed by the calling function. 1375 */ 1376 static char *createTableStmt(sqlite3 *db, Table *p){ 1377 int i, k, n; 1378 char *zStmt; 1379 char *zSep, *zSep2, *zEnd; 1380 Column *pCol; 1381 n = 0; 1382 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ 1383 n += identLength(pCol->zName) + 5; 1384 } 1385 n += identLength(p->zName); 1386 if( n<50 ){ 1387 zSep = ""; 1388 zSep2 = ","; 1389 zEnd = ")"; 1390 }else{ 1391 zSep = "\n "; 1392 zSep2 = ",\n "; 1393 zEnd = "\n)"; 1394 } 1395 n += 35 + 6*p->nCol; 1396 zStmt = sqlite3DbMallocRaw(0, n); 1397 if( zStmt==0 ){ 1398 db->mallocFailed = 1; 1399 return 0; 1400 } 1401 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1402 k = sqlite3Strlen30(zStmt); 1403 identPut(zStmt, &k, p->zName); 1404 zStmt[k++] = '('; 1405 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1406 static const char * const azType[] = { 1407 /* SQLITE_AFF_TEXT */ " TEXT", 1408 /* SQLITE_AFF_NONE */ "", 1409 /* SQLITE_AFF_NUMERIC */ " NUM", 1410 /* SQLITE_AFF_INTEGER */ " INT", 1411 /* SQLITE_AFF_REAL */ " REAL" 1412 }; 1413 int len; 1414 const char *zType; 1415 1416 sqlite3_snprintf(n-k, &zStmt[k], zSep); 1417 k += sqlite3Strlen30(&zStmt[k]); 1418 zSep = zSep2; 1419 identPut(zStmt, &k, pCol->zName); 1420 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); 1421 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); 1422 testcase( pCol->affinity==SQLITE_AFF_TEXT ); 1423 testcase( pCol->affinity==SQLITE_AFF_NONE ); 1424 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); 1425 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); 1426 testcase( pCol->affinity==SQLITE_AFF_REAL ); 1427 1428 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; 1429 len = sqlite3Strlen30(zType); 1430 assert( pCol->affinity==SQLITE_AFF_NONE 1431 || pCol->affinity==sqlite3AffinityType(zType) ); 1432 memcpy(&zStmt[k], zType, len); 1433 k += len; 1434 assert( k<=n ); 1435 } 1436 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); 1437 return zStmt; 1438 } 1439 1440 /* 1441 ** This routine is called to report the final ")" that terminates 1442 ** a CREATE TABLE statement. 1443 ** 1444 ** The table structure that other action routines have been building 1445 ** is added to the internal hash tables, assuming no errors have 1446 ** occurred. 1447 ** 1448 ** An entry for the table is made in the master table on disk, unless 1449 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 1450 ** it means we are reading the sqlite_master table because we just 1451 ** connected to the database or because the sqlite_master table has 1452 ** recently changed, so the entry for this table already exists in 1453 ** the sqlite_master table. We do not want to create it again. 1454 ** 1455 ** If the pSelect argument is not NULL, it means that this routine 1456 ** was called to create a table generated from a 1457 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of 1458 ** the new table will match the result set of the SELECT. 1459 */ 1460 void sqlite3EndTable( 1461 Parse *pParse, /* Parse context */ 1462 Token *pCons, /* The ',' token after the last column defn. */ 1463 Token *pEnd, /* The final ')' token in the CREATE TABLE */ 1464 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ 1465 ){ 1466 Table *p; 1467 sqlite3 *db = pParse->db; 1468 int iDb; 1469 1470 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ 1471 return; 1472 } 1473 p = pParse->pNewTable; 1474 if( p==0 ) return; 1475 1476 assert( !db->init.busy || !pSelect ); 1477 1478 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1479 1480 #ifndef SQLITE_OMIT_CHECK 1481 /* Resolve names in all CHECK constraint expressions. 1482 */ 1483 if( p->pCheck ){ 1484 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ 1485 NameContext sNC; /* Name context for pParse->pNewTable */ 1486 1487 memset(&sNC, 0, sizeof(sNC)); 1488 memset(&sSrc, 0, sizeof(sSrc)); 1489 sSrc.nSrc = 1; 1490 sSrc.a[0].zName = p->zName; 1491 sSrc.a[0].pTab = p; 1492 sSrc.a[0].iCursor = -1; 1493 sNC.pParse = pParse; 1494 sNC.pSrcList = &sSrc; 1495 sNC.isCheck = 1; 1496 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ 1497 return; 1498 } 1499 } 1500 #endif /* !defined(SQLITE_OMIT_CHECK) */ 1501 1502 /* If the db->init.busy is 1 it means we are reading the SQL off the 1503 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1504 ** So do not write to the disk again. Extract the root page number 1505 ** for the table from the db->init.newTnum field. (The page number 1506 ** should have been put there by the sqliteOpenCb routine.) 1507 */ 1508 if( db->init.busy ){ 1509 p->tnum = db->init.newTnum; 1510 } 1511 1512 /* If not initializing, then create a record for the new table 1513 ** in the SQLITE_MASTER table of the database. 1514 ** 1515 ** If this is a TEMPORARY table, write the entry into the auxiliary 1516 ** file instead of into the main database file. 1517 */ 1518 if( !db->init.busy ){ 1519 int n; 1520 Vdbe *v; 1521 char *zType; /* "view" or "table" */ 1522 char *zType2; /* "VIEW" or "TABLE" */ 1523 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ 1524 1525 v = sqlite3GetVdbe(pParse); 1526 if( NEVER(v==0) ) return; 1527 1528 sqlite3VdbeAddOp1(v, OP_Close, 0); 1529 1530 /* 1531 ** Initialize zType for the new view or table. 1532 */ 1533 if( p->pSelect==0 ){ 1534 /* A regular table */ 1535 zType = "table"; 1536 zType2 = "TABLE"; 1537 #ifndef SQLITE_OMIT_VIEW 1538 }else{ 1539 /* A view */ 1540 zType = "view"; 1541 zType2 = "VIEW"; 1542 #endif 1543 } 1544 1545 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT 1546 ** statement to populate the new table. The root-page number for the 1547 ** new table is in register pParse->regRoot. 1548 ** 1549 ** Once the SELECT has been coded by sqlite3Select(), it is in a 1550 ** suitable state to query for the column names and types to be used 1551 ** by the new table. 1552 ** 1553 ** A shared-cache write-lock is not required to write to the new table, 1554 ** as a schema-lock must have already been obtained to create it. Since 1555 ** a schema-lock excludes all other database users, the write-lock would 1556 ** be redundant. 1557 */ 1558 if( pSelect ){ 1559 SelectDest dest; 1560 Table *pSelTab; 1561 1562 assert(pParse->nTab==1); 1563 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1564 sqlite3VdbeChangeP5(v, 1); 1565 pParse->nTab = 2; 1566 sqlite3SelectDestInit(&dest, SRT_Table, 1); 1567 sqlite3Select(pParse, pSelect, &dest); 1568 sqlite3VdbeAddOp1(v, OP_Close, 1); 1569 if( pParse->nErr==0 ){ 1570 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1571 if( pSelTab==0 ) return; 1572 assert( p->aCol==0 ); 1573 p->nCol = pSelTab->nCol; 1574 p->aCol = pSelTab->aCol; 1575 pSelTab->nCol = 0; 1576 pSelTab->aCol = 0; 1577 sqlite3DeleteTable(db, pSelTab); 1578 } 1579 } 1580 1581 /* Compute the complete text of the CREATE statement */ 1582 if( pSelect ){ 1583 zStmt = createTableStmt(db, p); 1584 }else{ 1585 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; 1586 zStmt = sqlite3MPrintf(db, 1587 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z 1588 ); 1589 } 1590 1591 /* A slot for the record has already been allocated in the 1592 ** SQLITE_MASTER table. We just need to update that slot with all 1593 ** the information we've collected. 1594 */ 1595 sqlite3NestedParse(pParse, 1596 "UPDATE %Q.%s " 1597 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 1598 "WHERE rowid=#%d", 1599 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 1600 zType, 1601 p->zName, 1602 p->zName, 1603 pParse->regRoot, 1604 zStmt, 1605 pParse->regRowid 1606 ); 1607 sqlite3DbFree(db, zStmt); 1608 sqlite3ChangeCookie(pParse, iDb); 1609 1610 #ifndef SQLITE_OMIT_AUTOINCREMENT 1611 /* Check to see if we need to create an sqlite_sequence table for 1612 ** keeping track of autoincrement keys. 1613 */ 1614 if( p->tabFlags & TF_Autoincrement ){ 1615 Db *pDb = &db->aDb[iDb]; 1616 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1617 if( pDb->pSchema->pSeqTab==0 ){ 1618 sqlite3NestedParse(pParse, 1619 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 1620 pDb->zName 1621 ); 1622 } 1623 } 1624 #endif 1625 1626 /* Reparse everything to update our internal data structures */ 1627 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 1628 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); 1629 } 1630 1631 1632 /* Add the table to the in-memory representation of the database. 1633 */ 1634 if( db->init.busy ){ 1635 Table *pOld; 1636 Schema *pSchema = p->pSchema; 1637 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1638 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, 1639 sqlite3Strlen30(p->zName),p); 1640 if( pOld ){ 1641 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 1642 db->mallocFailed = 1; 1643 return; 1644 } 1645 pParse->pNewTable = 0; 1646 db->nTable++; 1647 db->flags |= SQLITE_InternChanges; 1648 1649 #ifndef SQLITE_OMIT_ALTERTABLE 1650 if( !p->pSelect ){ 1651 const char *zName = (const char *)pParse->sNameToken.z; 1652 int nName; 1653 assert( !pSelect && pCons && pEnd ); 1654 if( pCons->z==0 ){ 1655 pCons = pEnd; 1656 } 1657 nName = (int)((const char *)pCons->z - zName); 1658 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); 1659 } 1660 #endif 1661 } 1662 } 1663 1664 #ifndef SQLITE_OMIT_VIEW 1665 /* 1666 ** The parser calls this routine in order to create a new VIEW 1667 */ 1668 void sqlite3CreateView( 1669 Parse *pParse, /* The parsing context */ 1670 Token *pBegin, /* The CREATE token that begins the statement */ 1671 Token *pName1, /* The token that holds the name of the view */ 1672 Token *pName2, /* The token that holds the name of the view */ 1673 Select *pSelect, /* A SELECT statement that will become the new view */ 1674 int isTemp, /* TRUE for a TEMPORARY view */ 1675 int noErr /* Suppress error messages if VIEW already exists */ 1676 ){ 1677 Table *p; 1678 int n; 1679 const char *z; 1680 Token sEnd; 1681 DbFixer sFix; 1682 Token *pName; 1683 int iDb; 1684 sqlite3 *db = pParse->db; 1685 1686 if( pParse->nVar>0 ){ 1687 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); 1688 sqlite3SelectDelete(db, pSelect); 1689 return; 1690 } 1691 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); 1692 p = pParse->pNewTable; 1693 if( p==0 || pParse->nErr ){ 1694 sqlite3SelectDelete(db, pSelect); 1695 return; 1696 } 1697 sqlite3TwoPartName(pParse, pName1, pName2, &pName); 1698 iDb = sqlite3SchemaToIndex(db, p->pSchema); 1699 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) 1700 && sqlite3FixSelect(&sFix, pSelect) 1701 ){ 1702 sqlite3SelectDelete(db, pSelect); 1703 return; 1704 } 1705 1706 /* Make a copy of the entire SELECT statement that defines the view. 1707 ** This will force all the Expr.token.z values to be dynamically 1708 ** allocated rather than point to the input string - which means that 1709 ** they will persist after the current sqlite3_exec() call returns. 1710 */ 1711 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 1712 sqlite3SelectDelete(db, pSelect); 1713 if( db->mallocFailed ){ 1714 return; 1715 } 1716 if( !db->init.busy ){ 1717 sqlite3ViewGetColumnNames(pParse, p); 1718 } 1719 1720 /* Locate the end of the CREATE VIEW statement. Make sEnd point to 1721 ** the end. 1722 */ 1723 sEnd = pParse->sLastToken; 1724 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ 1725 sEnd.z += sEnd.n; 1726 } 1727 sEnd.n = 0; 1728 n = (int)(sEnd.z - pBegin->z); 1729 z = pBegin->z; 1730 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } 1731 sEnd.z = &z[n-1]; 1732 sEnd.n = 1; 1733 1734 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ 1735 sqlite3EndTable(pParse, 0, &sEnd, 0); 1736 return; 1737 } 1738 #endif /* SQLITE_OMIT_VIEW */ 1739 1740 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 1741 /* 1742 ** The Table structure pTable is really a VIEW. Fill in the names of 1743 ** the columns of the view in the pTable structure. Return the number 1744 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 1745 */ 1746 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 1747 Table *pSelTab; /* A fake table from which we get the result set */ 1748 Select *pSel; /* Copy of the SELECT that implements the view */ 1749 int nErr = 0; /* Number of errors encountered */ 1750 int n; /* Temporarily holds the number of cursors assigned */ 1751 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 1752 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 1753 1754 assert( pTable ); 1755 1756 #ifndef SQLITE_OMIT_VIRTUALTABLE 1757 if( sqlite3VtabCallConnect(pParse, pTable) ){ 1758 return SQLITE_ERROR; 1759 } 1760 if( IsVirtual(pTable) ) return 0; 1761 #endif 1762 1763 #ifndef SQLITE_OMIT_VIEW 1764 /* A positive nCol means the columns names for this view are 1765 ** already known. 1766 */ 1767 if( pTable->nCol>0 ) return 0; 1768 1769 /* A negative nCol is a special marker meaning that we are currently 1770 ** trying to compute the column names. If we enter this routine with 1771 ** a negative nCol, it means two or more views form a loop, like this: 1772 ** 1773 ** CREATE VIEW one AS SELECT * FROM two; 1774 ** CREATE VIEW two AS SELECT * FROM one; 1775 ** 1776 ** Actually, the error above is now caught prior to reaching this point. 1777 ** But the following test is still important as it does come up 1778 ** in the following: 1779 ** 1780 ** CREATE TABLE main.ex1(a); 1781 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; 1782 ** SELECT * FROM temp.ex1; 1783 */ 1784 if( pTable->nCol<0 ){ 1785 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); 1786 return 1; 1787 } 1788 assert( pTable->nCol>=0 ); 1789 1790 /* If we get this far, it means we need to compute the table names. 1791 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 1792 ** "*" elements in the results set of the view and will assign cursors 1793 ** to the elements of the FROM clause. But we do not want these changes 1794 ** to be permanent. So the computation is done on a copy of the SELECT 1795 ** statement that defines the view. 1796 */ 1797 assert( pTable->pSelect ); 1798 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); 1799 if( pSel ){ 1800 u8 enableLookaside = db->lookaside.bEnabled; 1801 n = pParse->nTab; 1802 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); 1803 pTable->nCol = -1; 1804 db->lookaside.bEnabled = 0; 1805 #ifndef SQLITE_OMIT_AUTHORIZATION 1806 xAuth = db->xAuth; 1807 db->xAuth = 0; 1808 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1809 db->xAuth = xAuth; 1810 #else 1811 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 1812 #endif 1813 db->lookaside.bEnabled = enableLookaside; 1814 pParse->nTab = n; 1815 if( pSelTab ){ 1816 assert( pTable->aCol==0 ); 1817 pTable->nCol = pSelTab->nCol; 1818 pTable->aCol = pSelTab->aCol; 1819 pSelTab->nCol = 0; 1820 pSelTab->aCol = 0; 1821 sqlite3DeleteTable(db, pSelTab); 1822 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 1823 pTable->pSchema->flags |= DB_UnresetViews; 1824 }else{ 1825 pTable->nCol = 0; 1826 nErr++; 1827 } 1828 sqlite3SelectDelete(db, pSel); 1829 } else { 1830 nErr++; 1831 } 1832 #endif /* SQLITE_OMIT_VIEW */ 1833 return nErr; 1834 } 1835 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1836 1837 #ifndef SQLITE_OMIT_VIEW 1838 /* 1839 ** Clear the column names from every VIEW in database idx. 1840 */ 1841 static void sqliteViewResetAll(sqlite3 *db, int idx){ 1842 HashElem *i; 1843 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); 1844 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; 1845 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ 1846 Table *pTab = sqliteHashData(i); 1847 if( pTab->pSelect ){ 1848 sqliteDeleteColumnNames(db, pTab); 1849 pTab->aCol = 0; 1850 pTab->nCol = 0; 1851 } 1852 } 1853 DbClearProperty(db, idx, DB_UnresetViews); 1854 } 1855 #else 1856 # define sqliteViewResetAll(A,B) 1857 #endif /* SQLITE_OMIT_VIEW */ 1858 1859 /* 1860 ** This function is called by the VDBE to adjust the internal schema 1861 ** used by SQLite when the btree layer moves a table root page. The 1862 ** root-page of a table or index in database iDb has changed from iFrom 1863 ** to iTo. 1864 ** 1865 ** Ticket #1728: The symbol table might still contain information 1866 ** on tables and/or indices that are the process of being deleted. 1867 ** If you are unlucky, one of those deleted indices or tables might 1868 ** have the same rootpage number as the real table or index that is 1869 ** being moved. So we cannot stop searching after the first match 1870 ** because the first match might be for one of the deleted indices 1871 ** or tables and not the table/index that is actually being moved. 1872 ** We must continue looping until all tables and indices with 1873 ** rootpage==iFrom have been converted to have a rootpage of iTo 1874 ** in order to be certain that we got the right one. 1875 */ 1876 #ifndef SQLITE_OMIT_AUTOVACUUM 1877 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ 1878 HashElem *pElem; 1879 Hash *pHash; 1880 Db *pDb; 1881 1882 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1883 pDb = &db->aDb[iDb]; 1884 pHash = &pDb->pSchema->tblHash; 1885 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1886 Table *pTab = sqliteHashData(pElem); 1887 if( pTab->tnum==iFrom ){ 1888 pTab->tnum = iTo; 1889 } 1890 } 1891 pHash = &pDb->pSchema->idxHash; 1892 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ 1893 Index *pIdx = sqliteHashData(pElem); 1894 if( pIdx->tnum==iFrom ){ 1895 pIdx->tnum = iTo; 1896 } 1897 } 1898 } 1899 #endif 1900 1901 /* 1902 ** Write code to erase the table with root-page iTable from database iDb. 1903 ** Also write code to modify the sqlite_master table and internal schema 1904 ** if a root-page of another table is moved by the btree-layer whilst 1905 ** erasing iTable (this can happen with an auto-vacuum database). 1906 */ 1907 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 1908 Vdbe *v = sqlite3GetVdbe(pParse); 1909 int r1 = sqlite3GetTempReg(pParse); 1910 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 1911 sqlite3MayAbort(pParse); 1912 #ifndef SQLITE_OMIT_AUTOVACUUM 1913 /* OP_Destroy stores an in integer r1. If this integer 1914 ** is non-zero, then it is the root page number of a table moved to 1915 ** location iTable. The following code modifies the sqlite_master table to 1916 ** reflect this. 1917 ** 1918 ** The "#NNN" in the SQL is a special constant that means whatever value 1919 ** is in register NNN. See grammar rules associated with the TK_REGISTER 1920 ** token for additional information. 1921 */ 1922 sqlite3NestedParse(pParse, 1923 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 1924 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 1925 #endif 1926 sqlite3ReleaseTempReg(pParse, r1); 1927 } 1928 1929 /* 1930 ** Write VDBE code to erase table pTab and all associated indices on disk. 1931 ** Code to update the sqlite_master tables and internal schema definitions 1932 ** in case a root-page belonging to another table is moved by the btree layer 1933 ** is also added (this can happen with an auto-vacuum database). 1934 */ 1935 static void destroyTable(Parse *pParse, Table *pTab){ 1936 #ifdef SQLITE_OMIT_AUTOVACUUM 1937 Index *pIdx; 1938 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1939 destroyRootPage(pParse, pTab->tnum, iDb); 1940 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1941 destroyRootPage(pParse, pIdx->tnum, iDb); 1942 } 1943 #else 1944 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM 1945 ** is not defined), then it is important to call OP_Destroy on the 1946 ** table and index root-pages in order, starting with the numerically 1947 ** largest root-page number. This guarantees that none of the root-pages 1948 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the 1949 ** following were coded: 1950 ** 1951 ** OP_Destroy 4 0 1952 ** ... 1953 ** OP_Destroy 5 0 1954 ** 1955 ** and root page 5 happened to be the largest root-page number in the 1956 ** database, then root page 5 would be moved to page 4 by the 1957 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit 1958 ** a free-list page. 1959 */ 1960 int iTab = pTab->tnum; 1961 int iDestroyed = 0; 1962 1963 while( 1 ){ 1964 Index *pIdx; 1965 int iLargest = 0; 1966 1967 if( iDestroyed==0 || iTab<iDestroyed ){ 1968 iLargest = iTab; 1969 } 1970 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1971 int iIdx = pIdx->tnum; 1972 assert( pIdx->pSchema==pTab->pSchema ); 1973 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ 1974 iLargest = iIdx; 1975 } 1976 } 1977 if( iLargest==0 ){ 1978 return; 1979 }else{ 1980 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1981 destroyRootPage(pParse, iLargest, iDb); 1982 iDestroyed = iLargest; 1983 } 1984 } 1985 #endif 1986 } 1987 1988 /* 1989 ** This routine is called to do the work of a DROP TABLE statement. 1990 ** pName is the name of the table to be dropped. 1991 */ 1992 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ 1993 Table *pTab; 1994 Vdbe *v; 1995 sqlite3 *db = pParse->db; 1996 int iDb; 1997 1998 if( db->mallocFailed ){ 1999 goto exit_drop_table; 2000 } 2001 assert( pParse->nErr==0 ); 2002 assert( pName->nSrc==1 ); 2003 if( noErr ) db->suppressErr++; 2004 pTab = sqlite3LocateTable(pParse, isView, 2005 pName->a[0].zName, pName->a[0].zDatabase); 2006 if( noErr ) db->suppressErr--; 2007 2008 if( pTab==0 ){ 2009 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2010 goto exit_drop_table; 2011 } 2012 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2013 assert( iDb>=0 && iDb<db->nDb ); 2014 2015 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2016 ** it is initialized. 2017 */ 2018 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2019 goto exit_drop_table; 2020 } 2021 #ifndef SQLITE_OMIT_AUTHORIZATION 2022 { 2023 int code; 2024 const char *zTab = SCHEMA_TABLE(iDb); 2025 const char *zDb = db->aDb[iDb].zName; 2026 const char *zArg2 = 0; 2027 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2028 goto exit_drop_table; 2029 } 2030 if( isView ){ 2031 if( !OMIT_TEMPDB && iDb==1 ){ 2032 code = SQLITE_DROP_TEMP_VIEW; 2033 }else{ 2034 code = SQLITE_DROP_VIEW; 2035 } 2036 #ifndef SQLITE_OMIT_VIRTUALTABLE 2037 }else if( IsVirtual(pTab) ){ 2038 code = SQLITE_DROP_VTABLE; 2039 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; 2040 #endif 2041 }else{ 2042 if( !OMIT_TEMPDB && iDb==1 ){ 2043 code = SQLITE_DROP_TEMP_TABLE; 2044 }else{ 2045 code = SQLITE_DROP_TABLE; 2046 } 2047 } 2048 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ 2049 goto exit_drop_table; 2050 } 2051 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ 2052 goto exit_drop_table; 2053 } 2054 } 2055 #endif 2056 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ 2057 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); 2058 goto exit_drop_table; 2059 } 2060 2061 #ifndef SQLITE_OMIT_VIEW 2062 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used 2063 ** on a table. 2064 */ 2065 if( isView && pTab->pSelect==0 ){ 2066 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); 2067 goto exit_drop_table; 2068 } 2069 if( !isView && pTab->pSelect ){ 2070 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); 2071 goto exit_drop_table; 2072 } 2073 #endif 2074 2075 /* Generate code to remove the table from the master table 2076 ** on disk. 2077 */ 2078 v = sqlite3GetVdbe(pParse); 2079 if( v ){ 2080 Trigger *pTrigger; 2081 Db *pDb = &db->aDb[iDb]; 2082 sqlite3BeginWriteOperation(pParse, 1, iDb); 2083 2084 #ifndef SQLITE_OMIT_VIRTUALTABLE 2085 if( IsVirtual(pTab) ){ 2086 sqlite3VdbeAddOp0(v, OP_VBegin); 2087 } 2088 #endif 2089 sqlite3FkDropTable(pParse, pName, pTab); 2090 2091 /* Drop all triggers associated with the table being dropped. Code 2092 ** is generated to remove entries from sqlite_master and/or 2093 ** sqlite_temp_master if required. 2094 */ 2095 pTrigger = sqlite3TriggerList(pParse, pTab); 2096 while( pTrigger ){ 2097 assert( pTrigger->pSchema==pTab->pSchema || 2098 pTrigger->pSchema==db->aDb[1].pSchema ); 2099 sqlite3DropTriggerPtr(pParse, pTrigger); 2100 pTrigger = pTrigger->pNext; 2101 } 2102 2103 #ifndef SQLITE_OMIT_AUTOINCREMENT 2104 /* Remove any entries of the sqlite_sequence table associated with 2105 ** the table being dropped. This is done before the table is dropped 2106 ** at the btree level, in case the sqlite_sequence table needs to 2107 ** move as a result of the drop (can happen in auto-vacuum mode). 2108 */ 2109 if( pTab->tabFlags & TF_Autoincrement ){ 2110 sqlite3NestedParse(pParse, 2111 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", 2112 pDb->zName, pTab->zName 2113 ); 2114 } 2115 #endif 2116 2117 /* Drop all SQLITE_MASTER table and index entries that refer to the 2118 ** table. The program name loops through the master table and deletes 2119 ** every row that refers to a table of the same name as the one being 2120 ** dropped. Triggers are handled seperately because a trigger can be 2121 ** created in the temp database that refers to a table in another 2122 ** database. 2123 */ 2124 sqlite3NestedParse(pParse, 2125 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2126 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2127 2128 /* Drop any statistics from the sqlite_stat1 table, if it exists */ 2129 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2130 sqlite3NestedParse(pParse, 2131 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName 2132 ); 2133 } 2134 2135 if( !isView && !IsVirtual(pTab) ){ 2136 destroyTable(pParse, pTab); 2137 } 2138 2139 /* Remove the table entry from SQLite's internal schema and modify 2140 ** the schema cookie. 2141 */ 2142 if( IsVirtual(pTab) ){ 2143 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2144 } 2145 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); 2146 sqlite3ChangeCookie(pParse, iDb); 2147 } 2148 sqliteViewResetAll(db, iDb); 2149 2150 exit_drop_table: 2151 sqlite3SrcListDelete(db, pName); 2152 } 2153 2154 /* 2155 ** This routine is called to create a new foreign key on the table 2156 ** currently under construction. pFromCol determines which columns 2157 ** in the current table point to the foreign key. If pFromCol==0 then 2158 ** connect the key to the last column inserted. pTo is the name of 2159 ** the table referred to. pToCol is a list of tables in the other 2160 ** pTo table that the foreign key points to. flags contains all 2161 ** information about the conflict resolution algorithms specified 2162 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. 2163 ** 2164 ** An FKey structure is created and added to the table currently 2165 ** under construction in the pParse->pNewTable field. 2166 ** 2167 ** The foreign key is set for IMMEDIATE processing. A subsequent call 2168 ** to sqlite3DeferForeignKey() might change this to DEFERRED. 2169 */ 2170 void sqlite3CreateForeignKey( 2171 Parse *pParse, /* Parsing context */ 2172 ExprList *pFromCol, /* Columns in this table that point to other table */ 2173 Token *pTo, /* Name of the other table */ 2174 ExprList *pToCol, /* Columns in the other table */ 2175 int flags /* Conflict resolution algorithms. */ 2176 ){ 2177 sqlite3 *db = pParse->db; 2178 #ifndef SQLITE_OMIT_FOREIGN_KEY 2179 FKey *pFKey = 0; 2180 FKey *pNextTo; 2181 Table *p = pParse->pNewTable; 2182 int nByte; 2183 int i; 2184 int nCol; 2185 char *z; 2186 2187 assert( pTo!=0 ); 2188 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; 2189 if( pFromCol==0 ){ 2190 int iCol = p->nCol-1; 2191 if( NEVER(iCol<0) ) goto fk_end; 2192 if( pToCol && pToCol->nExpr!=1 ){ 2193 sqlite3ErrorMsg(pParse, "foreign key on %s" 2194 " should reference only one column of table %T", 2195 p->aCol[iCol].zName, pTo); 2196 goto fk_end; 2197 } 2198 nCol = 1; 2199 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ 2200 sqlite3ErrorMsg(pParse, 2201 "number of columns in foreign key does not match the number of " 2202 "columns in the referenced table"); 2203 goto fk_end; 2204 }else{ 2205 nCol = pFromCol->nExpr; 2206 } 2207 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; 2208 if( pToCol ){ 2209 for(i=0; i<pToCol->nExpr; i++){ 2210 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; 2211 } 2212 } 2213 pFKey = sqlite3DbMallocZero(db, nByte ); 2214 if( pFKey==0 ){ 2215 goto fk_end; 2216 } 2217 pFKey->pFrom = p; 2218 pFKey->pNextFrom = p->pFKey; 2219 z = (char*)&pFKey->aCol[nCol]; 2220 pFKey->zTo = z; 2221 memcpy(z, pTo->z, pTo->n); 2222 z[pTo->n] = 0; 2223 sqlite3Dequote(z); 2224 z += pTo->n+1; 2225 pFKey->nCol = nCol; 2226 if( pFromCol==0 ){ 2227 pFKey->aCol[0].iFrom = p->nCol-1; 2228 }else{ 2229 for(i=0; i<nCol; i++){ 2230 int j; 2231 for(j=0; j<p->nCol; j++){ 2232 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ 2233 pFKey->aCol[i].iFrom = j; 2234 break; 2235 } 2236 } 2237 if( j>=p->nCol ){ 2238 sqlite3ErrorMsg(pParse, 2239 "unknown column \"%s\" in foreign key definition", 2240 pFromCol->a[i].zName); 2241 goto fk_end; 2242 } 2243 } 2244 } 2245 if( pToCol ){ 2246 for(i=0; i<nCol; i++){ 2247 int n = sqlite3Strlen30(pToCol->a[i].zName); 2248 pFKey->aCol[i].zCol = z; 2249 memcpy(z, pToCol->a[i].zName, n); 2250 z[n] = 0; 2251 z += n+1; 2252 } 2253 } 2254 pFKey->isDeferred = 0; 2255 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2256 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2257 2258 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2259 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2260 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey 2261 ); 2262 if( pNextTo==pFKey ){ 2263 db->mallocFailed = 1; 2264 goto fk_end; 2265 } 2266 if( pNextTo ){ 2267 assert( pNextTo->pPrevTo==0 ); 2268 pFKey->pNextTo = pNextTo; 2269 pNextTo->pPrevTo = pFKey; 2270 } 2271 2272 /* Link the foreign key to the table as the last step. 2273 */ 2274 p->pFKey = pFKey; 2275 pFKey = 0; 2276 2277 fk_end: 2278 sqlite3DbFree(db, pFKey); 2279 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ 2280 sqlite3ExprListDelete(db, pFromCol); 2281 sqlite3ExprListDelete(db, pToCol); 2282 } 2283 2284 /* 2285 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED 2286 ** clause is seen as part of a foreign key definition. The isDeferred 2287 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. 2288 ** The behavior of the most recently created foreign key is adjusted 2289 ** accordingly. 2290 */ 2291 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ 2292 #ifndef SQLITE_OMIT_FOREIGN_KEY 2293 Table *pTab; 2294 FKey *pFKey; 2295 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; 2296 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ 2297 pFKey->isDeferred = (u8)isDeferred; 2298 #endif 2299 } 2300 2301 /* 2302 ** Generate code that will erase and refill index *pIdx. This is 2303 ** used to initialize a newly created index or to recompute the 2304 ** content of an index in response to a REINDEX command. 2305 ** 2306 ** if memRootPage is not negative, it means that the index is newly 2307 ** created. The register specified by memRootPage contains the 2308 ** root page number of the index. If memRootPage is negative, then 2309 ** the index already exists and must be cleared before being refilled and 2310 ** the root page number of the index is taken from pIndex->tnum. 2311 */ 2312 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ 2313 Table *pTab = pIndex->pTable; /* The table that is indexed */ 2314 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ 2315 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ 2316 int addr1; /* Address of top of loop */ 2317 int tnum; /* Root page of index */ 2318 Vdbe *v; /* Generate code into this virtual machine */ 2319 KeyInfo *pKey; /* KeyInfo for index */ 2320 int regIdxKey; /* Registers containing the index key */ 2321 int regRecord; /* Register holding assemblied index record */ 2322 sqlite3 *db = pParse->db; /* The database connection */ 2323 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2324 2325 #ifndef SQLITE_OMIT_AUTHORIZATION 2326 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2327 db->aDb[iDb].zName ) ){ 2328 return; 2329 } 2330 #endif 2331 2332 /* Require a write-lock on the table to perform this operation */ 2333 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2334 2335 v = sqlite3GetVdbe(pParse); 2336 if( v==0 ) return; 2337 if( memRootPage>=0 ){ 2338 tnum = memRootPage; 2339 }else{ 2340 tnum = pIndex->tnum; 2341 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2342 } 2343 pKey = sqlite3IndexKeyinfo(pParse, pIndex); 2344 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2345 (char *)pKey, P4_KEYINFO_HANDOFF); 2346 if( memRootPage>=0 ){ 2347 sqlite3VdbeChangeP5(v, 1); 2348 } 2349 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2350 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2351 regRecord = sqlite3GetTempReg(pParse); 2352 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); 2353 if( pIndex->onError!=OE_None ){ 2354 const int regRowid = regIdxKey + pIndex->nColumn; 2355 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; 2356 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); 2357 2358 /* The registers accessed by the OP_IsUnique opcode were allocated 2359 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() 2360 ** call above. Just before that function was freed they were released 2361 ** (made available to the compiler for reuse) using 2362 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique 2363 ** opcode use the values stored within seems dangerous. However, since 2364 ** we can be sure that no other temp registers have been allocated 2365 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. 2366 */ 2367 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); 2368 sqlite3HaltConstraint( 2369 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); 2370 } 2371 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); 2372 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2373 sqlite3ReleaseTempReg(pParse, regRecord); 2374 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); 2375 sqlite3VdbeJumpHere(v, addr1); 2376 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2377 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2378 } 2379 2380 /* 2381 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2382 ** and pTblList is the name of the table that is to be indexed. Both will 2383 ** be NULL for a primary key or an index that is created to satisfy a 2384 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2385 ** as the table to be indexed. pParse->pNewTable is a table that is 2386 ** currently being constructed by a CREATE TABLE statement. 2387 ** 2388 ** pList is a list of columns to be indexed. pList will be NULL if this 2389 ** is a primary key or unique-constraint on the most recent column added 2390 ** to the table currently under construction. 2391 ** 2392 ** If the index is created successfully, return a pointer to the new Index 2393 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index 2394 ** as the tables primary key (Index.autoIndex==2). 2395 */ 2396 Index *sqlite3CreateIndex( 2397 Parse *pParse, /* All information about this parse */ 2398 Token *pName1, /* First part of index name. May be NULL */ 2399 Token *pName2, /* Second part of index name. May be NULL */ 2400 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2401 ExprList *pList, /* A list of columns to be indexed */ 2402 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2403 Token *pStart, /* The CREATE token that begins this statement */ 2404 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ 2405 int sortOrder, /* Sort order of primary key when pList==NULL */ 2406 int ifNotExist /* Omit error if index already exists */ 2407 ){ 2408 Index *pRet = 0; /* Pointer to return */ 2409 Table *pTab = 0; /* Table to be indexed */ 2410 Index *pIndex = 0; /* The index to be created */ 2411 char *zName = 0; /* Name of the index */ 2412 int nName; /* Number of characters in zName */ 2413 int i, j; 2414 Token nullId; /* Fake token for an empty ID list */ 2415 DbFixer sFix; /* For assigning database names to pTable */ 2416 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2417 sqlite3 *db = pParse->db; 2418 Db *pDb; /* The specific table containing the indexed database */ 2419 int iDb; /* Index of the database that is being written */ 2420 Token *pName = 0; /* Unqualified name of the index to create */ 2421 struct ExprList_item *pListItem; /* For looping over pList */ 2422 int nCol; 2423 int nExtra = 0; 2424 char *zExtra; 2425 2426 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ 2427 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2428 if( db->mallocFailed || IN_DECLARE_VTAB ){ 2429 goto exit_create_index; 2430 } 2431 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2432 goto exit_create_index; 2433 } 2434 2435 /* 2436 ** Find the table that is to be indexed. Return early if not found. 2437 */ 2438 if( pTblName!=0 ){ 2439 2440 /* Use the two-part index name to determine the database 2441 ** to search for the table. 'Fix' the table name to this db 2442 ** before looking up the table. 2443 */ 2444 assert( pName1 && pName2 ); 2445 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); 2446 if( iDb<0 ) goto exit_create_index; 2447 2448 #ifndef SQLITE_OMIT_TEMPDB 2449 /* If the index name was unqualified, check if the the table 2450 ** is a temp table. If so, set the database to 1. Do not do this 2451 ** if initialising a database schema. 2452 */ 2453 if( !db->init.busy ){ 2454 pTab = sqlite3SrcListLookup(pParse, pTblName); 2455 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ 2456 iDb = 1; 2457 } 2458 } 2459 #endif 2460 2461 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && 2462 sqlite3FixSrcList(&sFix, pTblName) 2463 ){ 2464 /* Because the parser constructs pTblName from a single identifier, 2465 ** sqlite3FixSrcList can never fail. */ 2466 assert(0); 2467 } 2468 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 2469 pTblName->a[0].zDatabase); 2470 if( !pTab || db->mallocFailed ) goto exit_create_index; 2471 assert( db->aDb[iDb].pSchema==pTab->pSchema ); 2472 }else{ 2473 assert( pName==0 ); 2474 pTab = pParse->pNewTable; 2475 if( !pTab ) goto exit_create_index; 2476 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2477 } 2478 pDb = &db->aDb[iDb]; 2479 2480 assert( pTab!=0 ); 2481 assert( pParse->nErr==0 ); 2482 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 2483 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ 2484 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); 2485 goto exit_create_index; 2486 } 2487 #ifndef SQLITE_OMIT_VIEW 2488 if( pTab->pSelect ){ 2489 sqlite3ErrorMsg(pParse, "views may not be indexed"); 2490 goto exit_create_index; 2491 } 2492 #endif 2493 #ifndef SQLITE_OMIT_VIRTUALTABLE 2494 if( IsVirtual(pTab) ){ 2495 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); 2496 goto exit_create_index; 2497 } 2498 #endif 2499 2500 /* 2501 ** Find the name of the index. Make sure there is not already another 2502 ** index or table with the same name. 2503 ** 2504 ** Exception: If we are reading the names of permanent indices from the 2505 ** sqlite_master table (because some other process changed the schema) and 2506 ** one of the index names collides with the name of a temporary table or 2507 ** index, then we will continue to process this index. 2508 ** 2509 ** If pName==0 it means that we are 2510 ** dealing with a primary key or UNIQUE constraint. We have to invent our 2511 ** own name. 2512 */ 2513 if( pName ){ 2514 zName = sqlite3NameFromToken(db, pName); 2515 if( zName==0 ) goto exit_create_index; 2516 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 2517 goto exit_create_index; 2518 } 2519 if( !db->init.busy ){ 2520 if( sqlite3FindTable(db, zName, 0)!=0 ){ 2521 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 2522 goto exit_create_index; 2523 } 2524 } 2525 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 2526 if( !ifNotExist ){ 2527 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 2528 }else{ 2529 assert( !db->init.busy ); 2530 sqlite3CodeVerifySchema(pParse, iDb); 2531 } 2532 goto exit_create_index; 2533 } 2534 }else{ 2535 int n; 2536 Index *pLoop; 2537 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 2538 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 2539 if( zName==0 ){ 2540 goto exit_create_index; 2541 } 2542 } 2543 2544 /* Check for authorization to create an index. 2545 */ 2546 #ifndef SQLITE_OMIT_AUTHORIZATION 2547 { 2548 const char *zDb = pDb->zName; 2549 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 2550 goto exit_create_index; 2551 } 2552 i = SQLITE_CREATE_INDEX; 2553 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 2554 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 2555 goto exit_create_index; 2556 } 2557 } 2558 #endif 2559 2560 /* If pList==0, it means this routine was called to make a primary 2561 ** key out of the last column added to the table under construction. 2562 ** So create a fake list to simulate this. 2563 */ 2564 if( pList==0 ){ 2565 nullId.z = pTab->aCol[pTab->nCol-1].zName; 2566 nullId.n = sqlite3Strlen30((char*)nullId.z); 2567 pList = sqlite3ExprListAppend(pParse, 0, 0); 2568 if( pList==0 ) goto exit_create_index; 2569 sqlite3ExprListSetName(pParse, pList, &nullId, 0); 2570 pList->a[0].sortOrder = (u8)sortOrder; 2571 } 2572 2573 /* Figure out how many bytes of space are required to store explicitly 2574 ** specified collation sequence names. 2575 */ 2576 for(i=0; i<pList->nExpr; i++){ 2577 Expr *pExpr = pList->a[i].pExpr; 2578 if( pExpr ){ 2579 CollSeq *pColl = pExpr->pColl; 2580 /* Either pColl!=0 or there was an OOM failure. But if an OOM 2581 ** failure we have quit before reaching this point. */ 2582 if( ALWAYS(pColl) ){ 2583 nExtra += (1 + sqlite3Strlen30(pColl->zName)); 2584 } 2585 } 2586 } 2587 2588 /* 2589 ** Allocate the index structure. 2590 */ 2591 nName = sqlite3Strlen30(zName); 2592 nCol = pList->nExpr; 2593 pIndex = sqlite3DbMallocZero(db, 2594 sizeof(Index) + /* Index structure */ 2595 sizeof(int)*nCol + /* Index.aiColumn */ 2596 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ 2597 sizeof(char *)*nCol + /* Index.azColl */ 2598 sizeof(u8)*nCol + /* Index.aSortOrder */ 2599 nName + 1 + /* Index.zName */ 2600 nExtra /* Collation sequence names */ 2601 ); 2602 if( db->mallocFailed ){ 2603 goto exit_create_index; 2604 } 2605 pIndex->azColl = (char**)(&pIndex[1]); 2606 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); 2607 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); 2608 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); 2609 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); 2610 zExtra = (char *)(&pIndex->zName[nName+1]); 2611 memcpy(pIndex->zName, zName, nName+1); 2612 pIndex->pTable = pTab; 2613 pIndex->nColumn = pList->nExpr; 2614 pIndex->onError = (u8)onError; 2615 pIndex->autoIndex = (u8)(pName==0); 2616 pIndex->pSchema = db->aDb[iDb].pSchema; 2617 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2618 2619 /* Check to see if we should honor DESC requests on index columns 2620 */ 2621 if( pDb->pSchema->file_format>=4 ){ 2622 sortOrderMask = -1; /* Honor DESC */ 2623 }else{ 2624 sortOrderMask = 0; /* Ignore DESC */ 2625 } 2626 2627 /* Scan the names of the columns of the table to be indexed and 2628 ** load the column indices into the Index structure. Report an error 2629 ** if any column is not found. 2630 ** 2631 ** TODO: Add a test to make sure that the same column is not named 2632 ** more than once within the same index. Only the first instance of 2633 ** the column will ever be used by the optimizer. Note that using the 2634 ** same column more than once cannot be an error because that would 2635 ** break backwards compatibility - it needs to be a warning. 2636 */ 2637 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ 2638 const char *zColName = pListItem->zName; 2639 Column *pTabCol; 2640 int requestedSortOrder; 2641 char *zColl; /* Collation sequence name */ 2642 2643 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ 2644 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; 2645 } 2646 if( j>=pTab->nCol ){ 2647 sqlite3ErrorMsg(pParse, "table %s has no column named %s", 2648 pTab->zName, zColName); 2649 pParse->checkSchema = 1; 2650 goto exit_create_index; 2651 } 2652 pIndex->aiColumn[i] = j; 2653 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of 2654 ** the way the "idxlist" non-terminal is constructed by the parser, 2655 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl 2656 ** must exist or else there must have been an OOM error. But if there 2657 ** was an OOM error, we would never reach this point. */ 2658 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ 2659 int nColl; 2660 zColl = pListItem->pExpr->pColl->zName; 2661 nColl = sqlite3Strlen30(zColl) + 1; 2662 assert( nExtra>=nColl ); 2663 memcpy(zExtra, zColl, nColl); 2664 zColl = zExtra; 2665 zExtra += nColl; 2666 nExtra -= nColl; 2667 }else{ 2668 zColl = pTab->aCol[j].zColl; 2669 if( !zColl ){ 2670 zColl = db->pDfltColl->zName; 2671 } 2672 } 2673 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ 2674 goto exit_create_index; 2675 } 2676 pIndex->azColl[i] = zColl; 2677 requestedSortOrder = pListItem->sortOrder & sortOrderMask; 2678 pIndex->aSortOrder[i] = (u8)requestedSortOrder; 2679 } 2680 sqlite3DefaultRowEst(pIndex); 2681 2682 if( pTab==pParse->pNewTable ){ 2683 /* This routine has been called to create an automatic index as a 2684 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 2685 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 2686 ** i.e. one of: 2687 ** 2688 ** CREATE TABLE t(x PRIMARY KEY, y); 2689 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 2690 ** 2691 ** Either way, check to see if the table already has such an index. If 2692 ** so, don't bother creating this one. This only applies to 2693 ** automatically created indices. Users can do as they wish with 2694 ** explicit indices. 2695 ** 2696 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent 2697 ** (and thus suppressing the second one) even if they have different 2698 ** sort orders. 2699 ** 2700 ** If there are different collating sequences or if the columns of 2701 ** the constraint occur in different orders, then the constraints are 2702 ** considered distinct and both result in separate indices. 2703 */ 2704 Index *pIdx; 2705 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2706 int k; 2707 assert( pIdx->onError!=OE_None ); 2708 assert( pIdx->autoIndex ); 2709 assert( pIndex->onError!=OE_None ); 2710 2711 if( pIdx->nColumn!=pIndex->nColumn ) continue; 2712 for(k=0; k<pIdx->nColumn; k++){ 2713 const char *z1; 2714 const char *z2; 2715 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 2716 z1 = pIdx->azColl[k]; 2717 z2 = pIndex->azColl[k]; 2718 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 2719 } 2720 if( k==pIdx->nColumn ){ 2721 if( pIdx->onError!=pIndex->onError ){ 2722 /* This constraint creates the same index as a previous 2723 ** constraint specified somewhere in the CREATE TABLE statement. 2724 ** However the ON CONFLICT clauses are different. If both this 2725 ** constraint and the previous equivalent constraint have explicit 2726 ** ON CONFLICT clauses this is an error. Otherwise, use the 2727 ** explicitly specified behaviour for the index. 2728 */ 2729 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 2730 sqlite3ErrorMsg(pParse, 2731 "conflicting ON CONFLICT clauses specified", 0); 2732 } 2733 if( pIdx->onError==OE_Default ){ 2734 pIdx->onError = pIndex->onError; 2735 } 2736 } 2737 goto exit_create_index; 2738 } 2739 } 2740 } 2741 2742 /* Link the new Index structure to its table and to the other 2743 ** in-memory database structures. 2744 */ 2745 if( db->init.busy ){ 2746 Index *p; 2747 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 2748 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 2749 pIndex->zName, sqlite3Strlen30(pIndex->zName), 2750 pIndex); 2751 if( p ){ 2752 assert( p==pIndex ); /* Malloc must have failed */ 2753 db->mallocFailed = 1; 2754 goto exit_create_index; 2755 } 2756 db->flags |= SQLITE_InternChanges; 2757 if( pTblName!=0 ){ 2758 pIndex->tnum = db->init.newTnum; 2759 } 2760 } 2761 2762 /* If the db->init.busy is 0 then create the index on disk. This 2763 ** involves writing the index into the master table and filling in the 2764 ** index with the current table contents. 2765 ** 2766 ** The db->init.busy is 0 when the user first enters a CREATE INDEX 2767 ** command. db->init.busy is 1 when a database is opened and 2768 ** CREATE INDEX statements are read out of the master table. In 2769 ** the latter case the index already exists on disk, which is why 2770 ** we don't want to recreate it. 2771 ** 2772 ** If pTblName==0 it means this index is generated as a primary key 2773 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table 2774 ** has just been created, it contains no data and the index initialization 2775 ** step can be skipped. 2776 */ 2777 else{ /* if( db->init.busy==0 ) */ 2778 Vdbe *v; 2779 char *zStmt; 2780 int iMem = ++pParse->nMem; 2781 2782 v = sqlite3GetVdbe(pParse); 2783 if( v==0 ) goto exit_create_index; 2784 2785 2786 /* Create the rootpage for the index 2787 */ 2788 sqlite3BeginWriteOperation(pParse, 1, iDb); 2789 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); 2790 2791 /* Gather the complete text of the CREATE INDEX statement into 2792 ** the zStmt variable 2793 */ 2794 if( pStart ){ 2795 assert( pEnd!=0 ); 2796 /* A named index with an explicit CREATE INDEX statement */ 2797 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", 2798 onError==OE_None ? "" : " UNIQUE", 2799 pEnd->z - pName->z + 1, 2800 pName->z); 2801 }else{ 2802 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 2803 /* zStmt = sqlite3MPrintf(""); */ 2804 zStmt = 0; 2805 } 2806 2807 /* Add an entry in sqlite_master for this index 2808 */ 2809 sqlite3NestedParse(pParse, 2810 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 2811 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2812 pIndex->zName, 2813 pTab->zName, 2814 iMem, 2815 zStmt 2816 ); 2817 sqlite3DbFree(db, zStmt); 2818 2819 /* Fill the index with data and reparse the schema. Code an OP_Expire 2820 ** to invalidate all pre-compiled statements. 2821 */ 2822 if( pTblName ){ 2823 sqlite3RefillIndex(pParse, pIndex, iMem); 2824 sqlite3ChangeCookie(pParse, iDb); 2825 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, 2826 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 2827 P4_DYNAMIC); 2828 sqlite3VdbeAddOp1(v, OP_Expire, 0); 2829 } 2830 } 2831 2832 /* When adding an index to the list of indices for a table, make 2833 ** sure all indices labeled OE_Replace come after all those labeled 2834 ** OE_Ignore. This is necessary for the correct constraint check 2835 ** processing (in sqlite3GenerateConstraintChecks()) as part of 2836 ** UPDATE and INSERT statements. 2837 */ 2838 if( db->init.busy || pTblName==0 ){ 2839 if( onError!=OE_Replace || pTab->pIndex==0 2840 || pTab->pIndex->onError==OE_Replace){ 2841 pIndex->pNext = pTab->pIndex; 2842 pTab->pIndex = pIndex; 2843 }else{ 2844 Index *pOther = pTab->pIndex; 2845 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 2846 pOther = pOther->pNext; 2847 } 2848 pIndex->pNext = pOther->pNext; 2849 pOther->pNext = pIndex; 2850 } 2851 pRet = pIndex; 2852 pIndex = 0; 2853 } 2854 2855 /* Clean up before exiting */ 2856 exit_create_index: 2857 if( pIndex ){ 2858 sqlite3DbFree(db, pIndex->zColAff); 2859 sqlite3DbFree(db, pIndex); 2860 } 2861 sqlite3ExprListDelete(db, pList); 2862 sqlite3SrcListDelete(db, pTblName); 2863 sqlite3DbFree(db, zName); 2864 return pRet; 2865 } 2866 2867 /* 2868 ** Fill the Index.aiRowEst[] array with default information - information 2869 ** to be used when we have not run the ANALYZE command. 2870 ** 2871 ** aiRowEst[0] is suppose to contain the number of elements in the index. 2872 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 2873 ** number of rows in the table that match any particular value of the 2874 ** first column of the index. aiRowEst[2] is an estimate of the number 2875 ** of rows that match any particular combiniation of the first 2 columns 2876 ** of the index. And so forth. It must always be the case that 2877 * 2878 ** aiRowEst[N]<=aiRowEst[N-1] 2879 ** aiRowEst[N]>=1 2880 ** 2881 ** Apart from that, we have little to go on besides intuition as to 2882 ** how aiRowEst[] should be initialized. The numbers generated here 2883 ** are based on typical values found in actual indices. 2884 */ 2885 void sqlite3DefaultRowEst(Index *pIdx){ 2886 unsigned *a = pIdx->aiRowEst; 2887 int i; 2888 unsigned n; 2889 assert( a!=0 ); 2890 a[0] = pIdx->pTable->nRowEst; 2891 if( a[0]<10 ) a[0] = 10; 2892 n = 10; 2893 for(i=1; i<=pIdx->nColumn; i++){ 2894 a[i] = n; 2895 if( n>5 ) n--; 2896 } 2897 if( pIdx->onError!=OE_None ){ 2898 a[pIdx->nColumn] = 1; 2899 } 2900 } 2901 2902 /* 2903 ** This routine will drop an existing named index. This routine 2904 ** implements the DROP INDEX statement. 2905 */ 2906 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ 2907 Index *pIndex; 2908 Vdbe *v; 2909 sqlite3 *db = pParse->db; 2910 int iDb; 2911 2912 assert( pParse->nErr==0 ); /* Never called with prior errors */ 2913 if( db->mallocFailed ){ 2914 goto exit_drop_index; 2915 } 2916 assert( pName->nSrc==1 ); 2917 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2918 goto exit_drop_index; 2919 } 2920 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); 2921 if( pIndex==0 ){ 2922 if( !ifExists ){ 2923 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); 2924 }else{ 2925 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2926 } 2927 pParse->checkSchema = 1; 2928 goto exit_drop_index; 2929 } 2930 if( pIndex->autoIndex ){ 2931 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 2932 "or PRIMARY KEY constraint cannot be dropped", 0); 2933 goto exit_drop_index; 2934 } 2935 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2936 #ifndef SQLITE_OMIT_AUTHORIZATION 2937 { 2938 int code = SQLITE_DROP_INDEX; 2939 Table *pTab = pIndex->pTable; 2940 const char *zDb = db->aDb[iDb].zName; 2941 const char *zTab = SCHEMA_TABLE(iDb); 2942 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 2943 goto exit_drop_index; 2944 } 2945 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 2946 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 2947 goto exit_drop_index; 2948 } 2949 } 2950 #endif 2951 2952 /* Generate code to remove the index and from the master table */ 2953 v = sqlite3GetVdbe(pParse); 2954 if( v ){ 2955 sqlite3BeginWriteOperation(pParse, 1, iDb); 2956 sqlite3NestedParse(pParse, 2957 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 2958 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2959 pIndex->zName 2960 ); 2961 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ 2962 sqlite3NestedParse(pParse, 2963 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", 2964 db->aDb[iDb].zName, pIndex->zName 2965 ); 2966 } 2967 sqlite3ChangeCookie(pParse, iDb); 2968 destroyRootPage(pParse, pIndex->tnum, iDb); 2969 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 2970 } 2971 2972 exit_drop_index: 2973 sqlite3SrcListDelete(db, pName); 2974 } 2975 2976 /* 2977 ** pArray is a pointer to an array of objects. Each object in the 2978 ** array is szEntry bytes in size. This routine allocates a new 2979 ** object on the end of the array. 2980 ** 2981 ** *pnEntry is the number of entries already in use. *pnAlloc is 2982 ** the previously allocated size of the array. initSize is the 2983 ** suggested initial array size allocation. 2984 ** 2985 ** The index of the new entry is returned in *pIdx. 2986 ** 2987 ** This routine returns a pointer to the array of objects. This 2988 ** might be the same as the pArray parameter or it might be a different 2989 ** pointer if the array was resized. 2990 */ 2991 void *sqlite3ArrayAllocate( 2992 sqlite3 *db, /* Connection to notify of malloc failures */ 2993 void *pArray, /* Array of objects. Might be reallocated */ 2994 int szEntry, /* Size of each object in the array */ 2995 int initSize, /* Suggested initial allocation, in elements */ 2996 int *pnEntry, /* Number of objects currently in use */ 2997 int *pnAlloc, /* Current size of the allocation, in elements */ 2998 int *pIdx /* Write the index of a new slot here */ 2999 ){ 3000 char *z; 3001 if( *pnEntry >= *pnAlloc ){ 3002 void *pNew; 3003 int newSize; 3004 newSize = (*pnAlloc)*2 + initSize; 3005 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); 3006 if( pNew==0 ){ 3007 *pIdx = -1; 3008 return pArray; 3009 } 3010 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; 3011 pArray = pNew; 3012 } 3013 z = (char*)pArray; 3014 memset(&z[*pnEntry * szEntry], 0, szEntry); 3015 *pIdx = *pnEntry; 3016 ++*pnEntry; 3017 return pArray; 3018 } 3019 3020 /* 3021 ** Append a new element to the given IdList. Create a new IdList if 3022 ** need be. 3023 ** 3024 ** A new IdList is returned, or NULL if malloc() fails. 3025 */ 3026 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ 3027 int i; 3028 if( pList==0 ){ 3029 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); 3030 if( pList==0 ) return 0; 3031 pList->nAlloc = 0; 3032 } 3033 pList->a = sqlite3ArrayAllocate( 3034 db, 3035 pList->a, 3036 sizeof(pList->a[0]), 3037 5, 3038 &pList->nId, 3039 &pList->nAlloc, 3040 &i 3041 ); 3042 if( i<0 ){ 3043 sqlite3IdListDelete(db, pList); 3044 return 0; 3045 } 3046 pList->a[i].zName = sqlite3NameFromToken(db, pToken); 3047 return pList; 3048 } 3049 3050 /* 3051 ** Delete an IdList. 3052 */ 3053 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ 3054 int i; 3055 if( pList==0 ) return; 3056 for(i=0; i<pList->nId; i++){ 3057 sqlite3DbFree(db, pList->a[i].zName); 3058 } 3059 sqlite3DbFree(db, pList->a); 3060 sqlite3DbFree(db, pList); 3061 } 3062 3063 /* 3064 ** Return the index in pList of the identifier named zId. Return -1 3065 ** if not found. 3066 */ 3067 int sqlite3IdListIndex(IdList *pList, const char *zName){ 3068 int i; 3069 if( pList==0 ) return -1; 3070 for(i=0; i<pList->nId; i++){ 3071 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; 3072 } 3073 return -1; 3074 } 3075 3076 /* 3077 ** Expand the space allocated for the given SrcList object by 3078 ** creating nExtra new slots beginning at iStart. iStart is zero based. 3079 ** New slots are zeroed. 3080 ** 3081 ** For example, suppose a SrcList initially contains two entries: A,B. 3082 ** To append 3 new entries onto the end, do this: 3083 ** 3084 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); 3085 ** 3086 ** After the call above it would contain: A, B, nil, nil, nil. 3087 ** If the iStart argument had been 1 instead of 2, then the result 3088 ** would have been: A, nil, nil, nil, B. To prepend the new slots, 3089 ** the iStart value would be 0. The result then would 3090 ** be: nil, nil, nil, A, B. 3091 ** 3092 ** If a memory allocation fails the SrcList is unchanged. The 3093 ** db->mallocFailed flag will be set to true. 3094 */ 3095 SrcList *sqlite3SrcListEnlarge( 3096 sqlite3 *db, /* Database connection to notify of OOM errors */ 3097 SrcList *pSrc, /* The SrcList to be enlarged */ 3098 int nExtra, /* Number of new slots to add to pSrc->a[] */ 3099 int iStart /* Index in pSrc->a[] of first new slot */ 3100 ){ 3101 int i; 3102 3103 /* Sanity checking on calling parameters */ 3104 assert( iStart>=0 ); 3105 assert( nExtra>=1 ); 3106 assert( pSrc!=0 ); 3107 assert( iStart<=pSrc->nSrc ); 3108 3109 /* Allocate additional space if needed */ 3110 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3111 SrcList *pNew; 3112 int nAlloc = pSrc->nSrc+nExtra; 3113 int nGot; 3114 pNew = sqlite3DbRealloc(db, pSrc, 3115 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3116 if( pNew==0 ){ 3117 assert( db->mallocFailed ); 3118 return pSrc; 3119 } 3120 pSrc = pNew; 3121 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3122 pSrc->nAlloc = (u16)nGot; 3123 } 3124 3125 /* Move existing slots that come after the newly inserted slots 3126 ** out of the way */ 3127 for(i=pSrc->nSrc-1; i>=iStart; i--){ 3128 pSrc->a[i+nExtra] = pSrc->a[i]; 3129 } 3130 pSrc->nSrc += (i16)nExtra; 3131 3132 /* Zero the newly allocated slots */ 3133 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); 3134 for(i=iStart; i<iStart+nExtra; i++){ 3135 pSrc->a[i].iCursor = -1; 3136 } 3137 3138 /* Return a pointer to the enlarged SrcList */ 3139 return pSrc; 3140 } 3141 3142 3143 /* 3144 ** Append a new table name to the given SrcList. Create a new SrcList if 3145 ** need be. A new entry is created in the SrcList even if pTable is NULL. 3146 ** 3147 ** A SrcList is returned, or NULL if there is an OOM error. The returned 3148 ** SrcList might be the same as the SrcList that was input or it might be 3149 ** a new one. If an OOM error does occurs, then the prior value of pList 3150 ** that is input to this routine is automatically freed. 3151 ** 3152 ** If pDatabase is not null, it means that the table has an optional 3153 ** database name prefix. Like this: "database.table". The pDatabase 3154 ** points to the table name and the pTable points to the database name. 3155 ** The SrcList.a[].zName field is filled with the table name which might 3156 ** come from pTable (if pDatabase is NULL) or from pDatabase. 3157 ** SrcList.a[].zDatabase is filled with the database name from pTable, 3158 ** or with NULL if no database is specified. 3159 ** 3160 ** In other words, if call like this: 3161 ** 3162 ** sqlite3SrcListAppend(D,A,B,0); 3163 ** 3164 ** Then B is a table name and the database name is unspecified. If called 3165 ** like this: 3166 ** 3167 ** sqlite3SrcListAppend(D,A,B,C); 3168 ** 3169 ** Then C is the table name and B is the database name. If C is defined 3170 ** then so is B. In other words, we never have a case where: 3171 ** 3172 ** sqlite3SrcListAppend(D,A,0,C); 3173 ** 3174 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted 3175 ** before being added to the SrcList. 3176 */ 3177 SrcList *sqlite3SrcListAppend( 3178 sqlite3 *db, /* Connection to notify of malloc failures */ 3179 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3180 Token *pTable, /* Table to append */ 3181 Token *pDatabase /* Database of the table */ 3182 ){ 3183 struct SrcList_item *pItem; 3184 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3185 if( pList==0 ){ 3186 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3187 if( pList==0 ) return 0; 3188 pList->nAlloc = 1; 3189 } 3190 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); 3191 if( db->mallocFailed ){ 3192 sqlite3SrcListDelete(db, pList); 3193 return 0; 3194 } 3195 pItem = &pList->a[pList->nSrc-1]; 3196 if( pDatabase && pDatabase->z==0 ){ 3197 pDatabase = 0; 3198 } 3199 if( pDatabase ){ 3200 Token *pTemp = pDatabase; 3201 pDatabase = pTable; 3202 pTable = pTemp; 3203 } 3204 pItem->zName = sqlite3NameFromToken(db, pTable); 3205 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); 3206 return pList; 3207 } 3208 3209 /* 3210 ** Assign VdbeCursor index numbers to all tables in a SrcList 3211 */ 3212 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ 3213 int i; 3214 struct SrcList_item *pItem; 3215 assert(pList || pParse->db->mallocFailed ); 3216 if( pList ){ 3217 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ 3218 if( pItem->iCursor>=0 ) break; 3219 pItem->iCursor = pParse->nTab++; 3220 if( pItem->pSelect ){ 3221 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); 3222 } 3223 } 3224 } 3225 } 3226 3227 /* 3228 ** Delete an entire SrcList including all its substructure. 3229 */ 3230 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ 3231 int i; 3232 struct SrcList_item *pItem; 3233 if( pList==0 ) return; 3234 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ 3235 sqlite3DbFree(db, pItem->zDatabase); 3236 sqlite3DbFree(db, pItem->zName); 3237 sqlite3DbFree(db, pItem->zAlias); 3238 sqlite3DbFree(db, pItem->zIndex); 3239 sqlite3DeleteTable(db, pItem->pTab); 3240 sqlite3SelectDelete(db, pItem->pSelect); 3241 sqlite3ExprDelete(db, pItem->pOn); 3242 sqlite3IdListDelete(db, pItem->pUsing); 3243 } 3244 sqlite3DbFree(db, pList); 3245 } 3246 3247 /* 3248 ** This routine is called by the parser to add a new term to the 3249 ** end of a growing FROM clause. The "p" parameter is the part of 3250 ** the FROM clause that has already been constructed. "p" is NULL 3251 ** if this is the first term of the FROM clause. pTable and pDatabase 3252 ** are the name of the table and database named in the FROM clause term. 3253 ** pDatabase is NULL if the database name qualifier is missing - the 3254 ** usual case. If the term has a alias, then pAlias points to the 3255 ** alias token. If the term is a subquery, then pSubquery is the 3256 ** SELECT statement that the subquery encodes. The pTable and 3257 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing 3258 ** parameters are the content of the ON and USING clauses. 3259 ** 3260 ** Return a new SrcList which encodes is the FROM with the new 3261 ** term added. 3262 */ 3263 SrcList *sqlite3SrcListAppendFromTerm( 3264 Parse *pParse, /* Parsing context */ 3265 SrcList *p, /* The left part of the FROM clause already seen */ 3266 Token *pTable, /* Name of the table to add to the FROM clause */ 3267 Token *pDatabase, /* Name of the database containing pTable */ 3268 Token *pAlias, /* The right-hand side of the AS subexpression */ 3269 Select *pSubquery, /* A subquery used in place of a table name */ 3270 Expr *pOn, /* The ON clause of a join */ 3271 IdList *pUsing /* The USING clause of a join */ 3272 ){ 3273 struct SrcList_item *pItem; 3274 sqlite3 *db = pParse->db; 3275 if( !p && (pOn || pUsing) ){ 3276 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", 3277 (pOn ? "ON" : "USING") 3278 ); 3279 goto append_from_error; 3280 } 3281 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); 3282 if( p==0 || NEVER(p->nSrc==0) ){ 3283 goto append_from_error; 3284 } 3285 pItem = &p->a[p->nSrc-1]; 3286 assert( pAlias!=0 ); 3287 if( pAlias->n ){ 3288 pItem->zAlias = sqlite3NameFromToken(db, pAlias); 3289 } 3290 pItem->pSelect = pSubquery; 3291 pItem->pOn = pOn; 3292 pItem->pUsing = pUsing; 3293 return p; 3294 3295 append_from_error: 3296 assert( p==0 ); 3297 sqlite3ExprDelete(db, pOn); 3298 sqlite3IdListDelete(db, pUsing); 3299 sqlite3SelectDelete(db, pSubquery); 3300 return 0; 3301 } 3302 3303 /* 3304 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 3305 ** element of the source-list passed as the second argument. 3306 */ 3307 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ 3308 assert( pIndexedBy!=0 ); 3309 if( p && ALWAYS(p->nSrc>0) ){ 3310 struct SrcList_item *pItem = &p->a[p->nSrc-1]; 3311 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); 3312 if( pIndexedBy->n==1 && !pIndexedBy->z ){ 3313 /* A "NOT INDEXED" clause was supplied. See parse.y 3314 ** construct "indexed_opt" for details. */ 3315 pItem->notIndexed = 1; 3316 }else{ 3317 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); 3318 } 3319 } 3320 } 3321 3322 /* 3323 ** When building up a FROM clause in the parser, the join operator 3324 ** is initially attached to the left operand. But the code generator 3325 ** expects the join operator to be on the right operand. This routine 3326 ** Shifts all join operators from left to right for an entire FROM 3327 ** clause. 3328 ** 3329 ** Example: Suppose the join is like this: 3330 ** 3331 ** A natural cross join B 3332 ** 3333 ** The operator is "natural cross join". The A and B operands are stored 3334 ** in p->a[0] and p->a[1], respectively. The parser initially stores the 3335 ** operator with A. This routine shifts that operator over to B. 3336 */ 3337 void sqlite3SrcListShiftJoinType(SrcList *p){ 3338 if( p && p->a ){ 3339 int i; 3340 for(i=p->nSrc-1; i>0; i--){ 3341 p->a[i].jointype = p->a[i-1].jointype; 3342 } 3343 p->a[0].jointype = 0; 3344 } 3345 } 3346 3347 /* 3348 ** Begin a transaction 3349 */ 3350 void sqlite3BeginTransaction(Parse *pParse, int type){ 3351 sqlite3 *db; 3352 Vdbe *v; 3353 int i; 3354 3355 assert( pParse!=0 ); 3356 db = pParse->db; 3357 assert( db!=0 ); 3358 /* if( db->aDb[0].pBt==0 ) return; */ 3359 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3360 return; 3361 } 3362 v = sqlite3GetVdbe(pParse); 3363 if( !v ) return; 3364 if( type!=TK_DEFERRED ){ 3365 for(i=0; i<db->nDb; i++){ 3366 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3367 sqlite3VdbeUsesBtree(v, i); 3368 } 3369 } 3370 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3371 } 3372 3373 /* 3374 ** Commit a transaction 3375 */ 3376 void sqlite3CommitTransaction(Parse *pParse){ 3377 sqlite3 *db; 3378 Vdbe *v; 3379 3380 assert( pParse!=0 ); 3381 db = pParse->db; 3382 assert( db!=0 ); 3383 /* if( db->aDb[0].pBt==0 ) return; */ 3384 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3385 return; 3386 } 3387 v = sqlite3GetVdbe(pParse); 3388 if( v ){ 3389 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3390 } 3391 } 3392 3393 /* 3394 ** Rollback a transaction 3395 */ 3396 void sqlite3RollbackTransaction(Parse *pParse){ 3397 sqlite3 *db; 3398 Vdbe *v; 3399 3400 assert( pParse!=0 ); 3401 db = pParse->db; 3402 assert( db!=0 ); 3403 /* if( db->aDb[0].pBt==0 ) return; */ 3404 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3405 return; 3406 } 3407 v = sqlite3GetVdbe(pParse); 3408 if( v ){ 3409 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); 3410 } 3411 } 3412 3413 /* 3414 ** This function is called by the parser when it parses a command to create, 3415 ** release or rollback an SQL savepoint. 3416 */ 3417 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ 3418 char *zName = sqlite3NameFromToken(pParse->db, pName); 3419 if( zName ){ 3420 Vdbe *v = sqlite3GetVdbe(pParse); 3421 #ifndef SQLITE_OMIT_AUTHORIZATION 3422 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; 3423 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); 3424 #endif 3425 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ 3426 sqlite3DbFree(pParse->db, zName); 3427 return; 3428 } 3429 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); 3430 } 3431 } 3432 3433 /* 3434 ** Make sure the TEMP database is open and available for use. Return 3435 ** the number of errors. Leave any error messages in the pParse structure. 3436 */ 3437 int sqlite3OpenTempDatabase(Parse *pParse){ 3438 sqlite3 *db = pParse->db; 3439 if( db->aDb[1].pBt==0 && !pParse->explain ){ 3440 int rc; 3441 Btree *pBt; 3442 static const int flags = 3443 SQLITE_OPEN_READWRITE | 3444 SQLITE_OPEN_CREATE | 3445 SQLITE_OPEN_EXCLUSIVE | 3446 SQLITE_OPEN_DELETEONCLOSE | 3447 SQLITE_OPEN_TEMP_DB; 3448 3449 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); 3450 if( rc!=SQLITE_OK ){ 3451 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 3452 "file for storing temporary tables"); 3453 pParse->rc = rc; 3454 return 1; 3455 } 3456 db->aDb[1].pBt = pBt; 3457 assert( db->aDb[1].pSchema ); 3458 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 3459 db->mallocFailed = 1; 3460 return 1; 3461 } 3462 } 3463 return 0; 3464 } 3465 3466 /* 3467 ** Generate VDBE code that will verify the schema cookie and start 3468 ** a read-transaction for all named database files. 3469 ** 3470 ** It is important that all schema cookies be verified and all 3471 ** read transactions be started before anything else happens in 3472 ** the VDBE program. But this routine can be called after much other 3473 ** code has been generated. So here is what we do: 3474 ** 3475 ** The first time this routine is called, we code an OP_Goto that 3476 ** will jump to a subroutine at the end of the program. Then we 3477 ** record every database that needs its schema verified in the 3478 ** pParse->cookieMask field. Later, after all other code has been 3479 ** generated, the subroutine that does the cookie verifications and 3480 ** starts the transactions will be coded and the OP_Goto P2 value 3481 ** will be made to point to that subroutine. The generation of the 3482 ** cookie verification subroutine code happens in sqlite3FinishCoding(). 3483 ** 3484 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the 3485 ** schema on any databases. This can be used to position the OP_Goto 3486 ** early in the code, before we know if any database tables will be used. 3487 */ 3488 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 3489 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3490 3491 if( pToplevel->cookieGoto==0 ){ 3492 Vdbe *v = sqlite3GetVdbe(pToplevel); 3493 if( v==0 ) return; /* This only happens if there was a prior error */ 3494 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; 3495 } 3496 if( iDb>=0 ){ 3497 sqlite3 *db = pToplevel->db; 3498 yDbMask mask; 3499 3500 assert( iDb<db->nDb ); 3501 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 3502 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 3503 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3504 mask = ((yDbMask)1)<<iDb; 3505 if( (pToplevel->cookieMask & mask)==0 ){ 3506 pToplevel->cookieMask |= mask; 3507 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; 3508 if( !OMIT_TEMPDB && iDb==1 ){ 3509 sqlite3OpenTempDatabase(pToplevel); 3510 } 3511 } 3512 } 3513 } 3514 3515 /* 3516 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 3517 ** attached database. Otherwise, invoke it for the database named zDb only. 3518 */ 3519 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 3520 sqlite3 *db = pParse->db; 3521 int i; 3522 for(i=0; i<db->nDb; i++){ 3523 Db *pDb = &db->aDb[i]; 3524 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 3525 sqlite3CodeVerifySchema(pParse, i); 3526 } 3527 } 3528 } 3529 3530 /* 3531 ** Generate VDBE code that prepares for doing an operation that 3532 ** might change the database. 3533 ** 3534 ** This routine starts a new transaction if we are not already within 3535 ** a transaction. If we are already within a transaction, then a checkpoint 3536 ** is set if the setStatement parameter is true. A checkpoint should 3537 ** be set for operations that might fail (due to a constraint) part of 3538 ** the way through and which will need to undo some writes without having to 3539 ** rollback the whole transaction. For operations where all constraints 3540 ** can be checked before any changes are made to the database, it is never 3541 ** necessary to undo a write and the checkpoint should not be set. 3542 */ 3543 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ 3544 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3545 sqlite3CodeVerifySchema(pParse, iDb); 3546 pToplevel->writeMask |= ((yDbMask)1)<<iDb; 3547 pToplevel->isMultiWrite |= setStatement; 3548 } 3549 3550 /* 3551 ** Indicate that the statement currently under construction might write 3552 ** more than one entry (example: deleting one row then inserting another, 3553 ** inserting multiple rows in a table, or inserting a row and index entries.) 3554 ** If an abort occurs after some of these writes have completed, then it will 3555 ** be necessary to undo the completed writes. 3556 */ 3557 void sqlite3MultiWrite(Parse *pParse){ 3558 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3559 pToplevel->isMultiWrite = 1; 3560 } 3561 3562 /* 3563 ** The code generator calls this routine if is discovers that it is 3564 ** possible to abort a statement prior to completion. In order to 3565 ** perform this abort without corrupting the database, we need to make 3566 ** sure that the statement is protected by a statement transaction. 3567 ** 3568 ** Technically, we only need to set the mayAbort flag if the 3569 ** isMultiWrite flag was previously set. There is a time dependency 3570 ** such that the abort must occur after the multiwrite. This makes 3571 ** some statements involving the REPLACE conflict resolution algorithm 3572 ** go a little faster. But taking advantage of this time dependency 3573 ** makes it more difficult to prove that the code is correct (in 3574 ** particular, it prevents us from writing an effective 3575 ** implementation of sqlite3AssertMayAbort()) and so we have chosen 3576 ** to take the safe route and skip the optimization. 3577 */ 3578 void sqlite3MayAbort(Parse *pParse){ 3579 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3580 pToplevel->mayAbort = 1; 3581 } 3582 3583 /* 3584 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT 3585 ** error. The onError parameter determines which (if any) of the statement 3586 ** and/or current transaction is rolled back. 3587 */ 3588 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ 3589 Vdbe *v = sqlite3GetVdbe(pParse); 3590 if( onError==OE_Abort ){ 3591 sqlite3MayAbort(pParse); 3592 } 3593 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); 3594 } 3595 3596 /* 3597 ** Check to see if pIndex uses the collating sequence pColl. Return 3598 ** true if it does and false if it does not. 3599 */ 3600 #ifndef SQLITE_OMIT_REINDEX 3601 static int collationMatch(const char *zColl, Index *pIndex){ 3602 int i; 3603 assert( zColl!=0 ); 3604 for(i=0; i<pIndex->nColumn; i++){ 3605 const char *z = pIndex->azColl[i]; 3606 assert( z!=0 ); 3607 if( 0==sqlite3StrICmp(z, zColl) ){ 3608 return 1; 3609 } 3610 } 3611 return 0; 3612 } 3613 #endif 3614 3615 /* 3616 ** Recompute all indices of pTab that use the collating sequence pColl. 3617 ** If pColl==0 then recompute all indices of pTab. 3618 */ 3619 #ifndef SQLITE_OMIT_REINDEX 3620 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ 3621 Index *pIndex; /* An index associated with pTab */ 3622 3623 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 3624 if( zColl==0 || collationMatch(zColl, pIndex) ){ 3625 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3626 sqlite3BeginWriteOperation(pParse, 0, iDb); 3627 sqlite3RefillIndex(pParse, pIndex, -1); 3628 } 3629 } 3630 } 3631 #endif 3632 3633 /* 3634 ** Recompute all indices of all tables in all databases where the 3635 ** indices use the collating sequence pColl. If pColl==0 then recompute 3636 ** all indices everywhere. 3637 */ 3638 #ifndef SQLITE_OMIT_REINDEX 3639 static void reindexDatabases(Parse *pParse, char const *zColl){ 3640 Db *pDb; /* A single database */ 3641 int iDb; /* The database index number */ 3642 sqlite3 *db = pParse->db; /* The database connection */ 3643 HashElem *k; /* For looping over tables in pDb */ 3644 Table *pTab; /* A table in the database */ 3645 3646 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ 3647 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ 3648 assert( pDb!=0 ); 3649 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ 3650 pTab = (Table*)sqliteHashData(k); 3651 reindexTable(pParse, pTab, zColl); 3652 } 3653 } 3654 } 3655 #endif 3656 3657 /* 3658 ** Generate code for the REINDEX command. 3659 ** 3660 ** REINDEX -- 1 3661 ** REINDEX <collation> -- 2 3662 ** REINDEX ?<database>.?<tablename> -- 3 3663 ** REINDEX ?<database>.?<indexname> -- 4 3664 ** 3665 ** Form 1 causes all indices in all attached databases to be rebuilt. 3666 ** Form 2 rebuilds all indices in all databases that use the named 3667 ** collating function. Forms 3 and 4 rebuild the named index or all 3668 ** indices associated with the named table. 3669 */ 3670 #ifndef SQLITE_OMIT_REINDEX 3671 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ 3672 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ 3673 char *z; /* Name of a table or index */ 3674 const char *zDb; /* Name of the database */ 3675 Table *pTab; /* A table in the database */ 3676 Index *pIndex; /* An index associated with pTab */ 3677 int iDb; /* The database index number */ 3678 sqlite3 *db = pParse->db; /* The database connection */ 3679 Token *pObjName; /* Name of the table or index to be reindexed */ 3680 3681 /* Read the database schema. If an error occurs, leave an error message 3682 ** and code in pParse and return NULL. */ 3683 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 3684 return; 3685 } 3686 3687 if( pName1==0 ){ 3688 reindexDatabases(pParse, 0); 3689 return; 3690 }else if( NEVER(pName2==0) || pName2->z==0 ){ 3691 char *zColl; 3692 assert( pName1->z ); 3693 zColl = sqlite3NameFromToken(pParse->db, pName1); 3694 if( !zColl ) return; 3695 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 3696 if( pColl ){ 3697 reindexDatabases(pParse, zColl); 3698 sqlite3DbFree(db, zColl); 3699 return; 3700 } 3701 sqlite3DbFree(db, zColl); 3702 } 3703 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 3704 if( iDb<0 ) return; 3705 z = sqlite3NameFromToken(db, pObjName); 3706 if( z==0 ) return; 3707 zDb = db->aDb[iDb].zName; 3708 pTab = sqlite3FindTable(db, z, zDb); 3709 if( pTab ){ 3710 reindexTable(pParse, pTab, 0); 3711 sqlite3DbFree(db, z); 3712 return; 3713 } 3714 pIndex = sqlite3FindIndex(db, z, zDb); 3715 sqlite3DbFree(db, z); 3716 if( pIndex ){ 3717 sqlite3BeginWriteOperation(pParse, 0, iDb); 3718 sqlite3RefillIndex(pParse, pIndex, -1); 3719 return; 3720 } 3721 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 3722 } 3723 #endif 3724 3725 /* 3726 ** Return a dynamicly allocated KeyInfo structure that can be used 3727 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. 3728 ** 3729 ** If successful, a pointer to the new structure is returned. In this case 3730 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 3731 ** pointer. If an error occurs (out of memory or missing collation 3732 ** sequence), NULL is returned and the state of pParse updated to reflect 3733 ** the error. 3734 */ 3735 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ 3736 int i; 3737 int nCol = pIdx->nColumn; 3738 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; 3739 sqlite3 *db = pParse->db; 3740 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); 3741 3742 if( pKey ){ 3743 pKey->db = pParse->db; 3744 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); 3745 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); 3746 for(i=0; i<nCol; i++){ 3747 char *zColl = pIdx->azColl[i]; 3748 assert( zColl ); 3749 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); 3750 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; 3751 } 3752 pKey->nField = (u16)nCol; 3753 } 3754 3755 if( pParse->nErr ){ 3756 sqlite3DbFree(db, pKey); 3757 pKey = 0; 3758 } 3759 return pKey; 3760 } 3761 3762 /* Begin preload-cache.patch for Chromium */ 3763 /* See declaration in sqlite3.h for information */ 3764 int sqlite3_preload(sqlite3 *db) 3765 { 3766 Pager *pPager; 3767 Btree *pBt; 3768 int rc; 3769 int i; 3770 int dbsLoaded = 0; 3771 3772 for(i=0; i<db->nDb; i++) { 3773 pBt = db->aDb[i].pBt; 3774 if( !pBt ) 3775 continue; 3776 pPager = sqlite3BtreePager(pBt); 3777 if( pPager ) { 3778 rc = sqlite3PagerLoadall(pPager); 3779 if (rc == SQLITE_OK) 3780 dbsLoaded++; 3781 } 3782 } 3783 if (dbsLoaded == 0) 3784 return SQLITE_ERROR; 3785 return SQLITE_OK; 3786 } 3787 /* End preload-cache.patch for Chromium */ 3788