Home | History | Annotate | Download | only in internal
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // Computation of the Jacobian matrix for vector-valued functions of multiple
     32 // variables, using automatic differentiation based on the implementation of
     33 // dual numbers in jet.h. Before reading the rest of this file, it is adivsable
     34 // to read jet.h's header comment in detail.
     35 //
     36 // The helper wrapper AutoDiff::Differentiate() computes the jacobian of
     37 // functors with templated operator() taking this form:
     38 //
     39 //   struct F {
     40 //     template<typename T>
     41 //     bool operator()(const T *x, const T *y, ..., T *z) {
     42 //       // Compute z[] based on x[], y[], ...
     43 //       // return true if computation succeeded, false otherwise.
     44 //     }
     45 //   };
     46 //
     47 // All inputs and outputs may be vector-valued.
     48 //
     49 // To understand how jets are used to compute the jacobian, a
     50 // picture may help. Consider a vector-valued function, F, returning 3
     51 // dimensions and taking a vector-valued parameter of 4 dimensions:
     52 //
     53 //     y            x
     54 //   [ * ]    F   [ * ]
     55 //   [ * ]  <---  [ * ]
     56 //   [ * ]        [ * ]
     57 //                [ * ]
     58 //
     59 // Similar to the 2-parameter example for f described in jet.h, computing the
     60 // jacobian dy/dx is done by substutiting a suitable jet object for x and all
     61 // intermediate steps of the computation of F. Since x is has 4 dimensions, use
     62 // a Jet<double, 4>.
     63 //
     64 // Before substituting a jet object for x, the dual components are set
     65 // appropriately for each dimension of x:
     66 //
     67 //          y                       x
     68 //   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0
     69 //   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1
     70 //   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2
     71 //         ---+---          [ * | 0 0 0 1 ]   x3
     72 //            |                   ^ ^ ^ ^
     73 //          dy/dx                 | | | +----- infinitesimal for x3
     74 //                                | | +------- infinitesimal for x2
     75 //                                | +--------- infinitesimal for x1
     76 //                                +----------- infinitesimal for x0
     77 //
     78 // The reason to set the internal 4x4 submatrix to the identity is that we wish
     79 // to take the derivative of y separately with respect to each dimension of x.
     80 // Each column of the 4x4 identity is therefore for a single component of the
     81 // independent variable x.
     82 //
     83 // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
     84 // extended y vector, indicated in the above diagram.
     85 //
     86 // Functors with multiple parameters
     87 // ---------------------------------
     88 // In practice, it is often convenient to use a function f of two or more
     89 // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
     90 // framework is designed for a single-parameter vector-valued input. The wrapper
     91 // in this file addresses this issue adding support for functions with one or
     92 // more parameter vectors.
     93 //
     94 // To support multiple parameters, all the parameter vectors are concatenated
     95 // into one and treated as a single parameter vector, except that since the
     96 // functor expects different inputs, we need to construct the jets as if they
     97 // were part of a single parameter vector. The extended jets are passed
     98 // separately for each parameter.
     99 //
    100 // For example, consider a functor F taking two vector parameters, p[2] and
    101 // q[3], and producing an output y[4]:
    102 //
    103 //   struct F {
    104 //     template<typename T>
    105 //     bool operator()(const T *p, const T *q, T *z) {
    106 //       // ...
    107 //     }
    108 //   };
    109 //
    110 // In this case, the necessary jet type is Jet<double, 5>. Here is a
    111 // visualization of the jet objects in this case:
    112 //
    113 //          Dual components for p ----+
    114 //                                    |
    115 //                                   -+-
    116 //           y                 [ * | 1 0 | 0 0 0 ]    --- p[0]
    117 //                             [ * | 0 1 | 0 0 0 ]    --- p[1]
    118 //   [ * | . . | + + + ]         |
    119 //   [ * | . . | + + + ]         v
    120 //   [ * | . . | + + + ]  <--- F(p, q)
    121 //   [ * | . . | + + + ]            ^
    122 //         ^^^   ^^^^^              |
    123 //        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0]
    124 //                                [ * | 0 0 | 0 1 0 ] --- q[1]
    125 //                                [ * | 0 0 | 0 0 1 ] --- q[2]
    126 //                                            --+--
    127 //                                              |
    128 //          Dual components for q --------------+
    129 //
    130 // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
    131 // of y in the above diagram are the derivatives of y with respect to p and q
    132 // respectively. This is how autodiff works for functors taking multiple vector
    133 // valued arguments (up to 6).
    134 //
    135 // Jacobian NULL pointers
    136 // ----------------------
    137 // In general, the functions below will accept NULL pointers for all or some of
    138 // the Jacobian parameters, meaning that those Jacobians will not be computed.
    139 
    140 #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
    141 #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
    142 
    143 #include <stddef.h>
    144 
    145 #include "ceres/jet.h"
    146 #include "ceres/internal/eigen.h"
    147 #include "ceres/internal/fixed_array.h"
    148 #include "ceres/internal/variadic_evaluate.h"
    149 #include "glog/logging.h"
    150 
    151 namespace ceres {
    152 namespace internal {
    153 
    154 // Extends src by a 1st order pertubation for every dimension and puts it in
    155 // dst. The size of src is N. Since this is also used for perturbations in
    156 // blocked arrays, offset is used to shift which part of the jet the
    157 // perturbation occurs. This is used to set up the extended x augmented by an
    158 // identity matrix. The JetT type should be a Jet type, and T should be a
    159 // numeric type (e.g. double). For example,
    160 //
    161 //             0   1 2   3 4 5   6 7 8
    162 //   dst[0]  [ * | . . | 1 0 0 | . . . ]
    163 //   dst[1]  [ * | . . | 0 1 0 | . . . ]
    164 //   dst[2]  [ * | . . | 0 0 1 | . . . ]
    165 //
    166 // is what would get put in dst if N was 3, offset was 3, and the jet type JetT
    167 // was 8-dimensional.
    168 template <typename JetT, typename T, int N>
    169 inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
    170   DCHECK(src);
    171   DCHECK(dst);
    172   for (int j = 0; j < N; ++j) {
    173     dst[j].a = src[j];
    174     dst[j].v.setZero();
    175     dst[j].v[offset + j] = 1.0;
    176   }
    177 }
    178 
    179 // Takes the 0th order part of src, assumed to be a Jet type, and puts it in
    180 // dst. This is used to pick out the "vector" part of the extended y.
    181 template <typename JetT, typename T>
    182 inline void Take0thOrderPart(int M, const JetT *src, T dst) {
    183   DCHECK(src);
    184   for (int i = 0; i < M; ++i) {
    185     dst[i] = src[i].a;
    186   }
    187 }
    188 
    189 // Takes N 1st order parts, starting at index N0, and puts them in the M x N
    190 // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
    191 template <typename JetT, typename T, int N0, int N>
    192 inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
    193   DCHECK(src);
    194   DCHECK(dst);
    195   for (int i = 0; i < M; ++i) {
    196     Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
    197         src[i].v.template segment<N>(N0);
    198   }
    199 }
    200 
    201 // This is in a struct because default template parameters on a
    202 // function are not supported in C++03 (though it is available in
    203 // C++0x). N0 through N5 are the dimension of the input arguments to
    204 // the user supplied functor.
    205 template <typename Functor, typename T,
    206           int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
    207           int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
    208 struct AutoDiff {
    209   static bool Differentiate(const Functor& functor,
    210                             T const *const *parameters,
    211                             int num_outputs,
    212                             T *function_value,
    213                             T **jacobians) {
    214     // This block breaks the 80 column rule to keep it somewhat readable.
    215     DCHECK_GT(num_outputs, 0);
    216     DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
    217           ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
    218           ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
    219           ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
    220           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
    221           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
    222           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
    223           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
    224           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
    225           ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)))
    226         << "Zero block cannot precede a non-zero block. Block sizes are "
    227         << "(ignore trailing 0s): " << N0 << ", " << N1 << ", " << N2 << ", "
    228         << N3 << ", " << N4 << ", " << N5 << ", " << N6 << ", " << N7 << ", "
    229         << N8 << ", " << N9;
    230 
    231     typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
    232     FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
    233         N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
    234 
    235     // These are the positions of the respective jets in the fixed array x.
    236     const int jet0  = 0;
    237     const int jet1  = N0;
    238     const int jet2  = N0 + N1;
    239     const int jet3  = N0 + N1 + N2;
    240     const int jet4  = N0 + N1 + N2 + N3;
    241     const int jet5  = N0 + N1 + N2 + N3 + N4;
    242     const int jet6  = N0 + N1 + N2 + N3 + N4 + N5;
    243     const int jet7  = N0 + N1 + N2 + N3 + N4 + N5 + N6;
    244     const int jet8  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
    245     const int jet9  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
    246 
    247     const JetT *unpacked_parameters[10] = {
    248         x.get() + jet0,
    249         x.get() + jet1,
    250         x.get() + jet2,
    251         x.get() + jet3,
    252         x.get() + jet4,
    253         x.get() + jet5,
    254         x.get() + jet6,
    255         x.get() + jet7,
    256         x.get() + jet8,
    257         x.get() + jet9,
    258     };
    259 
    260     JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
    261 
    262 #define CERES_MAKE_1ST_ORDER_PERTURBATION(i)                            \
    263     if (N ## i) {                                                       \
    264       internal::Make1stOrderPerturbation<JetT, T, N ## i>(              \
    265           jet ## i,                                                     \
    266           parameters[i],                                                \
    267           x.get() + jet ## i);                                          \
    268     }
    269     CERES_MAKE_1ST_ORDER_PERTURBATION(0);
    270     CERES_MAKE_1ST_ORDER_PERTURBATION(1);
    271     CERES_MAKE_1ST_ORDER_PERTURBATION(2);
    272     CERES_MAKE_1ST_ORDER_PERTURBATION(3);
    273     CERES_MAKE_1ST_ORDER_PERTURBATION(4);
    274     CERES_MAKE_1ST_ORDER_PERTURBATION(5);
    275     CERES_MAKE_1ST_ORDER_PERTURBATION(6);
    276     CERES_MAKE_1ST_ORDER_PERTURBATION(7);
    277     CERES_MAKE_1ST_ORDER_PERTURBATION(8);
    278     CERES_MAKE_1ST_ORDER_PERTURBATION(9);
    279 #undef CERES_MAKE_1ST_ORDER_PERTURBATION
    280 
    281     if (!VariadicEvaluate<Functor, JetT,
    282                           N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
    283         functor, unpacked_parameters, output)) {
    284       return false;
    285     }
    286 
    287     internal::Take0thOrderPart(num_outputs, output, function_value);
    288 
    289 #define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
    290     if (N ## i) { \
    291       if (jacobians[i]) { \
    292         internal::Take1stOrderPart<JetT, T, \
    293                                    jet ## i, \
    294                                    N ## i>(num_outputs, \
    295                                            output, \
    296                                            jacobians[i]); \
    297       } \
    298     }
    299     CERES_TAKE_1ST_ORDER_PERTURBATION(0);
    300     CERES_TAKE_1ST_ORDER_PERTURBATION(1);
    301     CERES_TAKE_1ST_ORDER_PERTURBATION(2);
    302     CERES_TAKE_1ST_ORDER_PERTURBATION(3);
    303     CERES_TAKE_1ST_ORDER_PERTURBATION(4);
    304     CERES_TAKE_1ST_ORDER_PERTURBATION(5);
    305     CERES_TAKE_1ST_ORDER_PERTURBATION(6);
    306     CERES_TAKE_1ST_ORDER_PERTURBATION(7);
    307     CERES_TAKE_1ST_ORDER_PERTURBATION(8);
    308     CERES_TAKE_1ST_ORDER_PERTURBATION(9);
    309 #undef CERES_TAKE_1ST_ORDER_PERTURBATION
    310     return true;
    311   }
    312 };
    313 
    314 }  // namespace internal
    315 }  // namespace ceres
    316 
    317 #endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
    318