1 //===-- sanitizer_allocator_test.cc ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer/AddressSanitizer runtime. 11 // Tests for sanitizer_allocator.h. 12 // 13 //===----------------------------------------------------------------------===// 14 #include "sanitizer_common/sanitizer_allocator.h" 15 #include "sanitizer_common/sanitizer_allocator_internal.h" 16 #include "sanitizer_common/sanitizer_common.h" 17 18 #include "sanitizer_test_utils.h" 19 20 #include "gtest/gtest.h" 21 22 #include <stdlib.h> 23 #include <pthread.h> 24 #include <algorithm> 25 #include <vector> 26 #include <set> 27 28 // Too slow for debug build 29 #if TSAN_DEBUG == 0 30 31 #if SANITIZER_WORDSIZE == 64 32 static const uptr kAllocatorSpace = 0x700000000000ULL; 33 static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. 34 static const u64 kAddressSpaceSize = 1ULL << 47; 35 36 typedef SizeClassAllocator64< 37 kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap> Allocator64; 38 39 typedef SizeClassAllocator64< 40 kAllocatorSpace, kAllocatorSize, 16, CompactSizeClassMap> Allocator64Compact; 41 #else 42 static const u64 kAddressSpaceSize = 1ULL << 32; 43 #endif 44 45 static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); 46 static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog; 47 48 typedef SizeClassAllocator32< 49 0, kAddressSpaceSize, 50 /*kMetadataSize*/16, 51 CompactSizeClassMap, 52 kRegionSizeLog, 53 FlatByteMap<kFlatByteMapSize> > 54 Allocator32Compact; 55 56 template <class SizeClassMap> 57 void TestSizeClassMap() { 58 typedef SizeClassMap SCMap; 59 // SCMap::Print(); 60 SCMap::Validate(); 61 } 62 63 TEST(SanitizerCommon, DefaultSizeClassMap) { 64 TestSizeClassMap<DefaultSizeClassMap>(); 65 } 66 67 TEST(SanitizerCommon, CompactSizeClassMap) { 68 TestSizeClassMap<CompactSizeClassMap>(); 69 } 70 71 TEST(SanitizerCommon, InternalSizeClassMap) { 72 TestSizeClassMap<InternalSizeClassMap>(); 73 } 74 75 template <class Allocator> 76 void TestSizeClassAllocator() { 77 Allocator *a = new Allocator; 78 a->Init(); 79 SizeClassAllocatorLocalCache<Allocator> cache; 80 memset(&cache, 0, sizeof(cache)); 81 cache.Init(0); 82 83 static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 84 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; 85 86 std::vector<void *> allocated; 87 88 uptr last_total_allocated = 0; 89 for (int i = 0; i < 3; i++) { 90 // Allocate a bunch of chunks. 91 for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { 92 uptr size = sizes[s]; 93 if (!a->CanAllocate(size, 1)) continue; 94 // printf("s = %ld\n", size); 95 uptr n_iter = std::max((uptr)6, 8000000 / size); 96 // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); 97 for (uptr i = 0; i < n_iter; i++) { 98 uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); 99 char *x = (char*)cache.Allocate(a, class_id0); 100 x[0] = 0; 101 x[size - 1] = 0; 102 x[size / 2] = 0; 103 allocated.push_back(x); 104 CHECK_EQ(x, a->GetBlockBegin(x)); 105 CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); 106 CHECK(a->PointerIsMine(x)); 107 CHECK(a->PointerIsMine(x + size - 1)); 108 CHECK(a->PointerIsMine(x + size / 2)); 109 CHECK_GE(a->GetActuallyAllocatedSize(x), size); 110 uptr class_id = a->GetSizeClass(x); 111 CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); 112 uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); 113 metadata[0] = reinterpret_cast<uptr>(x) + 1; 114 metadata[1] = 0xABCD; 115 } 116 } 117 // Deallocate all. 118 for (uptr i = 0; i < allocated.size(); i++) { 119 void *x = allocated[i]; 120 uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); 121 CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); 122 CHECK_EQ(metadata[1], 0xABCD); 123 cache.Deallocate(a, a->GetSizeClass(x), x); 124 } 125 allocated.clear(); 126 uptr total_allocated = a->TotalMemoryUsed(); 127 if (last_total_allocated == 0) 128 last_total_allocated = total_allocated; 129 CHECK_EQ(last_total_allocated, total_allocated); 130 } 131 132 // Check that GetBlockBegin never crashes. 133 for (uptr x = 0, step = kAddressSpaceSize / 100000; 134 x < kAddressSpaceSize - step; x += step) 135 if (a->PointerIsMine(reinterpret_cast<void *>(x))) 136 Ident(a->GetBlockBegin(reinterpret_cast<void *>(x))); 137 138 a->TestOnlyUnmap(); 139 delete a; 140 } 141 142 #if SANITIZER_WORDSIZE == 64 143 TEST(SanitizerCommon, SizeClassAllocator64) { 144 TestSizeClassAllocator<Allocator64>(); 145 } 146 147 TEST(SanitizerCommon, SizeClassAllocator64Compact) { 148 TestSizeClassAllocator<Allocator64Compact>(); 149 } 150 #endif 151 152 TEST(SanitizerCommon, SizeClassAllocator32Compact) { 153 TestSizeClassAllocator<Allocator32Compact>(); 154 } 155 156 template <class Allocator> 157 void SizeClassAllocatorMetadataStress() { 158 Allocator *a = new Allocator; 159 a->Init(); 160 SizeClassAllocatorLocalCache<Allocator> cache; 161 memset(&cache, 0, sizeof(cache)); 162 cache.Init(0); 163 164 const uptr kNumAllocs = 1 << 13; 165 void *allocated[kNumAllocs]; 166 void *meta[kNumAllocs]; 167 for (uptr i = 0; i < kNumAllocs; i++) { 168 void *x = cache.Allocate(a, 1 + i % 50); 169 allocated[i] = x; 170 meta[i] = a->GetMetaData(x); 171 } 172 // Get Metadata kNumAllocs^2 times. 173 for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { 174 uptr idx = i % kNumAllocs; 175 void *m = a->GetMetaData(allocated[idx]); 176 EXPECT_EQ(m, meta[idx]); 177 } 178 for (uptr i = 0; i < kNumAllocs; i++) { 179 cache.Deallocate(a, 1 + i % 50, allocated[i]); 180 } 181 182 a->TestOnlyUnmap(); 183 delete a; 184 } 185 186 #if SANITIZER_WORDSIZE == 64 187 TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { 188 SizeClassAllocatorMetadataStress<Allocator64>(); 189 } 190 191 TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { 192 SizeClassAllocatorMetadataStress<Allocator64Compact>(); 193 } 194 #endif // SANITIZER_WORDSIZE == 64 195 TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { 196 SizeClassAllocatorMetadataStress<Allocator32Compact>(); 197 } 198 199 template <class Allocator> 200 void SizeClassAllocatorGetBlockBeginStress() { 201 Allocator *a = new Allocator; 202 a->Init(); 203 SizeClassAllocatorLocalCache<Allocator> cache; 204 memset(&cache, 0, sizeof(cache)); 205 cache.Init(0); 206 207 uptr max_size_class = Allocator::kNumClasses - 1; 208 uptr size = Allocator::SizeClassMapT::Size(max_size_class); 209 u64 G8 = 1ULL << 33; 210 // Make sure we correctly compute GetBlockBegin() w/o overflow. 211 for (size_t i = 0; i <= G8 / size; i++) { 212 void *x = cache.Allocate(a, max_size_class); 213 void *beg = a->GetBlockBegin(x); 214 // if ((i & (i - 1)) == 0) 215 // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); 216 EXPECT_EQ(x, beg); 217 } 218 219 a->TestOnlyUnmap(); 220 delete a; 221 } 222 223 #if SANITIZER_WORDSIZE == 64 224 TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { 225 SizeClassAllocatorGetBlockBeginStress<Allocator64>(); 226 } 227 TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { 228 SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(); 229 } 230 TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { 231 SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(); 232 } 233 #endif // SANITIZER_WORDSIZE == 64 234 235 struct TestMapUnmapCallback { 236 static int map_count, unmap_count; 237 void OnMap(uptr p, uptr size) const { map_count++; } 238 void OnUnmap(uptr p, uptr size) const { unmap_count++; } 239 }; 240 int TestMapUnmapCallback::map_count; 241 int TestMapUnmapCallback::unmap_count; 242 243 #if SANITIZER_WORDSIZE == 64 244 TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { 245 TestMapUnmapCallback::map_count = 0; 246 TestMapUnmapCallback::unmap_count = 0; 247 typedef SizeClassAllocator64< 248 kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap, 249 TestMapUnmapCallback> Allocator64WithCallBack; 250 Allocator64WithCallBack *a = new Allocator64WithCallBack; 251 a->Init(); 252 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. 253 SizeClassAllocatorLocalCache<Allocator64WithCallBack> cache; 254 memset(&cache, 0, sizeof(cache)); 255 cache.Init(0); 256 AllocatorStats stats; 257 stats.Init(); 258 a->AllocateBatch(&stats, &cache, 32); 259 EXPECT_EQ(TestMapUnmapCallback::map_count, 3); // State + alloc + metadata. 260 a->TestOnlyUnmap(); 261 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. 262 delete a; 263 } 264 #endif 265 266 TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { 267 TestMapUnmapCallback::map_count = 0; 268 TestMapUnmapCallback::unmap_count = 0; 269 typedef SizeClassAllocator32< 270 0, kAddressSpaceSize, 271 /*kMetadataSize*/16, 272 CompactSizeClassMap, 273 kRegionSizeLog, 274 FlatByteMap<kFlatByteMapSize>, 275 TestMapUnmapCallback> 276 Allocator32WithCallBack; 277 Allocator32WithCallBack *a = new Allocator32WithCallBack; 278 a->Init(); 279 EXPECT_EQ(TestMapUnmapCallback::map_count, 0); 280 SizeClassAllocatorLocalCache<Allocator32WithCallBack> cache; 281 memset(&cache, 0, sizeof(cache)); 282 cache.Init(0); 283 AllocatorStats stats; 284 stats.Init(); 285 a->AllocateBatch(&stats, &cache, 32); 286 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); 287 a->TestOnlyUnmap(); 288 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); 289 delete a; 290 // fprintf(stderr, "Map: %d Unmap: %d\n", 291 // TestMapUnmapCallback::map_count, 292 // TestMapUnmapCallback::unmap_count); 293 } 294 295 TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { 296 TestMapUnmapCallback::map_count = 0; 297 TestMapUnmapCallback::unmap_count = 0; 298 LargeMmapAllocator<TestMapUnmapCallback> a; 299 a.Init(); 300 AllocatorStats stats; 301 stats.Init(); 302 void *x = a.Allocate(&stats, 1 << 20, 1); 303 EXPECT_EQ(TestMapUnmapCallback::map_count, 1); 304 a.Deallocate(&stats, x); 305 EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); 306 } 307 308 template<class Allocator> 309 void FailInAssertionOnOOM() { 310 Allocator a; 311 a.Init(); 312 SizeClassAllocatorLocalCache<Allocator> cache; 313 memset(&cache, 0, sizeof(cache)); 314 cache.Init(0); 315 AllocatorStats stats; 316 stats.Init(); 317 for (int i = 0; i < 1000000; i++) { 318 a.AllocateBatch(&stats, &cache, 52); 319 } 320 321 a.TestOnlyUnmap(); 322 } 323 324 #if SANITIZER_WORDSIZE == 64 325 TEST(SanitizerCommon, SizeClassAllocator64Overflow) { 326 EXPECT_DEATH(FailInAssertionOnOOM<Allocator64>(), "Out of memory"); 327 } 328 #endif 329 330 TEST(SanitizerCommon, LargeMmapAllocator) { 331 LargeMmapAllocator<> a; 332 a.Init(); 333 AllocatorStats stats; 334 stats.Init(); 335 336 static const int kNumAllocs = 1000; 337 char *allocated[kNumAllocs]; 338 static const uptr size = 4000; 339 // Allocate some. 340 for (int i = 0; i < kNumAllocs; i++) { 341 allocated[i] = (char *)a.Allocate(&stats, size, 1); 342 CHECK(a.PointerIsMine(allocated[i])); 343 } 344 // Deallocate all. 345 CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); 346 for (int i = 0; i < kNumAllocs; i++) { 347 char *p = allocated[i]; 348 CHECK(a.PointerIsMine(p)); 349 a.Deallocate(&stats, p); 350 } 351 // Check that non left. 352 CHECK_EQ(a.TotalMemoryUsed(), 0); 353 354 // Allocate some more, also add metadata. 355 for (int i = 0; i < kNumAllocs; i++) { 356 char *x = (char *)a.Allocate(&stats, size, 1); 357 CHECK_GE(a.GetActuallyAllocatedSize(x), size); 358 uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x)); 359 *meta = i; 360 allocated[i] = x; 361 } 362 for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { 363 char *p = allocated[i % kNumAllocs]; 364 CHECK(a.PointerIsMine(p)); 365 CHECK(a.PointerIsMine(p + 2000)); 366 } 367 CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); 368 // Deallocate all in reverse order. 369 for (int i = 0; i < kNumAllocs; i++) { 370 int idx = kNumAllocs - i - 1; 371 char *p = allocated[idx]; 372 uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p)); 373 CHECK_EQ(*meta, idx); 374 CHECK(a.PointerIsMine(p)); 375 a.Deallocate(&stats, p); 376 } 377 CHECK_EQ(a.TotalMemoryUsed(), 0); 378 379 // Test alignments. 380 uptr max_alignment = SANITIZER_WORDSIZE == 64 ? (1 << 28) : (1 << 24); 381 for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { 382 const uptr kNumAlignedAllocs = 100; 383 for (uptr i = 0; i < kNumAlignedAllocs; i++) { 384 uptr size = ((i % 10) + 1) * 4096; 385 char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment); 386 CHECK_EQ(p, a.GetBlockBegin(p)); 387 CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); 388 CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); 389 CHECK_EQ(0, (uptr)allocated[i] % alignment); 390 p[0] = p[size - 1] = 0; 391 } 392 for (uptr i = 0; i < kNumAlignedAllocs; i++) { 393 a.Deallocate(&stats, allocated[i]); 394 } 395 } 396 397 // Regression test for boundary condition in GetBlockBegin(). 398 uptr page_size = GetPageSizeCached(); 399 char *p = (char *)a.Allocate(&stats, page_size, 1); 400 CHECK_EQ(p, a.GetBlockBegin(p)); 401 CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); 402 CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); 403 a.Deallocate(&stats, p); 404 } 405 406 template 407 <class PrimaryAllocator, class SecondaryAllocator, class AllocatorCache> 408 void TestCombinedAllocator() { 409 typedef 410 CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator> 411 Allocator; 412 Allocator *a = new Allocator; 413 a->Init(); 414 415 AllocatorCache cache; 416 memset(&cache, 0, sizeof(cache)); 417 a->InitCache(&cache); 418 419 EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); 420 EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); 421 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); 422 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); 423 EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); 424 425 const uptr kNumAllocs = 100000; 426 const uptr kNumIter = 10; 427 for (uptr iter = 0; iter < kNumIter; iter++) { 428 std::vector<void*> allocated; 429 for (uptr i = 0; i < kNumAllocs; i++) { 430 uptr size = (i % (1 << 14)) + 1; 431 if ((i % 1024) == 0) 432 size = 1 << (10 + (i % 14)); 433 void *x = a->Allocate(&cache, size, 1); 434 uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); 435 CHECK_EQ(*meta, 0); 436 *meta = size; 437 allocated.push_back(x); 438 } 439 440 random_shuffle(allocated.begin(), allocated.end()); 441 442 for (uptr i = 0; i < kNumAllocs; i++) { 443 void *x = allocated[i]; 444 uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); 445 CHECK_NE(*meta, 0); 446 CHECK(a->PointerIsMine(x)); 447 *meta = 0; 448 a->Deallocate(&cache, x); 449 } 450 allocated.clear(); 451 a->SwallowCache(&cache); 452 } 453 a->DestroyCache(&cache); 454 a->TestOnlyUnmap(); 455 } 456 457 #if SANITIZER_WORDSIZE == 64 458 TEST(SanitizerCommon, CombinedAllocator64) { 459 TestCombinedAllocator<Allocator64, 460 LargeMmapAllocator<>, 461 SizeClassAllocatorLocalCache<Allocator64> > (); 462 } 463 464 TEST(SanitizerCommon, CombinedAllocator64Compact) { 465 TestCombinedAllocator<Allocator64Compact, 466 LargeMmapAllocator<>, 467 SizeClassAllocatorLocalCache<Allocator64Compact> > (); 468 } 469 #endif 470 471 TEST(SanitizerCommon, CombinedAllocator32Compact) { 472 TestCombinedAllocator<Allocator32Compact, 473 LargeMmapAllocator<>, 474 SizeClassAllocatorLocalCache<Allocator32Compact> > (); 475 } 476 477 template <class AllocatorCache> 478 void TestSizeClassAllocatorLocalCache() { 479 AllocatorCache cache; 480 typedef typename AllocatorCache::Allocator Allocator; 481 Allocator *a = new Allocator(); 482 483 a->Init(); 484 memset(&cache, 0, sizeof(cache)); 485 cache.Init(0); 486 487 const uptr kNumAllocs = 10000; 488 const int kNumIter = 100; 489 uptr saved_total = 0; 490 for (int class_id = 1; class_id <= 5; class_id++) { 491 for (int it = 0; it < kNumIter; it++) { 492 void *allocated[kNumAllocs]; 493 for (uptr i = 0; i < kNumAllocs; i++) { 494 allocated[i] = cache.Allocate(a, class_id); 495 } 496 for (uptr i = 0; i < kNumAllocs; i++) { 497 cache.Deallocate(a, class_id, allocated[i]); 498 } 499 cache.Drain(a); 500 uptr total_allocated = a->TotalMemoryUsed(); 501 if (it) 502 CHECK_EQ(saved_total, total_allocated); 503 saved_total = total_allocated; 504 } 505 } 506 507 a->TestOnlyUnmap(); 508 delete a; 509 } 510 511 #if SANITIZER_WORDSIZE == 64 512 TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { 513 TestSizeClassAllocatorLocalCache< 514 SizeClassAllocatorLocalCache<Allocator64> >(); 515 } 516 517 TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { 518 TestSizeClassAllocatorLocalCache< 519 SizeClassAllocatorLocalCache<Allocator64Compact> >(); 520 } 521 #endif 522 523 TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { 524 TestSizeClassAllocatorLocalCache< 525 SizeClassAllocatorLocalCache<Allocator32Compact> >(); 526 } 527 528 #if SANITIZER_WORDSIZE == 64 529 typedef SizeClassAllocatorLocalCache<Allocator64> AllocatorCache; 530 static AllocatorCache static_allocator_cache; 531 532 void *AllocatorLeakTestWorker(void *arg) { 533 typedef AllocatorCache::Allocator Allocator; 534 Allocator *a = (Allocator*)(arg); 535 static_allocator_cache.Allocate(a, 10); 536 static_allocator_cache.Drain(a); 537 return 0; 538 } 539 540 TEST(SanitizerCommon, AllocatorLeakTest) { 541 typedef AllocatorCache::Allocator Allocator; 542 Allocator a; 543 a.Init(); 544 uptr total_used_memory = 0; 545 for (int i = 0; i < 100; i++) { 546 pthread_t t; 547 EXPECT_EQ(0, pthread_create(&t, 0, AllocatorLeakTestWorker, &a)); 548 EXPECT_EQ(0, pthread_join(t, 0)); 549 if (i == 0) 550 total_used_memory = a.TotalMemoryUsed(); 551 EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); 552 } 553 554 a.TestOnlyUnmap(); 555 } 556 557 // Struct which is allocated to pass info to new threads. The new thread frees 558 // it. 559 struct NewThreadParams { 560 AllocatorCache *thread_cache; 561 AllocatorCache::Allocator *allocator; 562 uptr class_id; 563 }; 564 565 // Called in a new thread. Just frees its argument. 566 static void *DeallocNewThreadWorker(void *arg) { 567 NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg); 568 params->thread_cache->Deallocate(params->allocator, params->class_id, params); 569 return NULL; 570 } 571 572 // The allocator cache is supposed to be POD and zero initialized. We should be 573 // able to call Deallocate on a zeroed cache, and it will self-initialize. 574 TEST(Allocator, AllocatorCacheDeallocNewThread) { 575 AllocatorCache::Allocator allocator; 576 allocator.Init(); 577 AllocatorCache main_cache; 578 AllocatorCache child_cache; 579 memset(&main_cache, 0, sizeof(main_cache)); 580 memset(&child_cache, 0, sizeof(child_cache)); 581 582 uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams)); 583 NewThreadParams *params = reinterpret_cast<NewThreadParams*>( 584 main_cache.Allocate(&allocator, class_id)); 585 params->thread_cache = &child_cache; 586 params->allocator = &allocator; 587 params->class_id = class_id; 588 pthread_t t; 589 EXPECT_EQ(0, pthread_create(&t, 0, DeallocNewThreadWorker, params)); 590 EXPECT_EQ(0, pthread_join(t, 0)); 591 } 592 #endif 593 594 TEST(Allocator, Basic) { 595 char *p = (char*)InternalAlloc(10); 596 EXPECT_NE(p, (char*)0); 597 char *p2 = (char*)InternalAlloc(20); 598 EXPECT_NE(p2, (char*)0); 599 EXPECT_NE(p2, p); 600 InternalFree(p); 601 InternalFree(p2); 602 } 603 604 TEST(Allocator, Stress) { 605 const int kCount = 1000; 606 char *ptrs[kCount]; 607 unsigned rnd = 42; 608 for (int i = 0; i < kCount; i++) { 609 uptr sz = my_rand_r(&rnd) % 1000; 610 char *p = (char*)InternalAlloc(sz); 611 EXPECT_NE(p, (char*)0); 612 ptrs[i] = p; 613 } 614 for (int i = 0; i < kCount; i++) { 615 InternalFree(ptrs[i]); 616 } 617 } 618 619 TEST(Allocator, InternalAllocFailure) { 620 EXPECT_DEATH(Ident(InternalAlloc(10 << 20)), 621 "Unexpected mmap in InternalAllocator!"); 622 } 623 624 TEST(Allocator, ScopedBuffer) { 625 const int kSize = 512; 626 { 627 InternalScopedBuffer<int> int_buf(kSize); 628 EXPECT_EQ(sizeof(int) * kSize, int_buf.size()); // NOLINT 629 } 630 InternalScopedBuffer<char> char_buf(kSize); 631 EXPECT_EQ(sizeof(char) * kSize, char_buf.size()); // NOLINT 632 internal_memset(char_buf.data(), 'c', kSize); 633 for (int i = 0; i < kSize; i++) { 634 EXPECT_EQ('c', char_buf[i]); 635 } 636 } 637 638 void IterationTestCallback(uptr chunk, void *arg) { 639 reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk); 640 } 641 642 template <class Allocator> 643 void TestSizeClassAllocatorIteration() { 644 Allocator *a = new Allocator; 645 a->Init(); 646 SizeClassAllocatorLocalCache<Allocator> cache; 647 memset(&cache, 0, sizeof(cache)); 648 cache.Init(0); 649 650 static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, 651 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; 652 653 std::vector<void *> allocated; 654 655 // Allocate a bunch of chunks. 656 for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { 657 uptr size = sizes[s]; 658 if (!a->CanAllocate(size, 1)) continue; 659 // printf("s = %ld\n", size); 660 uptr n_iter = std::max((uptr)6, 80000 / size); 661 // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); 662 for (uptr j = 0; j < n_iter; j++) { 663 uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); 664 void *x = cache.Allocate(a, class_id0); 665 allocated.push_back(x); 666 } 667 } 668 669 std::set<uptr> reported_chunks; 670 a->ForceLock(); 671 a->ForEachChunk(IterationTestCallback, &reported_chunks); 672 a->ForceUnlock(); 673 674 for (uptr i = 0; i < allocated.size(); i++) { 675 // Don't use EXPECT_NE. Reporting the first mismatch is enough. 676 ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), 677 reported_chunks.end()); 678 } 679 680 a->TestOnlyUnmap(); 681 delete a; 682 } 683 684 #if SANITIZER_WORDSIZE == 64 685 TEST(SanitizerCommon, SizeClassAllocator64Iteration) { 686 TestSizeClassAllocatorIteration<Allocator64>(); 687 } 688 #endif 689 690 TEST(SanitizerCommon, SizeClassAllocator32Iteration) { 691 TestSizeClassAllocatorIteration<Allocator32Compact>(); 692 } 693 694 TEST(SanitizerCommon, LargeMmapAllocatorIteration) { 695 LargeMmapAllocator<> a; 696 a.Init(); 697 AllocatorStats stats; 698 stats.Init(); 699 700 static const uptr kNumAllocs = 1000; 701 char *allocated[kNumAllocs]; 702 static const uptr size = 40; 703 // Allocate some. 704 for (uptr i = 0; i < kNumAllocs; i++) 705 allocated[i] = (char *)a.Allocate(&stats, size, 1); 706 707 std::set<uptr> reported_chunks; 708 a.ForceLock(); 709 a.ForEachChunk(IterationTestCallback, &reported_chunks); 710 a.ForceUnlock(); 711 712 for (uptr i = 0; i < kNumAllocs; i++) { 713 // Don't use EXPECT_NE. Reporting the first mismatch is enough. 714 ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), 715 reported_chunks.end()); 716 } 717 for (uptr i = 0; i < kNumAllocs; i++) 718 a.Deallocate(&stats, allocated[i]); 719 } 720 721 TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { 722 LargeMmapAllocator<> a; 723 a.Init(); 724 AllocatorStats stats; 725 stats.Init(); 726 727 static const uptr kNumAllocs = 1024; 728 static const uptr kNumExpectedFalseLookups = 10000000; 729 char *allocated[kNumAllocs]; 730 static const uptr size = 4096; 731 // Allocate some. 732 for (uptr i = 0; i < kNumAllocs; i++) { 733 allocated[i] = (char *)a.Allocate(&stats, size, 1); 734 } 735 736 for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { 737 // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); 738 char *p1 = allocated[i % kNumAllocs]; 739 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1)); 740 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2)); 741 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1)); 742 EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100)); 743 } 744 745 for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { 746 void *p = reinterpret_cast<void *>(i % 1024); 747 EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); 748 p = reinterpret_cast<void *>(~0L - (i % 1024)); 749 EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p)); 750 } 751 752 for (uptr i = 0; i < kNumAllocs; i++) 753 a.Deallocate(&stats, allocated[i]); 754 } 755 756 757 #if SANITIZER_WORDSIZE == 64 758 // Regression test for out-of-memory condition in PopulateFreeList(). 759 TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { 760 // In a world where regions are small and chunks are huge... 761 typedef SizeClassMap<63, 128, 16> SpecialSizeClassMap; 762 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0, 763 SpecialSizeClassMap> SpecialAllocator64; 764 const uptr kRegionSize = 765 kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; 766 SpecialAllocator64 *a = new SpecialAllocator64; 767 a->Init(); 768 SizeClassAllocatorLocalCache<SpecialAllocator64> cache; 769 memset(&cache, 0, sizeof(cache)); 770 cache.Init(0); 771 772 // ...one man is on a mission to overflow a region with a series of 773 // successive allocations. 774 const uptr kClassID = 107; 775 const uptr kAllocationSize = DefaultSizeClassMap::Size(kClassID); 776 ASSERT_LT(2 * kAllocationSize, kRegionSize); 777 ASSERT_GT(3 * kAllocationSize, kRegionSize); 778 cache.Allocate(a, kClassID); 779 EXPECT_DEATH(cache.Allocate(a, kClassID) && cache.Allocate(a, kClassID), 780 "The process has exhausted"); 781 a->TestOnlyUnmap(); 782 delete a; 783 } 784 #endif 785 786 #endif // #if TSAN_DEBUG==0 787