1 //===-- Type.cpp - Implement the Type class -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Type class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Type.h" 15 #include "LLVMContextImpl.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/IR/Module.h" 18 #include <algorithm> 19 #include <cstdarg> 20 using namespace llvm; 21 22 //===----------------------------------------------------------------------===// 23 // Type Class Implementation 24 //===----------------------------------------------------------------------===// 25 26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { 27 switch (IDNumber) { 28 case VoidTyID : return getVoidTy(C); 29 case HalfTyID : return getHalfTy(C); 30 case FloatTyID : return getFloatTy(C); 31 case DoubleTyID : return getDoubleTy(C); 32 case X86_FP80TyID : return getX86_FP80Ty(C); 33 case FP128TyID : return getFP128Ty(C); 34 case PPC_FP128TyID : return getPPC_FP128Ty(C); 35 case LabelTyID : return getLabelTy(C); 36 case MetadataTyID : return getMetadataTy(C); 37 case X86_MMXTyID : return getX86_MMXTy(C); 38 default: 39 return 0; 40 } 41 } 42 43 /// getScalarType - If this is a vector type, return the element type, 44 /// otherwise return this. 45 Type *Type::getScalarType() { 46 if (VectorType *VTy = dyn_cast<VectorType>(this)) 47 return VTy->getElementType(); 48 return this; 49 } 50 51 const Type *Type::getScalarType() const { 52 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 53 return VTy->getElementType(); 54 return this; 55 } 56 57 /// isIntegerTy - Return true if this is an IntegerType of the specified width. 58 bool Type::isIntegerTy(unsigned Bitwidth) const { 59 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth; 60 } 61 62 // canLosslesslyBitCastTo - Return true if this type can be converted to 63 // 'Ty' without any reinterpretation of bits. For example, i8* to i32*. 64 // 65 bool Type::canLosslesslyBitCastTo(Type *Ty) const { 66 // Identity cast means no change so return true 67 if (this == Ty) 68 return true; 69 70 // They are not convertible unless they are at least first class types 71 if (!this->isFirstClassType() || !Ty->isFirstClassType()) 72 return false; 73 74 // Vector -> Vector conversions are always lossless if the two vector types 75 // have the same size, otherwise not. Also, 64-bit vector types can be 76 // converted to x86mmx. 77 if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) { 78 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) 79 return thisPTy->getBitWidth() == thatPTy->getBitWidth(); 80 if (Ty->getTypeID() == Type::X86_MMXTyID && 81 thisPTy->getBitWidth() == 64) 82 return true; 83 } 84 85 if (this->getTypeID() == Type::X86_MMXTyID) 86 if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty)) 87 if (thatPTy->getBitWidth() == 64) 88 return true; 89 90 // At this point we have only various mismatches of the first class types 91 // remaining and ptr->ptr. Just select the lossless conversions. Everything 92 // else is not lossless. 93 if (this->isPointerTy()) 94 return Ty->isPointerTy(); 95 return false; // Other types have no identity values 96 } 97 98 bool Type::isEmptyTy() const { 99 const ArrayType *ATy = dyn_cast<ArrayType>(this); 100 if (ATy) { 101 unsigned NumElements = ATy->getNumElements(); 102 return NumElements == 0 || ATy->getElementType()->isEmptyTy(); 103 } 104 105 const StructType *STy = dyn_cast<StructType>(this); 106 if (STy) { 107 unsigned NumElements = STy->getNumElements(); 108 for (unsigned i = 0; i < NumElements; ++i) 109 if (!STy->getElementType(i)->isEmptyTy()) 110 return false; 111 return true; 112 } 113 114 return false; 115 } 116 117 unsigned Type::getPrimitiveSizeInBits() const { 118 switch (getTypeID()) { 119 case Type::HalfTyID: return 16; 120 case Type::FloatTyID: return 32; 121 case Type::DoubleTyID: return 64; 122 case Type::X86_FP80TyID: return 80; 123 case Type::FP128TyID: return 128; 124 case Type::PPC_FP128TyID: return 128; 125 case Type::X86_MMXTyID: return 64; 126 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth(); 127 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth(); 128 default: return 0; 129 } 130 } 131 132 /// getScalarSizeInBits - If this is a vector type, return the 133 /// getPrimitiveSizeInBits value for the element type. Otherwise return the 134 /// getPrimitiveSizeInBits value for this type. 135 unsigned Type::getScalarSizeInBits() { 136 return getScalarType()->getPrimitiveSizeInBits(); 137 } 138 139 /// getFPMantissaWidth - Return the width of the mantissa of this type. This 140 /// is only valid on floating point types. If the FP type does not 141 /// have a stable mantissa (e.g. ppc long double), this method returns -1. 142 int Type::getFPMantissaWidth() const { 143 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 144 return VTy->getElementType()->getFPMantissaWidth(); 145 assert(isFloatingPointTy() && "Not a floating point type!"); 146 if (getTypeID() == HalfTyID) return 11; 147 if (getTypeID() == FloatTyID) return 24; 148 if (getTypeID() == DoubleTyID) return 53; 149 if (getTypeID() == X86_FP80TyID) return 64; 150 if (getTypeID() == FP128TyID) return 113; 151 assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); 152 return -1; 153 } 154 155 /// isSizedDerivedType - Derived types like structures and arrays are sized 156 /// iff all of the members of the type are sized as well. Since asking for 157 /// their size is relatively uncommon, move this operation out of line. 158 bool Type::isSizedDerivedType() const { 159 if (this->isIntegerTy()) 160 return true; 161 162 if (const ArrayType *ATy = dyn_cast<ArrayType>(this)) 163 return ATy->getElementType()->isSized(); 164 165 if (const VectorType *VTy = dyn_cast<VectorType>(this)) 166 return VTy->getElementType()->isSized(); 167 168 if (!this->isStructTy()) 169 return false; 170 171 return cast<StructType>(this)->isSized(); 172 } 173 174 //===----------------------------------------------------------------------===// 175 // Subclass Helper Methods 176 //===----------------------------------------------------------------------===// 177 178 unsigned Type::getIntegerBitWidth() const { 179 return cast<IntegerType>(this)->getBitWidth(); 180 } 181 182 bool Type::isFunctionVarArg() const { 183 return cast<FunctionType>(this)->isVarArg(); 184 } 185 186 Type *Type::getFunctionParamType(unsigned i) const { 187 return cast<FunctionType>(this)->getParamType(i); 188 } 189 190 unsigned Type::getFunctionNumParams() const { 191 return cast<FunctionType>(this)->getNumParams(); 192 } 193 194 StringRef Type::getStructName() const { 195 return cast<StructType>(this)->getName(); 196 } 197 198 unsigned Type::getStructNumElements() const { 199 return cast<StructType>(this)->getNumElements(); 200 } 201 202 Type *Type::getStructElementType(unsigned N) const { 203 return cast<StructType>(this)->getElementType(N); 204 } 205 206 Type *Type::getSequentialElementType() const { 207 return cast<SequentialType>(this)->getElementType(); 208 } 209 210 uint64_t Type::getArrayNumElements() const { 211 return cast<ArrayType>(this)->getNumElements(); 212 } 213 214 unsigned Type::getVectorNumElements() const { 215 return cast<VectorType>(this)->getNumElements(); 216 } 217 218 unsigned Type::getPointerAddressSpace() const { 219 return cast<PointerType>(getScalarType())->getAddressSpace(); 220 } 221 222 223 //===----------------------------------------------------------------------===// 224 // Primitive 'Type' data 225 //===----------------------------------------------------------------------===// 226 227 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } 228 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } 229 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } 230 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } 231 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } 232 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } 233 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } 234 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } 235 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } 236 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } 237 238 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } 239 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } 240 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } 241 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } 242 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } 243 244 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { 245 return IntegerType::get(C, N); 246 } 247 248 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { 249 return getHalfTy(C)->getPointerTo(AS); 250 } 251 252 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { 253 return getFloatTy(C)->getPointerTo(AS); 254 } 255 256 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { 257 return getDoubleTy(C)->getPointerTo(AS); 258 } 259 260 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { 261 return getX86_FP80Ty(C)->getPointerTo(AS); 262 } 263 264 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { 265 return getFP128Ty(C)->getPointerTo(AS); 266 } 267 268 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { 269 return getPPC_FP128Ty(C)->getPointerTo(AS); 270 } 271 272 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { 273 return getX86_MMXTy(C)->getPointerTo(AS); 274 } 275 276 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { 277 return getIntNTy(C, N)->getPointerTo(AS); 278 } 279 280 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { 281 return getInt1Ty(C)->getPointerTo(AS); 282 } 283 284 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { 285 return getInt8Ty(C)->getPointerTo(AS); 286 } 287 288 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { 289 return getInt16Ty(C)->getPointerTo(AS); 290 } 291 292 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { 293 return getInt32Ty(C)->getPointerTo(AS); 294 } 295 296 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { 297 return getInt64Ty(C)->getPointerTo(AS); 298 } 299 300 301 //===----------------------------------------------------------------------===// 302 // IntegerType Implementation 303 //===----------------------------------------------------------------------===// 304 305 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { 306 assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); 307 assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); 308 309 // Check for the built-in integer types 310 switch (NumBits) { 311 case 1: return cast<IntegerType>(Type::getInt1Ty(C)); 312 case 8: return cast<IntegerType>(Type::getInt8Ty(C)); 313 case 16: return cast<IntegerType>(Type::getInt16Ty(C)); 314 case 32: return cast<IntegerType>(Type::getInt32Ty(C)); 315 case 64: return cast<IntegerType>(Type::getInt64Ty(C)); 316 default: 317 break; 318 } 319 320 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; 321 322 if (Entry == 0) 323 Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); 324 325 return Entry; 326 } 327 328 bool IntegerType::isPowerOf2ByteWidth() const { 329 unsigned BitWidth = getBitWidth(); 330 return (BitWidth > 7) && isPowerOf2_32(BitWidth); 331 } 332 333 APInt IntegerType::getMask() const { 334 return APInt::getAllOnesValue(getBitWidth()); 335 } 336 337 //===----------------------------------------------------------------------===// 338 // FunctionType Implementation 339 //===----------------------------------------------------------------------===// 340 341 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params, 342 bool IsVarArgs) 343 : Type(Result->getContext(), FunctionTyID) { 344 Type **SubTys = reinterpret_cast<Type**>(this+1); 345 assert(isValidReturnType(Result) && "invalid return type for function"); 346 setSubclassData(IsVarArgs); 347 348 SubTys[0] = const_cast<Type*>(Result); 349 350 for (unsigned i = 0, e = Params.size(); i != e; ++i) { 351 assert(isValidArgumentType(Params[i]) && 352 "Not a valid type for function argument!"); 353 SubTys[i+1] = Params[i]; 354 } 355 356 ContainedTys = SubTys; 357 NumContainedTys = Params.size() + 1; // + 1 for result type 358 } 359 360 // FunctionType::get - The factory function for the FunctionType class. 361 FunctionType *FunctionType::get(Type *ReturnType, 362 ArrayRef<Type*> Params, bool isVarArg) { 363 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; 364 FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); 365 LLVMContextImpl::FunctionTypeMap::iterator I = 366 pImpl->FunctionTypes.find_as(Key); 367 FunctionType *FT; 368 369 if (I == pImpl->FunctionTypes.end()) { 370 FT = (FunctionType*) pImpl->TypeAllocator. 371 Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1), 372 AlignOf<FunctionType>::Alignment); 373 new (FT) FunctionType(ReturnType, Params, isVarArg); 374 pImpl->FunctionTypes[FT] = true; 375 } else { 376 FT = I->first; 377 } 378 379 return FT; 380 } 381 382 FunctionType *FunctionType::get(Type *Result, bool isVarArg) { 383 return get(Result, None, isVarArg); 384 } 385 386 /// isValidReturnType - Return true if the specified type is valid as a return 387 /// type. 388 bool FunctionType::isValidReturnType(Type *RetTy) { 389 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && 390 !RetTy->isMetadataTy(); 391 } 392 393 /// isValidArgumentType - Return true if the specified type is valid as an 394 /// argument type. 395 bool FunctionType::isValidArgumentType(Type *ArgTy) { 396 return ArgTy->isFirstClassType(); 397 } 398 399 //===----------------------------------------------------------------------===// 400 // StructType Implementation 401 //===----------------------------------------------------------------------===// 402 403 // Primitive Constructors. 404 405 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 406 bool isPacked) { 407 LLVMContextImpl *pImpl = Context.pImpl; 408 AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); 409 LLVMContextImpl::StructTypeMap::iterator I = 410 pImpl->AnonStructTypes.find_as(Key); 411 StructType *ST; 412 413 if (I == pImpl->AnonStructTypes.end()) { 414 // Value not found. Create a new type! 415 ST = new (Context.pImpl->TypeAllocator) StructType(Context); 416 ST->setSubclassData(SCDB_IsLiteral); // Literal struct. 417 ST->setBody(ETypes, isPacked); 418 Context.pImpl->AnonStructTypes[ST] = true; 419 } else { 420 ST = I->first; 421 } 422 423 return ST; 424 } 425 426 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) { 427 assert(isOpaque() && "Struct body already set!"); 428 429 setSubclassData(getSubclassData() | SCDB_HasBody); 430 if (isPacked) 431 setSubclassData(getSubclassData() | SCDB_Packed); 432 433 unsigned NumElements = Elements.size(); 434 Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements); 435 memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements); 436 437 ContainedTys = Elts; 438 NumContainedTys = NumElements; 439 } 440 441 void StructType::setName(StringRef Name) { 442 if (Name == getName()) return; 443 444 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes; 445 typedef StringMap<StructType *>::MapEntryTy EntryTy; 446 447 // If this struct already had a name, remove its symbol table entry. Don't 448 // delete the data yet because it may be part of the new name. 449 if (SymbolTableEntry) 450 SymbolTable.remove((EntryTy *)SymbolTableEntry); 451 452 // If this is just removing the name, we're done. 453 if (Name.empty()) { 454 if (SymbolTableEntry) { 455 // Delete the old string data. 456 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 457 SymbolTableEntry = 0; 458 } 459 return; 460 } 461 462 // Look up the entry for the name. 463 EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name); 464 465 // While we have a name collision, try a random rename. 466 if (Entry->getValue()) { 467 SmallString<64> TempStr(Name); 468 TempStr.push_back('.'); 469 raw_svector_ostream TmpStream(TempStr); 470 unsigned NameSize = Name.size(); 471 472 do { 473 TempStr.resize(NameSize + 1); 474 TmpStream.resync(); 475 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; 476 477 Entry = &getContext().pImpl-> 478 NamedStructTypes.GetOrCreateValue(TmpStream.str()); 479 } while (Entry->getValue()); 480 } 481 482 // Okay, we found an entry that isn't used. It's us! 483 Entry->setValue(this); 484 485 // Delete the old string data. 486 if (SymbolTableEntry) 487 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); 488 SymbolTableEntry = Entry; 489 } 490 491 //===----------------------------------------------------------------------===// 492 // StructType Helper functions. 493 494 StructType *StructType::create(LLVMContext &Context, StringRef Name) { 495 StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); 496 if (!Name.empty()) 497 ST->setName(Name); 498 return ST; 499 } 500 501 StructType *StructType::get(LLVMContext &Context, bool isPacked) { 502 return get(Context, None, isPacked); 503 } 504 505 StructType *StructType::get(Type *type, ...) { 506 assert(type != 0 && "Cannot create a struct type with no elements with this"); 507 LLVMContext &Ctx = type->getContext(); 508 va_list ap; 509 SmallVector<llvm::Type*, 8> StructFields; 510 va_start(ap, type); 511 while (type) { 512 StructFields.push_back(type); 513 type = va_arg(ap, llvm::Type*); 514 } 515 return llvm::StructType::get(Ctx, StructFields); 516 } 517 518 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements, 519 StringRef Name, bool isPacked) { 520 StructType *ST = create(Context, Name); 521 ST->setBody(Elements, isPacked); 522 return ST; 523 } 524 525 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) { 526 return create(Context, Elements, StringRef()); 527 } 528 529 StructType *StructType::create(LLVMContext &Context) { 530 return create(Context, StringRef()); 531 } 532 533 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name, 534 bool isPacked) { 535 assert(!Elements.empty() && 536 "This method may not be invoked with an empty list"); 537 return create(Elements[0]->getContext(), Elements, Name, isPacked); 538 } 539 540 StructType *StructType::create(ArrayRef<Type*> Elements) { 541 assert(!Elements.empty() && 542 "This method may not be invoked with an empty list"); 543 return create(Elements[0]->getContext(), Elements, StringRef()); 544 } 545 546 StructType *StructType::create(StringRef Name, Type *type, ...) { 547 assert(type != 0 && "Cannot create a struct type with no elements with this"); 548 LLVMContext &Ctx = type->getContext(); 549 va_list ap; 550 SmallVector<llvm::Type*, 8> StructFields; 551 va_start(ap, type); 552 while (type) { 553 StructFields.push_back(type); 554 type = va_arg(ap, llvm::Type*); 555 } 556 return llvm::StructType::create(Ctx, StructFields, Name); 557 } 558 559 bool StructType::isSized() const { 560 if ((getSubclassData() & SCDB_IsSized) != 0) 561 return true; 562 if (isOpaque()) 563 return false; 564 565 // Okay, our struct is sized if all of the elements are, but if one of the 566 // elements is opaque, the struct isn't sized *yet*, but may become sized in 567 // the future, so just bail out without caching. 568 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) 569 if (!(*I)->isSized()) 570 return false; 571 572 // Here we cheat a bit and cast away const-ness. The goal is to memoize when 573 // we find a sized type, as types can only move from opaque to sized, not the 574 // other way. 575 const_cast<StructType*>(this)->setSubclassData( 576 getSubclassData() | SCDB_IsSized); 577 return true; 578 } 579 580 StringRef StructType::getName() const { 581 assert(!isLiteral() && "Literal structs never have names"); 582 if (SymbolTableEntry == 0) return StringRef(); 583 584 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey(); 585 } 586 587 void StructType::setBody(Type *type, ...) { 588 assert(type != 0 && "Cannot create a struct type with no elements with this"); 589 va_list ap; 590 SmallVector<llvm::Type*, 8> StructFields; 591 va_start(ap, type); 592 while (type) { 593 StructFields.push_back(type); 594 type = va_arg(ap, llvm::Type*); 595 } 596 setBody(StructFields); 597 } 598 599 bool StructType::isValidElementType(Type *ElemTy) { 600 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 601 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); 602 } 603 604 /// isLayoutIdentical - Return true if this is layout identical to the 605 /// specified struct. 606 bool StructType::isLayoutIdentical(StructType *Other) const { 607 if (this == Other) return true; 608 609 if (isPacked() != Other->isPacked() || 610 getNumElements() != Other->getNumElements()) 611 return false; 612 613 return std::equal(element_begin(), element_end(), Other->element_begin()); 614 } 615 616 /// getTypeByName - Return the type with the specified name, or null if there 617 /// is none by that name. 618 StructType *Module::getTypeByName(StringRef Name) const { 619 StringMap<StructType*>::iterator I = 620 getContext().pImpl->NamedStructTypes.find(Name); 621 if (I != getContext().pImpl->NamedStructTypes.end()) 622 return I->second; 623 return 0; 624 } 625 626 627 //===----------------------------------------------------------------------===// 628 // CompositeType Implementation 629 //===----------------------------------------------------------------------===// 630 631 Type *CompositeType::getTypeAtIndex(const Value *V) { 632 if (StructType *STy = dyn_cast<StructType>(this)) { 633 unsigned Idx = 634 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue(); 635 assert(indexValid(Idx) && "Invalid structure index!"); 636 return STy->getElementType(Idx); 637 } 638 639 return cast<SequentialType>(this)->getElementType(); 640 } 641 Type *CompositeType::getTypeAtIndex(unsigned Idx) { 642 if (StructType *STy = dyn_cast<StructType>(this)) { 643 assert(indexValid(Idx) && "Invalid structure index!"); 644 return STy->getElementType(Idx); 645 } 646 647 return cast<SequentialType>(this)->getElementType(); 648 } 649 bool CompositeType::indexValid(const Value *V) const { 650 if (const StructType *STy = dyn_cast<StructType>(this)) { 651 // Structure indexes require (vectors of) 32-bit integer constants. In the 652 // vector case all of the indices must be equal. 653 if (!V->getType()->getScalarType()->isIntegerTy(32)) 654 return false; 655 const Constant *C = dyn_cast<Constant>(V); 656 if (C && V->getType()->isVectorTy()) 657 C = C->getSplatValue(); 658 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C); 659 return CU && CU->getZExtValue() < STy->getNumElements(); 660 } 661 662 // Sequential types can be indexed by any integer. 663 return V->getType()->isIntOrIntVectorTy(); 664 } 665 666 bool CompositeType::indexValid(unsigned Idx) const { 667 if (const StructType *STy = dyn_cast<StructType>(this)) 668 return Idx < STy->getNumElements(); 669 // Sequential types can be indexed by any integer. 670 return true; 671 } 672 673 674 //===----------------------------------------------------------------------===// 675 // ArrayType Implementation 676 //===----------------------------------------------------------------------===// 677 678 ArrayType::ArrayType(Type *ElType, uint64_t NumEl) 679 : SequentialType(ArrayTyID, ElType) { 680 NumElements = NumEl; 681 } 682 683 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) { 684 Type *ElementType = const_cast<Type*>(elementType); 685 assert(isValidElementType(ElementType) && "Invalid type for array element!"); 686 687 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 688 ArrayType *&Entry = 689 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; 690 691 if (Entry == 0) 692 Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); 693 return Entry; 694 } 695 696 bool ArrayType::isValidElementType(Type *ElemTy) { 697 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 698 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy(); 699 } 700 701 //===----------------------------------------------------------------------===// 702 // VectorType Implementation 703 //===----------------------------------------------------------------------===// 704 705 VectorType::VectorType(Type *ElType, unsigned NumEl) 706 : SequentialType(VectorTyID, ElType) { 707 NumElements = NumEl; 708 } 709 710 VectorType *VectorType::get(Type *elementType, unsigned NumElements) { 711 Type *ElementType = const_cast<Type*>(elementType); 712 assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); 713 assert(isValidElementType(ElementType) && 714 "Elements of a VectorType must be a primitive type"); 715 716 LLVMContextImpl *pImpl = ElementType->getContext().pImpl; 717 VectorType *&Entry = ElementType->getContext().pImpl 718 ->VectorTypes[std::make_pair(ElementType, NumElements)]; 719 720 if (Entry == 0) 721 Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); 722 return Entry; 723 } 724 725 bool VectorType::isValidElementType(Type *ElemTy) { 726 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || 727 ElemTy->isPointerTy(); 728 } 729 730 //===----------------------------------------------------------------------===// 731 // PointerType Implementation 732 //===----------------------------------------------------------------------===// 733 734 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { 735 assert(EltTy && "Can't get a pointer to <null> type!"); 736 assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); 737 738 LLVMContextImpl *CImpl = EltTy->getContext().pImpl; 739 740 // Since AddressSpace #0 is the common case, we special case it. 741 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] 742 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; 743 744 if (Entry == 0) 745 Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); 746 return Entry; 747 } 748 749 750 PointerType::PointerType(Type *E, unsigned AddrSpace) 751 : SequentialType(PointerTyID, E) { 752 #ifndef NDEBUG 753 const unsigned oldNCT = NumContainedTys; 754 #endif 755 setSubclassData(AddrSpace); 756 // Check for miscompile. PR11652. 757 assert(oldNCT == NumContainedTys && "bitfield written out of bounds?"); 758 } 759 760 PointerType *Type::getPointerTo(unsigned addrs) { 761 return PointerType::get(this, addrs); 762 } 763 764 bool PointerType::isValidElementType(Type *ElemTy) { 765 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && 766 !ElemTy->isMetadataTy(); 767 } 768