1 /* 2 * Copyright (C) 2013 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #include "base/stringprintf.h" 17 #include "sea_ir/ir/instruction_tools.h" 18 #include "sea_ir/ir/sea.h" 19 #include "sea_ir/code_gen/code_gen.h" 20 #include "sea_ir/types/type_inference.h" 21 22 #define MAX_REACHING_DEF_ITERERATIONS (10) 23 // TODO: When development is done, this define should not 24 // be needed, it is currently used as a cutoff 25 // for cases where the iterative fixed point algorithm 26 // does not reach a fixed point because of a bug. 27 28 namespace sea_ir { 29 30 int SeaNode::current_max_node_id_ = 0; 31 32 void IRVisitor::Traverse(Region* region) { 33 std::vector<PhiInstructionNode*>* phis = region->GetPhiNodes(); 34 for (std::vector<PhiInstructionNode*>::const_iterator cit = phis->begin(); 35 cit != phis->end(); cit++) { 36 (*cit)->Accept(this); 37 } 38 std::vector<InstructionNode*>* instructions = region->GetInstructions(); 39 for (std::vector<InstructionNode*>::const_iterator cit = instructions->begin(); 40 cit != instructions->end(); cit++) { 41 (*cit)->Accept(this); 42 } 43 } 44 45 void IRVisitor::Traverse(SeaGraph* graph) { 46 for (std::vector<Region*>::const_iterator cit = ordered_regions_.begin(); 47 cit != ordered_regions_.end(); cit++ ) { 48 (*cit)->Accept(this); 49 } 50 } 51 52 SeaGraph* SeaGraph::GetGraph(const art::DexFile& dex_file) { 53 return new SeaGraph(dex_file); 54 } 55 56 void SeaGraph::AddEdge(Region* src, Region* dst) const { 57 src->AddSuccessor(dst); 58 dst->AddPredecessor(src); 59 } 60 61 void SeaGraph::ComputeRPO(Region* current_region, int& current_rpo) { 62 current_region->SetRPO(VISITING); 63 std::vector<sea_ir::Region*>* succs = current_region->GetSuccessors(); 64 for (std::vector<sea_ir::Region*>::iterator succ_it = succs->begin(); 65 succ_it != succs->end(); ++succ_it) { 66 if (NOT_VISITED == (*succ_it)->GetRPO()) { 67 SeaGraph::ComputeRPO(*succ_it, current_rpo); 68 } 69 } 70 current_region->SetRPO(current_rpo--); 71 } 72 73 void SeaGraph::ComputeIDominators() { 74 bool changed = true; 75 while (changed) { 76 changed = false; 77 // Entry node has itself as IDOM. 78 std::vector<Region*>::iterator crt_it; 79 std::set<Region*> processedNodes; 80 // Find and mark the entry node(s). 81 for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) { 82 if ((*crt_it)->GetPredecessors()->size() == 0) { 83 processedNodes.insert(*crt_it); 84 (*crt_it)->SetIDominator(*crt_it); 85 } 86 } 87 for (crt_it = regions_.begin(); crt_it != regions_.end(); ++crt_it) { 88 if ((*crt_it)->GetPredecessors()->size() == 0) { 89 continue; 90 } 91 // NewIDom = first (processed) predecessor of b. 92 Region* new_dom = NULL; 93 std::vector<Region*>* preds = (*crt_it)->GetPredecessors(); 94 DCHECK(NULL != preds); 95 Region* root_pred = NULL; 96 for (std::vector<Region*>::iterator pred_it = preds->begin(); 97 pred_it != preds->end(); ++pred_it) { 98 if (processedNodes.end() != processedNodes.find((*pred_it))) { 99 root_pred = *pred_it; 100 new_dom = root_pred; 101 break; 102 } 103 } 104 // For all other predecessors p of b, if idom is not set, 105 // then NewIdom = Intersect(p, NewIdom) 106 for (std::vector<Region*>::const_iterator pred_it = preds->begin(); 107 pred_it != preds->end(); ++pred_it) { 108 DCHECK(NULL != *pred_it); 109 // if IDOMS[p] != UNDEFINED 110 if ((*pred_it != root_pred) && (*pred_it)->GetIDominator() != NULL) { 111 DCHECK(NULL != new_dom); 112 new_dom = SeaGraph::Intersect(*pred_it, new_dom); 113 } 114 } 115 DCHECK(NULL != *crt_it); 116 if ((*crt_it)->GetIDominator() != new_dom) { 117 (*crt_it)->SetIDominator(new_dom); 118 changed = true; 119 } 120 processedNodes.insert(*crt_it); 121 } 122 } 123 124 // For easily ordering of regions we need edges dominator->dominated. 125 for (std::vector<Region*>::iterator region_it = regions_.begin(); 126 region_it != regions_.end(); region_it++) { 127 Region* idom = (*region_it)->GetIDominator(); 128 if (idom != *region_it) { 129 idom->AddToIDominatedSet(*region_it); 130 } 131 } 132 } 133 134 Region* SeaGraph::Intersect(Region* i, Region* j) { 135 Region* finger1 = i; 136 Region* finger2 = j; 137 while (finger1 != finger2) { 138 while (finger1->GetRPO() > finger2->GetRPO()) { 139 DCHECK(NULL != finger1); 140 finger1 = finger1->GetIDominator(); // should have: finger1 != NULL 141 DCHECK(NULL != finger1); 142 } 143 while (finger1->GetRPO() < finger2->GetRPO()) { 144 DCHECK(NULL != finger2); 145 finger2 = finger2->GetIDominator(); // should have: finger1 != NULL 146 DCHECK(NULL != finger2); 147 } 148 } 149 return finger1; // finger1 should be equal to finger2 at this point. 150 } 151 152 void SeaGraph::ComputeDownExposedDefs() { 153 for (std::vector<Region*>::iterator region_it = regions_.begin(); 154 region_it != regions_.end(); region_it++) { 155 (*region_it)->ComputeDownExposedDefs(); 156 } 157 } 158 159 void SeaGraph::ComputeReachingDefs() { 160 // Iterate until the reaching definitions set doesn't change anymore. 161 // (See Cooper & Torczon, "Engineering a Compiler", second edition, page 487) 162 bool changed = true; 163 int iteration = 0; 164 while (changed && (iteration < MAX_REACHING_DEF_ITERERATIONS)) { 165 iteration++; 166 changed = false; 167 // TODO: optimize the ordering if this becomes performance bottleneck. 168 for (std::vector<Region*>::iterator regions_it = regions_.begin(); 169 regions_it != regions_.end(); 170 regions_it++) { 171 changed |= (*regions_it)->UpdateReachingDefs(); 172 } 173 } 174 DCHECK(!changed) << "Reaching definitions computation did not reach a fixed point."; 175 } 176 177 void SeaGraph::InsertSignatureNodes(const art::DexFile::CodeItem* code_item, Region* r) { 178 // Insert a fake SignatureNode for the first parameter. 179 // TODO: Provide a register enum value for the fake parameter. 180 SignatureNode* parameter_def_node = new sea_ir::SignatureNode(0, 0); 181 AddParameterNode(parameter_def_node); 182 r->AddChild(parameter_def_node); 183 // Insert SignatureNodes for each Dalvik register parameter. 184 for (unsigned int crt_offset = 0; crt_offset < code_item->ins_size_; crt_offset++) { 185 int register_no = code_item->registers_size_ - crt_offset - 1; 186 int position = crt_offset + 1; 187 SignatureNode* parameter_def_node = new sea_ir::SignatureNode(register_no, position); 188 AddParameterNode(parameter_def_node); 189 r->AddChild(parameter_def_node); 190 } 191 } 192 193 void SeaGraph::BuildMethodSeaGraph(const art::DexFile::CodeItem* code_item, 194 const art::DexFile& dex_file, uint16_t class_def_idx, 195 uint32_t method_idx, uint32_t method_access_flags) { 196 code_item_ = code_item; 197 class_def_idx_ = class_def_idx; 198 method_idx_ = method_idx; 199 method_access_flags_ = method_access_flags; 200 const uint16_t* code = code_item->insns_; 201 const size_t size_in_code_units = code_item->insns_size_in_code_units_; 202 // This maps target instruction pointers to their corresponding region objects. 203 std::map<const uint16_t*, Region*> target_regions; 204 size_t i = 0; 205 // Pass: Find the start instruction of basic blocks 206 // by locating targets and flow-though instructions of branches. 207 while (i < size_in_code_units) { 208 const art::Instruction* inst = art::Instruction::At(&code[i]); 209 if (inst->IsBranch() || inst->IsUnconditional()) { 210 int32_t offset = inst->GetTargetOffset(); 211 if (target_regions.end() == target_regions.find(&code[i + offset])) { 212 Region* region = GetNewRegion(); 213 target_regions.insert(std::pair<const uint16_t*, Region*>(&code[i + offset], region)); 214 } 215 if (inst->CanFlowThrough() 216 && (target_regions.end() == target_regions.find(&code[i + inst->SizeInCodeUnits()]))) { 217 Region* region = GetNewRegion(); 218 target_regions.insert( 219 std::pair<const uint16_t*, Region*>(&code[i + inst->SizeInCodeUnits()], region)); 220 } 221 } 222 i += inst->SizeInCodeUnits(); 223 } 224 225 226 Region* r = GetNewRegion(); 227 228 InsertSignatureNodes(code_item, r); 229 // Pass: Assign instructions to region nodes and 230 // assign branches their control flow successors. 231 i = 0; 232 sea_ir::InstructionNode* last_node = NULL; 233 sea_ir::InstructionNode* node = NULL; 234 while (i < size_in_code_units) { 235 const art::Instruction* inst = art::Instruction::At(&code[i]); 236 std::vector<InstructionNode*> sea_instructions_for_dalvik = 237 sea_ir::InstructionNode::Create(inst); 238 for (std::vector<InstructionNode*>::const_iterator cit = sea_instructions_for_dalvik.begin(); 239 sea_instructions_for_dalvik.end() != cit; ++cit) { 240 last_node = node; 241 node = *cit; 242 243 if (inst->IsBranch() || inst->IsUnconditional()) { 244 int32_t offset = inst->GetTargetOffset(); 245 std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i + offset]); 246 DCHECK(it != target_regions.end()); 247 AddEdge(r, it->second); // Add edge to branch target. 248 } 249 std::map<const uint16_t*, Region*>::iterator it = target_regions.find(&code[i]); 250 if (target_regions.end() != it) { 251 // Get the already created region because this is a branch target. 252 Region* nextRegion = it->second; 253 if (last_node->GetInstruction()->IsBranch() 254 && last_node->GetInstruction()->CanFlowThrough()) { 255 AddEdge(r, it->second); // Add flow-through edge. 256 } 257 r = nextRegion; 258 } 259 r->AddChild(node); 260 } 261 i += inst->SizeInCodeUnits(); 262 } 263 } 264 265 void SeaGraph::ComputeRPO() { 266 int rpo_id = regions_.size() - 1; 267 for (std::vector<Region*>::const_iterator crt_it = regions_.begin(); crt_it != regions_.end(); 268 ++crt_it) { 269 if ((*crt_it)->GetPredecessors()->size() == 0) { 270 ComputeRPO(*crt_it, rpo_id); 271 } 272 } 273 } 274 275 // Performs the renaming phase in traditional SSA transformations. 276 // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.) 277 void SeaGraph::RenameAsSSA() { 278 utils::ScopedHashtable<int, InstructionNode*> scoped_table; 279 scoped_table.OpenScope(); 280 for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end(); 281 region_it++) { 282 if ((*region_it)->GetIDominator() == *region_it) { 283 RenameAsSSA(*region_it, &scoped_table); 284 } 285 } 286 scoped_table.CloseScope(); 287 } 288 289 void SeaGraph::ConvertToSSA() { 290 // Pass: find global names. 291 // The map @block maps registers to the blocks in which they are defined. 292 std::map<int, std::set<Region*> > blocks; 293 // The set @globals records registers whose use 294 // is in a different block than the corresponding definition. 295 std::set<int> globals; 296 for (std::vector<Region*>::iterator region_it = regions_.begin(); region_it != regions_.end(); 297 region_it++) { 298 std::set<int> var_kill; 299 std::vector<InstructionNode*>* instructions = (*region_it)->GetInstructions(); 300 for (std::vector<InstructionNode*>::iterator inst_it = instructions->begin(); 301 inst_it != instructions->end(); inst_it++) { 302 std::vector<int> used_regs = (*inst_it)->GetUses(); 303 for (std::size_t i = 0; i < used_regs.size(); i++) { 304 int used_reg = used_regs[i]; 305 if (var_kill.find(used_reg) == var_kill.end()) { 306 globals.insert(used_reg); 307 } 308 } 309 const int reg_def = (*inst_it)->GetResultRegister(); 310 if (reg_def != NO_REGISTER) { 311 var_kill.insert(reg_def); 312 } 313 314 blocks.insert(std::pair<int, std::set<Region*> >(reg_def, std::set<Region*>())); 315 std::set<Region*>* reg_def_blocks = &(blocks.find(reg_def)->second); 316 reg_def_blocks->insert(*region_it); 317 } 318 } 319 320 // Pass: Actually add phi-nodes to regions. 321 for (std::set<int>::const_iterator globals_it = globals.begin(); 322 globals_it != globals.end(); globals_it++) { 323 int global = *globals_it; 324 // Copy the set, because we will modify the worklist as we go. 325 std::set<Region*> worklist((*(blocks.find(global))).second); 326 for (std::set<Region*>::const_iterator b_it = worklist.begin(); 327 b_it != worklist.end(); b_it++) { 328 std::set<Region*>* df = (*b_it)->GetDominanceFrontier(); 329 for (std::set<Region*>::const_iterator df_it = df->begin(); df_it != df->end(); df_it++) { 330 if ((*df_it)->InsertPhiFor(global)) { 331 // Check that the dominance frontier element is in the worklist already 332 // because we only want to break if the element is actually not there yet. 333 if (worklist.find(*df_it) == worklist.end()) { 334 worklist.insert(*df_it); 335 b_it = worklist.begin(); 336 break; 337 } 338 } 339 } 340 } 341 } 342 // Pass: Build edges to the definition corresponding to each use. 343 // (This corresponds to the renaming phase in traditional SSA transformations. 344 // See: Cooper & Torczon, "Engineering a Compiler", second edition, page 505.) 345 RenameAsSSA(); 346 } 347 348 void SeaGraph::RenameAsSSA(Region* crt_region, 349 utils::ScopedHashtable<int, InstructionNode*>* scoped_table) { 350 scoped_table->OpenScope(); 351 // Rename phi nodes defined in the current region. 352 std::vector<PhiInstructionNode*>* phis = crt_region->GetPhiNodes(); 353 for (std::vector<PhiInstructionNode*>::iterator phi_it = phis->begin(); 354 phi_it != phis->end(); phi_it++) { 355 int reg_no = (*phi_it)->GetRegisterNumber(); 356 scoped_table->Add(reg_no, (*phi_it)); 357 } 358 // Rename operands of instructions from the current region. 359 std::vector<InstructionNode*>* instructions = crt_region->GetInstructions(); 360 for (std::vector<InstructionNode*>::const_iterator instructions_it = instructions->begin(); 361 instructions_it != instructions->end(); instructions_it++) { 362 InstructionNode* current_instruction = (*instructions_it); 363 // Rename uses. 364 std::vector<int> used_regs = current_instruction->GetUses(); 365 for (std::vector<int>::const_iterator reg_it = used_regs.begin(); 366 reg_it != used_regs.end(); reg_it++) { 367 int current_used_reg = (*reg_it); 368 InstructionNode* definition = scoped_table->Lookup(current_used_reg); 369 current_instruction->RenameToSSA(current_used_reg, definition); 370 } 371 // Update scope table with latest definitions. 372 std::vector<int> def_regs = current_instruction->GetDefinitions(); 373 for (std::vector<int>::const_iterator reg_it = def_regs.begin(); 374 reg_it != def_regs.end(); reg_it++) { 375 int current_defined_reg = (*reg_it); 376 scoped_table->Add(current_defined_reg, current_instruction); 377 } 378 } 379 // Fill in uses of phi functions in CFG successor regions. 380 const std::vector<Region*>* successors = crt_region->GetSuccessors(); 381 for (std::vector<Region*>::const_iterator successors_it = successors->begin(); 382 successors_it != successors->end(); successors_it++) { 383 Region* successor = (*successors_it); 384 successor->SetPhiDefinitionsForUses(scoped_table, crt_region); 385 } 386 387 // Rename all successors in the dominators tree. 388 const std::set<Region*>* dominated_nodes = crt_region->GetIDominatedSet(); 389 for (std::set<Region*>::const_iterator dominated_nodes_it = dominated_nodes->begin(); 390 dominated_nodes_it != dominated_nodes->end(); dominated_nodes_it++) { 391 Region* dominated_node = (*dominated_nodes_it); 392 RenameAsSSA(dominated_node, scoped_table); 393 } 394 scoped_table->CloseScope(); 395 } 396 397 CodeGenData* SeaGraph::GenerateLLVM(const std::string& function_name, 398 const art::DexFile& dex_file) { 399 // Pass: Generate LLVM IR. 400 CodeGenPrepassVisitor code_gen_prepass_visitor(function_name); 401 std::cout << "Generating code..." << std::endl; 402 Accept(&code_gen_prepass_visitor); 403 CodeGenVisitor code_gen_visitor(code_gen_prepass_visitor.GetData(), dex_file); 404 Accept(&code_gen_visitor); 405 CodeGenPostpassVisitor code_gen_postpass_visitor(code_gen_visitor.GetData()); 406 Accept(&code_gen_postpass_visitor); 407 return code_gen_postpass_visitor.GetData(); 408 } 409 410 CodeGenData* SeaGraph::CompileMethod( 411 const std::string& function_name, 412 const art::DexFile::CodeItem* code_item, uint16_t class_def_idx, 413 uint32_t method_idx, uint32_t method_access_flags, const art::DexFile& dex_file) { 414 // Two passes: Builds the intermediate structure (non-SSA) of the sea-ir for the function. 415 BuildMethodSeaGraph(code_item, dex_file, class_def_idx, method_idx, method_access_flags); 416 // Pass: Compute reverse post-order of regions. 417 ComputeRPO(); 418 // Multiple passes: compute immediate dominators. 419 ComputeIDominators(); 420 // Pass: compute downward-exposed definitions. 421 ComputeDownExposedDefs(); 422 // Multiple Passes (iterative fixed-point algorithm): Compute reaching definitions 423 ComputeReachingDefs(); 424 // Pass (O(nlogN)): Compute the dominance frontier for region nodes. 425 ComputeDominanceFrontier(); 426 // Two Passes: Phi node insertion. 427 ConvertToSSA(); 428 // Pass: type inference 429 ti_->ComputeTypes(this); 430 // Pass: Generate LLVM IR. 431 CodeGenData* cgd = GenerateLLVM(function_name, dex_file); 432 return cgd; 433 } 434 435 void SeaGraph::ComputeDominanceFrontier() { 436 for (std::vector<Region*>::iterator region_it = regions_.begin(); 437 region_it != regions_.end(); region_it++) { 438 std::vector<Region*>* preds = (*region_it)->GetPredecessors(); 439 if (preds->size() > 1) { 440 for (std::vector<Region*>::iterator pred_it = preds->begin(); 441 pred_it != preds->end(); pred_it++) { 442 Region* runner = *pred_it; 443 while (runner != (*region_it)->GetIDominator()) { 444 runner->AddToDominanceFrontier(*region_it); 445 runner = runner->GetIDominator(); 446 } 447 } 448 } 449 } 450 } 451 452 Region* SeaGraph::GetNewRegion() { 453 Region* new_region = new Region(); 454 AddRegion(new_region); 455 return new_region; 456 } 457 458 void SeaGraph::AddRegion(Region* r) { 459 DCHECK(r) << "Tried to add NULL region to SEA graph."; 460 regions_.push_back(r); 461 } 462 463 SeaGraph::SeaGraph(const art::DexFile& df) 464 :ti_(new TypeInference()), class_def_idx_(0), method_idx_(0), method_access_flags_(), 465 regions_(), parameters_(), dex_file_(df), code_item_(NULL) { } 466 467 void Region::AddChild(sea_ir::InstructionNode* instruction) { 468 DCHECK(instruction) << "Tried to add NULL instruction to region node."; 469 instructions_.push_back(instruction); 470 instruction->SetRegion(this); 471 } 472 473 SeaNode* Region::GetLastChild() const { 474 if (instructions_.size() > 0) { 475 return instructions_.back(); 476 } 477 return NULL; 478 } 479 480 void Region::ComputeDownExposedDefs() { 481 for (std::vector<InstructionNode*>::const_iterator inst_it = instructions_.begin(); 482 inst_it != instructions_.end(); inst_it++) { 483 int reg_no = (*inst_it)->GetResultRegister(); 484 std::map<int, InstructionNode*>::iterator res = de_defs_.find(reg_no); 485 if ((reg_no != NO_REGISTER) && (res == de_defs_.end())) { 486 de_defs_.insert(std::pair<int, InstructionNode*>(reg_no, *inst_it)); 487 } else { 488 res->second = *inst_it; 489 } 490 } 491 for (std::map<int, sea_ir::InstructionNode*>::const_iterator cit = de_defs_.begin(); 492 cit != de_defs_.end(); cit++) { 493 (*cit).second->MarkAsDEDef(); 494 } 495 } 496 497 const std::map<int, sea_ir::InstructionNode*>* Region::GetDownExposedDefs() const { 498 return &de_defs_; 499 } 500 501 std::map<int, std::set<sea_ir::InstructionNode*>* >* Region::GetReachingDefs() { 502 return &reaching_defs_; 503 } 504 505 bool Region::UpdateReachingDefs() { 506 std::map<int, std::set<sea_ir::InstructionNode*>* > new_reaching; 507 for (std::vector<Region*>::const_iterator pred_it = predecessors_.begin(); 508 pred_it != predecessors_.end(); pred_it++) { 509 // The reaching_defs variable will contain reaching defs __for current predecessor only__ 510 std::map<int, std::set<sea_ir::InstructionNode*>* > reaching_defs; 511 std::map<int, std::set<sea_ir::InstructionNode*>* >* pred_reaching = 512 (*pred_it)->GetReachingDefs(); 513 const std::map<int, InstructionNode*>* de_defs = (*pred_it)->GetDownExposedDefs(); 514 515 // The definitions from the reaching set of the predecessor 516 // may be shadowed by downward exposed definitions from the predecessor, 517 // otherwise the defs from the reaching set are still good. 518 for (std::map<int, InstructionNode*>::const_iterator de_def = de_defs->begin(); 519 de_def != de_defs->end(); de_def++) { 520 std::set<InstructionNode*>* solo_def; 521 solo_def = new std::set<InstructionNode*>(); 522 solo_def->insert(de_def->second); 523 reaching_defs.insert( 524 std::pair<int const, std::set<InstructionNode*>*>(de_def->first, solo_def)); 525 } 526 reaching_defs.insert(pred_reaching->begin(), pred_reaching->end()); 527 528 // Now we combine the reaching map coming from the current predecessor (reaching_defs) 529 // with the accumulated set from all predecessors so far (from new_reaching). 530 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = 531 reaching_defs.begin(); 532 for (; reaching_it != reaching_defs.end(); reaching_it++) { 533 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator crt_entry = 534 new_reaching.find(reaching_it->first); 535 if (new_reaching.end() != crt_entry) { 536 crt_entry->second->insert(reaching_it->second->begin(), reaching_it->second->end()); 537 } else { 538 new_reaching.insert( 539 std::pair<int, std::set<sea_ir::InstructionNode*>*>( 540 reaching_it->first, 541 reaching_it->second) ); 542 } 543 } 544 } 545 bool changed = false; 546 // Because the sets are monotonically increasing, 547 // we can compare sizes instead of using set comparison. 548 // TODO: Find formal proof. 549 int old_size = 0; 550 if (-1 == reaching_defs_size_) { 551 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = 552 reaching_defs_.begin(); 553 for (; reaching_it != reaching_defs_.end(); reaching_it++) { 554 old_size += (*reaching_it).second->size(); 555 } 556 } else { 557 old_size = reaching_defs_size_; 558 } 559 int new_size = 0; 560 std::map<int, std::set<sea_ir::InstructionNode*>*>::iterator reaching_it = new_reaching.begin(); 561 for (; reaching_it != new_reaching.end(); reaching_it++) { 562 new_size += (*reaching_it).second->size(); 563 } 564 if (old_size != new_size) { 565 changed = true; 566 } 567 if (changed) { 568 reaching_defs_ = new_reaching; 569 reaching_defs_size_ = new_size; 570 } 571 return changed; 572 } 573 574 bool Region::InsertPhiFor(int reg_no) { 575 if (!ContainsPhiFor(reg_no)) { 576 phi_set_.insert(reg_no); 577 PhiInstructionNode* new_phi = new PhiInstructionNode(reg_no); 578 new_phi->SetRegion(this); 579 phi_instructions_.push_back(new_phi); 580 return true; 581 } 582 return false; 583 } 584 585 void Region::SetPhiDefinitionsForUses( 586 const utils::ScopedHashtable<int, InstructionNode*>* scoped_table, Region* predecessor) { 587 int predecessor_id = -1; 588 for (unsigned int crt_pred_id = 0; crt_pred_id < predecessors_.size(); crt_pred_id++) { 589 if (predecessors_.at(crt_pred_id) == predecessor) { 590 predecessor_id = crt_pred_id; 591 } 592 } 593 DCHECK_NE(-1, predecessor_id); 594 for (std::vector<PhiInstructionNode*>::iterator phi_it = phi_instructions_.begin(); 595 phi_it != phi_instructions_.end(); phi_it++) { 596 PhiInstructionNode* phi = (*phi_it); 597 int reg_no = phi->GetRegisterNumber(); 598 InstructionNode* definition = scoped_table->Lookup(reg_no); 599 phi->RenameToSSA(reg_no, definition, predecessor_id); 600 } 601 } 602 603 std::vector<InstructionNode*> InstructionNode::Create(const art::Instruction* in) { 604 std::vector<InstructionNode*> sea_instructions; 605 switch (in->Opcode()) { 606 case art::Instruction::CONST_4: 607 sea_instructions.push_back(new ConstInstructionNode(in)); 608 break; 609 case art::Instruction::RETURN: 610 sea_instructions.push_back(new ReturnInstructionNode(in)); 611 break; 612 case art::Instruction::IF_NE: 613 sea_instructions.push_back(new IfNeInstructionNode(in)); 614 break; 615 case art::Instruction::ADD_INT_LIT8: 616 sea_instructions.push_back(new UnnamedConstInstructionNode(in, in->VRegC_22b())); 617 sea_instructions.push_back(new AddIntLitInstructionNode(in)); 618 break; 619 case art::Instruction::MOVE_RESULT: 620 sea_instructions.push_back(new MoveResultInstructionNode(in)); 621 break; 622 case art::Instruction::INVOKE_STATIC: 623 sea_instructions.push_back(new InvokeStaticInstructionNode(in)); 624 break; 625 case art::Instruction::ADD_INT: 626 sea_instructions.push_back(new AddIntInstructionNode(in)); 627 break; 628 case art::Instruction::GOTO: 629 sea_instructions.push_back(new GotoInstructionNode(in)); 630 break; 631 case art::Instruction::IF_EQZ: 632 sea_instructions.push_back(new IfEqzInstructionNode(in)); 633 break; 634 default: 635 // Default, generic IR instruction node; default case should never be reached 636 // when support for all instructions ahs been added. 637 sea_instructions.push_back(new InstructionNode(in)); 638 } 639 return sea_instructions; 640 } 641 642 void InstructionNode::MarkAsDEDef() { 643 de_def_ = true; 644 } 645 646 int InstructionNode::GetResultRegister() const { 647 if (instruction_->HasVRegA() && InstructionTools::IsDefinition(instruction_)) { 648 return instruction_->VRegA(); 649 } 650 return NO_REGISTER; 651 } 652 653 std::vector<int> InstructionNode::GetDefinitions() const { 654 // TODO: Extend this to handle instructions defining more than one register (if any) 655 // The return value should be changed to pointer to field then; for now it is an object 656 // so that we avoid possible memory leaks from allocating objects dynamically. 657 std::vector<int> definitions; 658 int result = GetResultRegister(); 659 if (NO_REGISTER != result) { 660 definitions.push_back(result); 661 } 662 return definitions; 663 } 664 665 std::vector<int> InstructionNode::GetUses() const { 666 std::vector<int> uses; // Using vector<> instead of set<> because order matters. 667 if (!InstructionTools::IsDefinition(instruction_) && (instruction_->HasVRegA())) { 668 int vA = instruction_->VRegA(); 669 uses.push_back(vA); 670 } 671 if (instruction_->HasVRegB()) { 672 int vB = instruction_->VRegB(); 673 uses.push_back(vB); 674 } 675 if (instruction_->HasVRegC()) { 676 int vC = instruction_->VRegC(); 677 uses.push_back(vC); 678 } 679 return uses; 680 } 681 } // namespace sea_ir 682