1 /*********************************************************************** 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. 3 Redistribution and use in source and binary forms, with or without 4 modification, are permitted provided that the following conditions 5 are met: 6 - Redistributions of source code must retain the above copyright notice, 7 this list of conditions and the following disclaimer. 8 - Redistributions in binary form must reproduce the above copyright 9 notice, this list of conditions and the following disclaimer in the 10 documentation and/or other materials provided with the distribution. 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 12 names of specific contributors, may be used to endorse or promote 13 products derived from this software without specific prior written 14 permission. 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 POSSIBILITY OF SUCH DAMAGE. 26 ***********************************************************************/ 27 28 #ifndef SILK_SIGPROC_FIX_H 29 #define SILK_SIGPROC_FIX_H 30 31 #ifdef __cplusplus 32 extern "C" 33 { 34 #endif 35 36 /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */ 37 38 #define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */ 39 40 #include <string.h> /* for memset(), memcpy(), memmove() */ 41 #include "typedef.h" 42 #include "resampler_structs.h" 43 #include "macros.h" 44 45 46 /********************************************************************/ 47 /* SIGNAL PROCESSING FUNCTIONS */ 48 /********************************************************************/ 49 50 /*! 51 * Initialize/reset the resampler state for a given pair of input/output sampling rates 52 */ 53 opus_int silk_resampler_init( 54 silk_resampler_state_struct *S, /* I/O Resampler state */ 55 opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */ 56 opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */ 57 opus_int forEnc /* I If 1: encoder; if 0: decoder */ 58 ); 59 60 /*! 61 * Resampler: convert from one sampling rate to another 62 */ 63 opus_int silk_resampler( 64 silk_resampler_state_struct *S, /* I/O Resampler state */ 65 opus_int16 out[], /* O Output signal */ 66 const opus_int16 in[], /* I Input signal */ 67 opus_int32 inLen /* I Number of input samples */ 68 ); 69 70 /*! 71 * Downsample 2x, mediocre quality 72 */ 73 void silk_resampler_down2( 74 opus_int32 *S, /* I/O State vector [ 2 ] */ 75 opus_int16 *out, /* O Output signal [ len ] */ 76 const opus_int16 *in, /* I Input signal [ floor(len/2) ] */ 77 opus_int32 inLen /* I Number of input samples */ 78 ); 79 80 /*! 81 * Downsample by a factor 2/3, low quality 82 */ 83 void silk_resampler_down2_3( 84 opus_int32 *S, /* I/O State vector [ 6 ] */ 85 opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */ 86 const opus_int16 *in, /* I Input signal [ inLen ] */ 87 opus_int32 inLen /* I Number of input samples */ 88 ); 89 90 /*! 91 * second order ARMA filter; 92 * slower than biquad() but uses more precise coefficients 93 * can handle (slowly) varying coefficients 94 */ 95 void silk_biquad_alt( 96 const opus_int16 *in, /* I input signal */ 97 const opus_int32 *B_Q28, /* I MA coefficients [3] */ 98 const opus_int32 *A_Q28, /* I AR coefficients [2] */ 99 opus_int32 *S, /* I/O State vector [2] */ 100 opus_int16 *out, /* O output signal */ 101 const opus_int32 len, /* I signal length (must be even) */ 102 opus_int stride /* I Operate on interleaved signal if > 1 */ 103 ); 104 105 /* Variable order MA prediction error filter. */ 106 void silk_LPC_analysis_filter( 107 opus_int16 *out, /* O Output signal */ 108 const opus_int16 *in, /* I Input signal */ 109 const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */ 110 const opus_int32 len, /* I Signal length */ 111 const opus_int32 d /* I Filter order */ 112 ); 113 114 /* Chirp (bandwidth expand) LP AR filter */ 115 void silk_bwexpander( 116 opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */ 117 const opus_int d, /* I Length of ar */ 118 opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */ 119 ); 120 121 /* Chirp (bandwidth expand) LP AR filter */ 122 void silk_bwexpander_32( 123 opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */ 124 const opus_int d, /* I Length of ar */ 125 opus_int32 chirp_Q16 /* I Chirp factor in Q16 */ 126 ); 127 128 /* Compute inverse of LPC prediction gain, and */ 129 /* test if LPC coefficients are stable (all poles within unit circle) */ 130 opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */ 131 const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ 132 const opus_int order /* I Prediction order */ 133 ); 134 135 /* For input in Q24 domain */ 136 opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */ 137 const opus_int32 *A_Q24, /* I Prediction coefficients [order] */ 138 const opus_int order /* I Prediction order */ 139 ); 140 141 /* Split signal in two decimated bands using first-order allpass filters */ 142 void silk_ana_filt_bank_1( 143 const opus_int16 *in, /* I Input signal [N] */ 144 opus_int32 *S, /* I/O State vector [2] */ 145 opus_int16 *outL, /* O Low band [N/2] */ 146 opus_int16 *outH, /* O High band [N/2] */ 147 const opus_int32 N /* I Number of input samples */ 148 ); 149 150 /********************************************************************/ 151 /* SCALAR FUNCTIONS */ 152 /********************************************************************/ 153 154 /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */ 155 /* Convert input to a log scale */ 156 opus_int32 silk_lin2log( 157 const opus_int32 inLin /* I input in linear scale */ 158 ); 159 160 /* Approximation of a sigmoid function */ 161 opus_int silk_sigm_Q15( 162 opus_int in_Q5 /* I */ 163 ); 164 165 /* Approximation of 2^() (exact inverse of approx log2() above) */ 166 /* Convert input to a linear scale */ 167 opus_int32 silk_log2lin( 168 const opus_int32 inLog_Q7 /* I input on log scale */ 169 ); 170 171 /* Compute number of bits to right shift the sum of squares of a vector */ 172 /* of int16s to make it fit in an int32 */ 173 void silk_sum_sqr_shift( 174 opus_int32 *energy, /* O Energy of x, after shifting to the right */ 175 opus_int *shift, /* O Number of bits right shift applied to energy */ 176 const opus_int16 *x, /* I Input vector */ 177 opus_int len /* I Length of input vector */ 178 ); 179 180 /* Calculates the reflection coefficients from the correlation sequence */ 181 /* Faster than schur64(), but much less accurate. */ 182 /* uses SMLAWB(), requiring armv5E and higher. */ 183 opus_int32 silk_schur( /* O Returns residual energy */ 184 opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */ 185 const opus_int32 *c, /* I correlations [order+1] */ 186 const opus_int32 order /* I prediction order */ 187 ); 188 189 /* Calculates the reflection coefficients from the correlation sequence */ 190 /* Slower than schur(), but more accurate. */ 191 /* Uses SMULL(), available on armv4 */ 192 opus_int32 silk_schur64( /* O returns residual energy */ 193 opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */ 194 const opus_int32 c[], /* I Correlations [order+1] */ 195 opus_int32 order /* I Prediction order */ 196 ); 197 198 /* Step up function, converts reflection coefficients to prediction coefficients */ 199 void silk_k2a( 200 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */ 201 const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */ 202 const opus_int32 order /* I Prediction order */ 203 ); 204 205 /* Step up function, converts reflection coefficients to prediction coefficients */ 206 void silk_k2a_Q16( 207 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */ 208 const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */ 209 const opus_int32 order /* I Prediction order */ 210 ); 211 212 /* Apply sine window to signal vector. */ 213 /* Window types: */ 214 /* 1 -> sine window from 0 to pi/2 */ 215 /* 2 -> sine window from pi/2 to pi */ 216 /* every other sample of window is linearly interpolated, for speed */ 217 void silk_apply_sine_window( 218 opus_int16 px_win[], /* O Pointer to windowed signal */ 219 const opus_int16 px[], /* I Pointer to input signal */ 220 const opus_int win_type, /* I Selects a window type */ 221 const opus_int length /* I Window length, multiple of 4 */ 222 ); 223 224 /* Compute autocorrelation */ 225 void silk_autocorr( 226 opus_int32 *results, /* O Result (length correlationCount) */ 227 opus_int *scale, /* O Scaling of the correlation vector */ 228 const opus_int16 *inputData, /* I Input data to correlate */ 229 const opus_int inputDataSize, /* I Length of input */ 230 const opus_int correlationCount /* I Number of correlation taps to compute */ 231 ); 232 233 void silk_decode_pitch( 234 opus_int16 lagIndex, /* I */ 235 opus_int8 contourIndex, /* O */ 236 opus_int pitch_lags[], /* O 4 pitch values */ 237 const opus_int Fs_kHz, /* I sampling frequency (kHz) */ 238 const opus_int nb_subfr /* I number of sub frames */ 239 ); 240 241 opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */ 242 const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ 243 opus_int *pitch_out, /* O 4 pitch lag values */ 244 opus_int16 *lagIndex, /* O Lag Index */ 245 opus_int8 *contourIndex, /* O Pitch contour Index */ 246 opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */ 247 opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */ 248 const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */ 249 const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */ 250 const opus_int Fs_kHz, /* I Sample frequency (kHz) */ 251 const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ 252 const opus_int nb_subfr /* I number of 5 ms subframes */ 253 ); 254 255 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */ 256 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */ 257 void silk_A2NLSF( 258 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */ 259 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */ 260 const opus_int d /* I Filter order (must be even) */ 261 ); 262 263 /* compute whitening filter coefficients from normalized line spectral frequencies */ 264 void silk_NLSF2A( 265 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ 266 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ 267 const opus_int d /* I filter order (should be even) */ 268 ); 269 270 void silk_insertion_sort_increasing( 271 opus_int32 *a, /* I/O Unsorted / Sorted vector */ 272 opus_int *idx, /* O Index vector for the sorted elements */ 273 const opus_int L, /* I Vector length */ 274 const opus_int K /* I Number of correctly sorted positions */ 275 ); 276 277 void silk_insertion_sort_decreasing_int16( 278 opus_int16 *a, /* I/O Unsorted / Sorted vector */ 279 opus_int *idx, /* O Index vector for the sorted elements */ 280 const opus_int L, /* I Vector length */ 281 const opus_int K /* I Number of correctly sorted positions */ 282 ); 283 284 void silk_insertion_sort_increasing_all_values_int16( 285 opus_int16 *a, /* I/O Unsorted / Sorted vector */ 286 const opus_int L /* I Vector length */ 287 ); 288 289 /* NLSF stabilizer, for a single input data vector */ 290 void silk_NLSF_stabilize( 291 opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */ 292 const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */ 293 const opus_int L /* I Number of NLSF parameters in the input vector */ 294 ); 295 296 /* Laroia low complexity NLSF weights */ 297 void silk_NLSF_VQ_weights_laroia( 298 opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */ 299 const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */ 300 const opus_int D /* I Input vector dimension (even) */ 301 ); 302 303 /* Compute reflection coefficients from input signal */ 304 void silk_burg_modified( 305 opus_int32 *res_nrg, /* O Residual energy */ 306 opus_int *res_nrg_Q, /* O Residual energy Q value */ 307 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ 308 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ 309 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ 310 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ 311 const opus_int nb_subfr, /* I Number of subframes stacked in x */ 312 const opus_int D /* I Order */ 313 ); 314 315 /* Copy and multiply a vector by a constant */ 316 void silk_scale_copy_vector16( 317 opus_int16 *data_out, 318 const opus_int16 *data_in, 319 opus_int32 gain_Q16, /* I Gain in Q16 */ 320 const opus_int dataSize /* I Length */ 321 ); 322 323 /* Some for the LTP related function requires Q26 to work.*/ 324 void silk_scale_vector32_Q26_lshift_18( 325 opus_int32 *data1, /* I/O Q0/Q18 */ 326 opus_int32 gain_Q26, /* I Q26 */ 327 opus_int dataSize /* I length */ 328 ); 329 330 /********************************************************************/ 331 /* INLINE ARM MATH */ 332 /********************************************************************/ 333 334 /* return sum( inVec1[i] * inVec2[i] ) */ 335 opus_int32 silk_inner_prod_aligned( 336 const opus_int16 *const inVec1, /* I input vector 1 */ 337 const opus_int16 *const inVec2, /* I input vector 2 */ 338 const opus_int len /* I vector lengths */ 339 ); 340 341 opus_int32 silk_inner_prod_aligned_scale( 342 const opus_int16 *const inVec1, /* I input vector 1 */ 343 const opus_int16 *const inVec2, /* I input vector 2 */ 344 const opus_int scale, /* I number of bits to shift */ 345 const opus_int len /* I vector lengths */ 346 ); 347 348 opus_int64 silk_inner_prod16_aligned_64( 349 const opus_int16 *inVec1, /* I input vector 1 */ 350 const opus_int16 *inVec2, /* I input vector 2 */ 351 const opus_int len /* I vector lengths */ 352 ); 353 354 /********************************************************************/ 355 /* MACROS */ 356 /********************************************************************/ 357 358 /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating 359 left. Output is 32bit int. 360 Note: contemporary compilers recognize the C expression below and 361 compile it into a 'ror' instruction if available. No need for inline ASM! */ 362 static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot ) 363 { 364 opus_uint32 x = (opus_uint32) a32; 365 opus_uint32 r = (opus_uint32) rot; 366 opus_uint32 m = (opus_uint32) -rot; 367 if( rot == 0 ) { 368 return a32; 369 } else if( rot < 0 ) { 370 return (opus_int32) ((x << m) | (x >> (32 - m))); 371 } else { 372 return (opus_int32) ((x << (32 - r)) | (x >> r)); 373 } 374 } 375 376 /* Allocate opus_int16 aligned to 4-byte memory address */ 377 #if EMBEDDED_ARM 378 #define silk_DWORD_ALIGN __attribute__((aligned(4))) 379 #else 380 #define silk_DWORD_ALIGN 381 #endif 382 383 /* Useful Macros that can be adjusted to other platforms */ 384 #define silk_memcpy(dest, src, size) memcpy((dest), (src), (size)) 385 #define silk_memset(dest, src, size) memset((dest), (src), (size)) 386 #define silk_memmove(dest, src, size) memmove((dest), (src), (size)) 387 388 /* Fixed point macros */ 389 390 /* (a32 * b32) output have to be 32bit int */ 391 #define silk_MUL(a32, b32) ((a32) * (b32)) 392 393 /* (a32 * b32) output have to be 32bit uint */ 394 #define silk_MUL_uint(a32, b32) silk_MUL(a32, b32) 395 396 /* a32 + (b32 * c32) output have to be 32bit int */ 397 #define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32))) 398 399 /* a32 + (b32 * c32) output have to be 32bit uint */ 400 #define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32) 401 402 /* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */ 403 #define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16)) 404 405 /* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */ 406 #define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16)) 407 408 #define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16))) 409 410 /* (a32 * b32) */ 411 #define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32)) 412 413 /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour 414 (just standard two's complement implementation-specific behaviour) */ 415 #define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b))) 416 /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour 417 (just standard two's complement implementation-specific behaviour) */ 418 #define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b))) 419 420 /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */ 421 #define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32)) 422 #define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32)))) 423 424 #define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16))) 425 #define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32))) 426 427 /* These macros enables checking for overflow in silk_API_Debug.h*/ 428 #define silk_ADD16(a, b) ((a) + (b)) 429 #define silk_ADD32(a, b) ((a) + (b)) 430 #define silk_ADD64(a, b) ((a) + (b)) 431 432 #define silk_SUB16(a, b) ((a) - (b)) 433 #define silk_SUB32(a, b) ((a) - (b)) 434 #define silk_SUB64(a, b) ((a) - (b)) 435 436 #define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \ 437 ((a) < silk_int8_MIN ? silk_int8_MIN : (a))) 438 #define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \ 439 ((a) < silk_int16_MIN ? silk_int16_MIN : (a))) 440 #define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \ 441 ((a) < silk_int32_MIN ? silk_int32_MIN : (a))) 442 443 #define silk_CHECK_FIT8(a) (a) 444 #define silk_CHECK_FIT16(a) (a) 445 #define silk_CHECK_FIT32(a) (a) 446 447 #define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) ) 448 #define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \ 449 ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \ 450 ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) ) 451 452 #define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) ) 453 #define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \ 454 (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \ 455 ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) ) 456 457 /* Saturation for positive input values */ 458 #define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a)) 459 460 /* Add with saturation for positive input values */ 461 #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b))) 462 #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b))) 463 #define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b))) 464 #define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b))) 465 466 #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */ 467 #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */ 468 #define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */ 469 #define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */ 470 #define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */ 471 472 #define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */ 473 #define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */ 474 #define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */ 475 #define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */ 476 #define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */ 477 478 /* saturates before shifting */ 479 #define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \ 480 silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) )) 481 482 #define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */ 483 #define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */ 484 #define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */ 485 486 #define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */ 487 #define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */ 488 #define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */ 489 #define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */ 490 #define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */ 491 #define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */ 492 #define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */ 493 #define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */ 494 495 /* Requires that shift > 0 */ 496 #define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1) 497 #define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1) 498 499 /* Number of rightshift required to fit the multiplication */ 500 #define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) ) 501 #define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) ) 502 503 504 #define silk_min(a, b) (((a) < (b)) ? (a) : (b)) 505 #define silk_max(a, b) (((a) > (b)) ? (a) : (b)) 506 507 /* Macro to convert floating-point constants to fixed-point */ 508 #define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5)) 509 510 /* silk_min() versions with typecast in the function call */ 511 static inline opus_int silk_min_int(opus_int a, opus_int b) 512 { 513 return (((a) < (b)) ? (a) : (b)); 514 } 515 static inline opus_int16 silk_min_16(opus_int16 a, opus_int16 b) 516 { 517 return (((a) < (b)) ? (a) : (b)); 518 } 519 static inline opus_int32 silk_min_32(opus_int32 a, opus_int32 b) 520 { 521 return (((a) < (b)) ? (a) : (b)); 522 } 523 static inline opus_int64 silk_min_64(opus_int64 a, opus_int64 b) 524 { 525 return (((a) < (b)) ? (a) : (b)); 526 } 527 528 /* silk_min() versions with typecast in the function call */ 529 static inline opus_int silk_max_int(opus_int a, opus_int b) 530 { 531 return (((a) > (b)) ? (a) : (b)); 532 } 533 static inline opus_int16 silk_max_16(opus_int16 a, opus_int16 b) 534 { 535 return (((a) > (b)) ? (a) : (b)); 536 } 537 static inline opus_int32 silk_max_32(opus_int32 a, opus_int32 b) 538 { 539 return (((a) > (b)) ? (a) : (b)); 540 } 541 static inline opus_int64 silk_max_64(opus_int64 a, opus_int64 b) 542 { 543 return (((a) > (b)) ? (a) : (b)); 544 } 545 546 #define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \ 547 : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a)))) 548 549 #define silk_LIMIT_int silk_LIMIT 550 #define silk_LIMIT_16 silk_LIMIT 551 #define silk_LIMIT_32 silk_LIMIT 552 553 #define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */ 554 #define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1))) 555 #define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31)) 556 #define silk_abs_int64(a) (((a) > 0) ? (a) : -(a)) 557 558 #define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 )) 559 560 /* PSEUDO-RANDOM GENERATOR */ 561 /* Make sure to store the result as the seed for the next call (also in between */ 562 /* frames), otherwise result won't be random at all. When only using some of the */ 563 /* bits, take the most significant bits by right-shifting. */ 564 #define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165)) 565 566 /* Add some multiplication functions that can be easily mapped to ARM. */ 567 568 /* silk_SMMUL: Signed top word multiply. 569 ARMv6 2 instruction cycles. 570 ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/ 571 /*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/ 572 /* the following seems faster on x86 */ 573 #define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32) 574 575 #include "Inlines.h" 576 #include "MacroCount.h" 577 #include "MacroDebug.h" 578 579 #ifdef ARMv4_ASM 580 #include "arm/SigProc_FIX_armv4.h" 581 #endif 582 583 #ifdef ARMv5E_ASM 584 #include "arm/SigProc_FIX_armv5e.h" 585 #endif 586 587 #ifdef __cplusplus 588 } 589 #endif 590 591 #endif /* SILK_SIGPROC_FIX_H */ 592