Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
     12 #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
     13 
     14 namespace Eigen {
     15 
     16 /** \ingroup QR_Module
     17   *
     18   * \class ColPivHouseholderQR
     19   *
     20   * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
     21   *
     22   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
     23   *
     24   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
     25   * such that
     26   * \f[
     27   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
     28   * \f]
     29   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
     30   * upper triangular matrix.
     31   *
     32   * This decomposition performs column pivoting in order to be rank-revealing and improve
     33   * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
     34   *
     35   * \sa MatrixBase::colPivHouseholderQr()
     36   */
     37 template<typename _MatrixType> class ColPivHouseholderQR
     38 {
     39   public:
     40 
     41     typedef _MatrixType MatrixType;
     42     enum {
     43       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     44       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     45       Options = MatrixType::Options,
     46       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     47       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     48     };
     49     typedef typename MatrixType::Scalar Scalar;
     50     typedef typename MatrixType::RealScalar RealScalar;
     51     typedef typename MatrixType::Index Index;
     52     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
     53     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     54     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
     55     typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
     56     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     57     typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
     58     typedef typename HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType;
     59 
     60     /**
     61     * \brief Default Constructor.
     62     *
     63     * The default constructor is useful in cases in which the user intends to
     64     * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
     65     */
     66     ColPivHouseholderQR()
     67       : m_qr(),
     68         m_hCoeffs(),
     69         m_colsPermutation(),
     70         m_colsTranspositions(),
     71         m_temp(),
     72         m_colSqNorms(),
     73         m_isInitialized(false) {}
     74 
     75     /** \brief Default Constructor with memory preallocation
     76       *
     77       * Like the default constructor but with preallocation of the internal data
     78       * according to the specified problem \a size.
     79       * \sa ColPivHouseholderQR()
     80       */
     81     ColPivHouseholderQR(Index rows, Index cols)
     82       : m_qr(rows, cols),
     83         m_hCoeffs((std::min)(rows,cols)),
     84         m_colsPermutation(cols),
     85         m_colsTranspositions(cols),
     86         m_temp(cols),
     87         m_colSqNorms(cols),
     88         m_isInitialized(false),
     89         m_usePrescribedThreshold(false) {}
     90 
     91     ColPivHouseholderQR(const MatrixType& matrix)
     92       : m_qr(matrix.rows(), matrix.cols()),
     93         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
     94         m_colsPermutation(matrix.cols()),
     95         m_colsTranspositions(matrix.cols()),
     96         m_temp(matrix.cols()),
     97         m_colSqNorms(matrix.cols()),
     98         m_isInitialized(false),
     99         m_usePrescribedThreshold(false)
    100     {
    101       compute(matrix);
    102     }
    103 
    104     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    105       * *this is the QR decomposition, if any exists.
    106       *
    107       * \param b the right-hand-side of the equation to solve.
    108       *
    109       * \returns a solution.
    110       *
    111       * \note The case where b is a matrix is not yet implemented. Also, this
    112       *       code is space inefficient.
    113       *
    114       * \note_about_checking_solutions
    115       *
    116       * \note_about_arbitrary_choice_of_solution
    117       *
    118       * Example: \include ColPivHouseholderQR_solve.cpp
    119       * Output: \verbinclude ColPivHouseholderQR_solve.out
    120       */
    121     template<typename Rhs>
    122     inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
    123     solve(const MatrixBase<Rhs>& b) const
    124     {
    125       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    126       return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
    127     }
    128 
    129     HouseholderSequenceType householderQ(void) const;
    130 
    131     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    132       */
    133     const MatrixType& matrixQR() const
    134     {
    135       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    136       return m_qr;
    137     }
    138 
    139     ColPivHouseholderQR& compute(const MatrixType& matrix);
    140 
    141     const PermutationType& colsPermutation() const
    142     {
    143       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    144       return m_colsPermutation;
    145     }
    146 
    147     /** \returns the absolute value of the determinant of the matrix of which
    148       * *this is the QR decomposition. It has only linear complexity
    149       * (that is, O(n) where n is the dimension of the square matrix)
    150       * as the QR decomposition has already been computed.
    151       *
    152       * \note This is only for square matrices.
    153       *
    154       * \warning a determinant can be very big or small, so for matrices
    155       * of large enough dimension, there is a risk of overflow/underflow.
    156       * One way to work around that is to use logAbsDeterminant() instead.
    157       *
    158       * \sa logAbsDeterminant(), MatrixBase::determinant()
    159       */
    160     typename MatrixType::RealScalar absDeterminant() const;
    161 
    162     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    163       * *this is the QR decomposition. It has only linear complexity
    164       * (that is, O(n) where n is the dimension of the square matrix)
    165       * as the QR decomposition has already been computed.
    166       *
    167       * \note This is only for square matrices.
    168       *
    169       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    170       * to determinant computation.
    171       *
    172       * \sa absDeterminant(), MatrixBase::determinant()
    173       */
    174     typename MatrixType::RealScalar logAbsDeterminant() const;
    175 
    176     /** \returns the rank of the matrix of which *this is the QR decomposition.
    177       *
    178       * \note This method has to determine which pivots should be considered nonzero.
    179       *       For that, it uses the threshold value that you can control by calling
    180       *       setThreshold(const RealScalar&).
    181       */
    182     inline Index rank() const
    183     {
    184       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    185       RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold();
    186       Index result = 0;
    187       for(Index i = 0; i < m_nonzero_pivots; ++i)
    188         result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold);
    189       return result;
    190     }
    191 
    192     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
    193       *
    194       * \note This method has to determine which pivots should be considered nonzero.
    195       *       For that, it uses the threshold value that you can control by calling
    196       *       setThreshold(const RealScalar&).
    197       */
    198     inline Index dimensionOfKernel() const
    199     {
    200       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    201       return cols() - rank();
    202     }
    203 
    204     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
    205       *          linear map, i.e. has trivial kernel; false otherwise.
    206       *
    207       * \note This method has to determine which pivots should be considered nonzero.
    208       *       For that, it uses the threshold value that you can control by calling
    209       *       setThreshold(const RealScalar&).
    210       */
    211     inline bool isInjective() const
    212     {
    213       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    214       return rank() == cols();
    215     }
    216 
    217     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
    218       *          linear map; false otherwise.
    219       *
    220       * \note This method has to determine which pivots should be considered nonzero.
    221       *       For that, it uses the threshold value that you can control by calling
    222       *       setThreshold(const RealScalar&).
    223       */
    224     inline bool isSurjective() const
    225     {
    226       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    227       return rank() == rows();
    228     }
    229 
    230     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
    231       *
    232       * \note This method has to determine which pivots should be considered nonzero.
    233       *       For that, it uses the threshold value that you can control by calling
    234       *       setThreshold(const RealScalar&).
    235       */
    236     inline bool isInvertible() const
    237     {
    238       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    239       return isInjective() && isSurjective();
    240     }
    241 
    242     /** \returns the inverse of the matrix of which *this is the QR decomposition.
    243       *
    244       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
    245       *       Use isInvertible() to first determine whether this matrix is invertible.
    246       */
    247     inline const
    248     internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
    249     inverse() const
    250     {
    251       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    252       return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
    253                (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
    254     }
    255 
    256     inline Index rows() const { return m_qr.rows(); }
    257     inline Index cols() const { return m_qr.cols(); }
    258     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    259 
    260     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
    261       * who need to determine when pivots are to be considered nonzero. This is not used for the
    262       * QR decomposition itself.
    263       *
    264       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
    265       * uses a formula to automatically determine a reasonable threshold.
    266       * Once you have called the present method setThreshold(const RealScalar&),
    267       * your value is used instead.
    268       *
    269       * \param threshold The new value to use as the threshold.
    270       *
    271       * A pivot will be considered nonzero if its absolute value is strictly greater than
    272       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
    273       * where maxpivot is the biggest pivot.
    274       *
    275       * If you want to come back to the default behavior, call setThreshold(Default_t)
    276       */
    277     ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
    278     {
    279       m_usePrescribedThreshold = true;
    280       m_prescribedThreshold = threshold;
    281       return *this;
    282     }
    283 
    284     /** Allows to come back to the default behavior, letting Eigen use its default formula for
    285       * determining the threshold.
    286       *
    287       * You should pass the special object Eigen::Default as parameter here.
    288       * \code qr.setThreshold(Eigen::Default); \endcode
    289       *
    290       * See the documentation of setThreshold(const RealScalar&).
    291       */
    292     ColPivHouseholderQR& setThreshold(Default_t)
    293     {
    294       m_usePrescribedThreshold = false;
    295       return *this;
    296     }
    297 
    298     /** Returns the threshold that will be used by certain methods such as rank().
    299       *
    300       * See the documentation of setThreshold(const RealScalar&).
    301       */
    302     RealScalar threshold() const
    303     {
    304       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    305       return m_usePrescribedThreshold ? m_prescribedThreshold
    306       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
    307       // and turns out to be identical to Higham's formula used already in LDLt.
    308                                       : NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
    309     }
    310 
    311     /** \returns the number of nonzero pivots in the QR decomposition.
    312       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
    313       * So that notion isn't really intrinsically interesting, but it is
    314       * still useful when implementing algorithms.
    315       *
    316       * \sa rank()
    317       */
    318     inline Index nonzeroPivots() const
    319     {
    320       eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    321       return m_nonzero_pivots;
    322     }
    323 
    324     /** \returns the absolute value of the biggest pivot, i.e. the biggest
    325       *          diagonal coefficient of R.
    326       */
    327     RealScalar maxPivot() const { return m_maxpivot; }
    328 
    329   protected:
    330     MatrixType m_qr;
    331     HCoeffsType m_hCoeffs;
    332     PermutationType m_colsPermutation;
    333     IntRowVectorType m_colsTranspositions;
    334     RowVectorType m_temp;
    335     RealRowVectorType m_colSqNorms;
    336     bool m_isInitialized, m_usePrescribedThreshold;
    337     RealScalar m_prescribedThreshold, m_maxpivot;
    338     Index m_nonzero_pivots;
    339     Index m_det_pq;
    340 };
    341 
    342 template<typename MatrixType>
    343 typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
    344 {
    345   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    346   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    347   return internal::abs(m_qr.diagonal().prod());
    348 }
    349 
    350 template<typename MatrixType>
    351 typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
    352 {
    353   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    354   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    355   return m_qr.diagonal().cwiseAbs().array().log().sum();
    356 }
    357 
    358 template<typename MatrixType>
    359 ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
    360 {
    361   Index rows = matrix.rows();
    362   Index cols = matrix.cols();
    363   Index size = matrix.diagonalSize();
    364 
    365   m_qr = matrix;
    366   m_hCoeffs.resize(size);
    367 
    368   m_temp.resize(cols);
    369 
    370   m_colsTranspositions.resize(matrix.cols());
    371   Index number_of_transpositions = 0;
    372 
    373   m_colSqNorms.resize(cols);
    374   for(Index k = 0; k < cols; ++k)
    375     m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
    376 
    377   RealScalar threshold_helper = m_colSqNorms.maxCoeff() * internal::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
    378 
    379   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
    380   m_maxpivot = RealScalar(0);
    381 
    382   for(Index k = 0; k < size; ++k)
    383   {
    384     // first, we look up in our table m_colSqNorms which column has the biggest squared norm
    385     Index biggest_col_index;
    386     RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
    387     biggest_col_index += k;
    388 
    389     // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
    390     // the actual squared norm of the selected column.
    391     // Note that not doing so does result in solve() sometimes returning inf/nan values
    392     // when running the unit test with 1000 repetitions.
    393     biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
    394 
    395     // we store that back into our table: it can't hurt to correct our table.
    396     m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
    397 
    398     // if the current biggest column is smaller than epsilon times the initial biggest column,
    399     // terminate to avoid generating nan/inf values.
    400     // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so)
    401     // repetitions of the unit test, with the result of solve() filled with large values of the order
    402     // of 1/(size*epsilon).
    403     if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
    404     {
    405       m_nonzero_pivots = k;
    406       m_hCoeffs.tail(size-k).setZero();
    407       m_qr.bottomRightCorner(rows-k,cols-k)
    408           .template triangularView<StrictlyLower>()
    409           .setZero();
    410       break;
    411     }
    412 
    413     // apply the transposition to the columns
    414     m_colsTranspositions.coeffRef(k) = biggest_col_index;
    415     if(k != biggest_col_index) {
    416       m_qr.col(k).swap(m_qr.col(biggest_col_index));
    417       std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
    418       ++number_of_transpositions;
    419     }
    420 
    421     // generate the householder vector, store it below the diagonal
    422     RealScalar beta;
    423     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    424 
    425     // apply the householder transformation to the diagonal coefficient
    426     m_qr.coeffRef(k,k) = beta;
    427 
    428     // remember the maximum absolute value of diagonal coefficients
    429     if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta);
    430 
    431     // apply the householder transformation
    432     m_qr.bottomRightCorner(rows-k, cols-k-1)
    433         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
    434 
    435     // update our table of squared norms of the columns
    436     m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
    437   }
    438 
    439   m_colsPermutation.setIdentity(cols);
    440   for(Index k = 0; k < m_nonzero_pivots; ++k)
    441     m_colsPermutation.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
    442 
    443   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
    444   m_isInitialized = true;
    445 
    446   return *this;
    447 }
    448 
    449 namespace internal {
    450 
    451 template<typename _MatrixType, typename Rhs>
    452 struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
    453   : solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
    454 {
    455   EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
    456 
    457   template<typename Dest> void evalTo(Dest& dst) const
    458   {
    459     eigen_assert(rhs().rows() == dec().rows());
    460 
    461     const int cols = dec().cols(),
    462     nonzero_pivots = dec().nonzeroPivots();
    463 
    464     if(nonzero_pivots == 0)
    465     {
    466       dst.setZero();
    467       return;
    468     }
    469 
    470     typename Rhs::PlainObject c(rhs());
    471 
    472     // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
    473     c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
    474                      .setLength(dec().nonzeroPivots())
    475 		     .transpose()
    476       );
    477 
    478     dec().matrixQR()
    479        .topLeftCorner(nonzero_pivots, nonzero_pivots)
    480        .template triangularView<Upper>()
    481        .solveInPlace(c.topRows(nonzero_pivots));
    482 
    483 
    484     typename Rhs::PlainObject d(c);
    485     d.topRows(nonzero_pivots)
    486       = dec().matrixQR()
    487        .topLeftCorner(nonzero_pivots, nonzero_pivots)
    488        .template triangularView<Upper>()
    489        * c.topRows(nonzero_pivots);
    490 
    491     for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
    492     for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
    493   }
    494 };
    495 
    496 } // end namespace internal
    497 
    498 /** \returns the matrix Q as a sequence of householder transformations */
    499 template<typename MatrixType>
    500 typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
    501   ::householderQ() const
    502 {
    503   eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
    504   return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots);
    505 }
    506 
    507 /** \return the column-pivoting Householder QR decomposition of \c *this.
    508   *
    509   * \sa class ColPivHouseholderQR
    510   */
    511 template<typename Derived>
    512 const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
    513 MatrixBase<Derived>::colPivHouseholderQr() const
    514 {
    515   return ColPivHouseholderQR<PlainObject>(eval());
    516 }
    517 
    518 } // end namespace Eigen
    519 
    520 #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
    521