Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 #include "dex/quick/mir_to_lir-inl.h"
     19 #include "x86_lir.h"
     20 
     21 namespace art {
     22 
     23 /* This file contains codegen for the X86 ISA */
     24 
     25 LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
     26   int opcode;
     27   /* must be both DOUBLE or both not DOUBLE */
     28   DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
     29   if (X86_DOUBLEREG(r_dest)) {
     30     opcode = kX86MovsdRR;
     31   } else {
     32     if (X86_SINGLEREG(r_dest)) {
     33       if (X86_SINGLEREG(r_src)) {
     34         opcode = kX86MovssRR;
     35       } else {  // Fpr <- Gpr
     36         opcode = kX86MovdxrRR;
     37       }
     38     } else {  // Gpr <- Fpr
     39       DCHECK(X86_SINGLEREG(r_src));
     40       opcode = kX86MovdrxRR;
     41     }
     42   }
     43   DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
     44   LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
     45   if (r_dest == r_src) {
     46     res->flags.is_nop = true;
     47   }
     48   return res;
     49 }
     50 
     51 bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
     52   return true;
     53 }
     54 
     55 bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
     56   return false;
     57 }
     58 
     59 bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
     60   return true;
     61 }
     62 
     63 bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
     64   return false;  // TUNING
     65 }
     66 
     67 /*
     68  * Load a immediate using a shortcut if possible; otherwise
     69  * grab from the per-translation literal pool.  If target is
     70  * a high register, build constant into a low register and copy.
     71  *
     72  * No additional register clobbering operation performed. Use this version when
     73  * 1) r_dest is freshly returned from AllocTemp or
     74  * 2) The codegen is under fixed register usage
     75  */
     76 LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
     77   int r_dest_save = r_dest;
     78   if (X86_FPREG(r_dest)) {
     79     if (value == 0) {
     80       return NewLIR2(kX86XorpsRR, r_dest, r_dest);
     81     }
     82     DCHECK(X86_SINGLEREG(r_dest));
     83     r_dest = AllocTemp();
     84   }
     85 
     86   LIR *res;
     87   if (value == 0) {
     88     res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
     89   } else {
     90     // Note, there is no byte immediate form of a 32 bit immediate move.
     91     res = NewLIR2(kX86Mov32RI, r_dest, value);
     92   }
     93 
     94   if (X86_FPREG(r_dest_save)) {
     95     NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
     96     FreeTemp(r_dest);
     97   }
     98 
     99   return res;
    100 }
    101 
    102 LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
    103   LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
    104   res->target = target;
    105   return res;
    106 }
    107 
    108 LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
    109   LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
    110                         X86ConditionEncoding(cc));
    111   branch->target = target;
    112   return branch;
    113 }
    114 
    115 LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
    116   X86OpCode opcode = kX86Bkpt;
    117   switch (op) {
    118     case kOpNeg: opcode = kX86Neg32R; break;
    119     case kOpNot: opcode = kX86Not32R; break;
    120     case kOpBlx: opcode = kX86CallR; break;
    121     default:
    122       LOG(FATAL) << "Bad case in OpReg " << op;
    123   }
    124   return NewLIR1(opcode, r_dest_src);
    125 }
    126 
    127 LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
    128   X86OpCode opcode = kX86Bkpt;
    129   bool byte_imm = IS_SIMM8(value);
    130   DCHECK(!X86_FPREG(r_dest_src1));
    131   switch (op) {
    132     case kOpLsl: opcode = kX86Sal32RI; break;
    133     case kOpLsr: opcode = kX86Shr32RI; break;
    134     case kOpAsr: opcode = kX86Sar32RI; break;
    135     case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
    136     case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
    137     case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
    138     // case kOpSbb: opcode = kX86Sbb32RI; break;
    139     case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
    140     case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
    141     case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
    142     case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
    143     case kOpMov: return LoadConstantNoClobber(r_dest_src1, value);
    144     case kOpMul:
    145       opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
    146       return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
    147     default:
    148       LOG(FATAL) << "Bad case in OpRegImm " << op;
    149   }
    150   return NewLIR2(opcode, r_dest_src1, value);
    151 }
    152 
    153 LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
    154     X86OpCode opcode = kX86Nop;
    155     bool src2_must_be_cx = false;
    156     switch (op) {
    157         // X86 unary opcodes
    158       case kOpMvn:
    159         OpRegCopy(r_dest_src1, r_src2);
    160         return OpReg(kOpNot, r_dest_src1);
    161       case kOpNeg:
    162         OpRegCopy(r_dest_src1, r_src2);
    163         return OpReg(kOpNeg, r_dest_src1);
    164         // X86 binary opcodes
    165       case kOpSub: opcode = kX86Sub32RR; break;
    166       case kOpSbc: opcode = kX86Sbb32RR; break;
    167       case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
    168       case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
    169       case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
    170       case kOpMov: opcode = kX86Mov32RR; break;
    171       case kOpCmp: opcode = kX86Cmp32RR; break;
    172       case kOpAdd: opcode = kX86Add32RR; break;
    173       case kOpAdc: opcode = kX86Adc32RR; break;
    174       case kOpAnd: opcode = kX86And32RR; break;
    175       case kOpOr:  opcode = kX86Or32RR; break;
    176       case kOpXor: opcode = kX86Xor32RR; break;
    177       case kOp2Byte:
    178         // Use shifts instead of a byte operand if the source can't be byte accessed.
    179         if (r_src2 >= 4) {
    180           NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
    181           NewLIR2(kX86Sal32RI, r_dest_src1, 24);
    182           return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
    183         } else {
    184           opcode = kX86Movsx8RR;
    185         }
    186         break;
    187       case kOp2Short: opcode = kX86Movsx16RR; break;
    188       case kOp2Char: opcode = kX86Movzx16RR; break;
    189       case kOpMul: opcode = kX86Imul32RR; break;
    190       default:
    191         LOG(FATAL) << "Bad case in OpRegReg " << op;
    192         break;
    193     }
    194     CHECK(!src2_must_be_cx || r_src2 == rCX);
    195     return NewLIR2(opcode, r_dest_src1, r_src2);
    196 }
    197 
    198 LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
    199               int offset) {
    200   X86OpCode opcode = kX86Nop;
    201   switch (op) {
    202       // X86 binary opcodes
    203     case kOpSub: opcode = kX86Sub32RM; break;
    204     case kOpMov: opcode = kX86Mov32RM; break;
    205     case kOpCmp: opcode = kX86Cmp32RM; break;
    206     case kOpAdd: opcode = kX86Add32RM; break;
    207     case kOpAnd: opcode = kX86And32RM; break;
    208     case kOpOr:  opcode = kX86Or32RM; break;
    209     case kOpXor: opcode = kX86Xor32RM; break;
    210     case kOp2Byte: opcode = kX86Movsx8RM; break;
    211     case kOp2Short: opcode = kX86Movsx16RM; break;
    212     case kOp2Char: opcode = kX86Movzx16RM; break;
    213     case kOpMul:
    214     default:
    215       LOG(FATAL) << "Bad case in OpRegMem " << op;
    216       break;
    217   }
    218   return NewLIR3(opcode, r_dest, rBase, offset);
    219 }
    220 
    221 LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
    222                  int r_src2) {
    223   if (r_dest != r_src1 && r_dest != r_src2) {
    224     if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
    225       if (r_src1 == r_src2) {
    226         OpRegCopy(r_dest, r_src1);
    227         return OpRegImm(kOpLsl, r_dest, 1);
    228       } else if (r_src1 != rBP) {
    229         return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
    230                        r_src2 /* index */, 0 /* scale */, 0 /* disp */);
    231       } else {
    232         return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
    233                        r_src1 /* index */, 0 /* scale */, 0 /* disp */);
    234       }
    235     } else {
    236       OpRegCopy(r_dest, r_src1);
    237       return OpRegReg(op, r_dest, r_src2);
    238     }
    239   } else if (r_dest == r_src1) {
    240     return OpRegReg(op, r_dest, r_src2);
    241   } else {  // r_dest == r_src2
    242     switch (op) {
    243       case kOpSub:  // non-commutative
    244         OpReg(kOpNeg, r_dest);
    245         op = kOpAdd;
    246         break;
    247       case kOpSbc:
    248       case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
    249         int t_reg = AllocTemp();
    250         OpRegCopy(t_reg, r_src1);
    251         OpRegReg(op, t_reg, r_src2);
    252         LIR* res = OpRegCopy(r_dest, t_reg);
    253         FreeTemp(t_reg);
    254         return res;
    255       }
    256       case kOpAdd:  // commutative
    257       case kOpOr:
    258       case kOpAdc:
    259       case kOpAnd:
    260       case kOpXor:
    261         break;
    262       default:
    263         LOG(FATAL) << "Bad case in OpRegRegReg " << op;
    264     }
    265     return OpRegReg(op, r_dest, r_src1);
    266   }
    267 }
    268 
    269 LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
    270                  int value) {
    271   if (op == kOpMul) {
    272     X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
    273     return NewLIR3(opcode, r_dest, r_src, value);
    274   } else if (op == kOpAnd) {
    275     if (value == 0xFF && r_src < 4) {
    276       return NewLIR2(kX86Movzx8RR, r_dest, r_src);
    277     } else if (value == 0xFFFF) {
    278       return NewLIR2(kX86Movzx16RR, r_dest, r_src);
    279     }
    280   }
    281   if (r_dest != r_src) {
    282     if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
    283       // TODO: fix bug in LEA encoding when disp == 0
    284       return NewLIR5(kX86Lea32RA, r_dest,  r5sib_no_base /* base */,
    285                      r_src /* index */, value /* scale */, 0 /* disp */);
    286     } else if (op == kOpAdd) {  // lea add special case
    287       return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
    288                      r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
    289     }
    290     OpRegCopy(r_dest, r_src);
    291   }
    292   return OpRegImm(op, r_dest, value);
    293 }
    294 
    295 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
    296   X86OpCode opcode = kX86Bkpt;
    297   switch (op) {
    298     case kOpBlx: opcode = kX86CallT;  break;
    299     case kOpBx: opcode = kX86JmpT;  break;
    300     default:
    301       LOG(FATAL) << "Bad opcode: " << op;
    302       break;
    303   }
    304   return NewLIR1(opcode, thread_offset.Int32Value());
    305 }
    306 
    307 LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
    308   X86OpCode opcode = kX86Bkpt;
    309   switch (op) {
    310     case kOpBlx: opcode = kX86CallM;  break;
    311     default:
    312       LOG(FATAL) << "Bad opcode: " << op;
    313       break;
    314   }
    315   return NewLIR2(opcode, rBase, disp);
    316 }
    317 
    318 LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
    319     int32_t val_lo = Low32Bits(value);
    320     int32_t val_hi = High32Bits(value);
    321     LIR *res;
    322     if (X86_FPREG(r_dest_lo)) {
    323       DCHECK(X86_FPREG(r_dest_hi));  // ignore r_dest_hi
    324       if (value == 0) {
    325         return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
    326       } else {
    327         if (val_lo == 0) {
    328           res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
    329         } else {
    330           res = LoadConstantNoClobber(r_dest_lo, val_lo);
    331         }
    332         if (val_hi != 0) {
    333           LoadConstantNoClobber(r_dest_hi, val_hi);
    334           NewLIR2(kX86PsllqRI, r_dest_hi, 32);
    335           NewLIR2(kX86OrpsRR, r_dest_lo, r_dest_hi);
    336         }
    337       }
    338     } else {
    339       res = LoadConstantNoClobber(r_dest_lo, val_lo);
    340       LoadConstantNoClobber(r_dest_hi, val_hi);
    341     }
    342     return res;
    343 }
    344 
    345 LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
    346                                      int displacement, int r_dest, int r_dest_hi, OpSize size,
    347                                      int s_reg) {
    348   LIR *load = NULL;
    349   LIR *load2 = NULL;
    350   bool is_array = r_index != INVALID_REG;
    351   bool pair = false;
    352   bool is64bit = false;
    353   X86OpCode opcode = kX86Nop;
    354   switch (size) {
    355     case kLong:
    356     case kDouble:
    357       is64bit = true;
    358       if (X86_FPREG(r_dest)) {
    359         opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
    360         if (X86_SINGLEREG(r_dest)) {
    361           DCHECK(X86_FPREG(r_dest_hi));
    362           DCHECK_EQ(r_dest, (r_dest_hi - 1));
    363           r_dest = S2d(r_dest, r_dest_hi);
    364         }
    365         r_dest_hi = r_dest + 1;
    366       } else {
    367         pair = true;
    368         opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
    369       }
    370       // TODO: double store is to unaligned address
    371       DCHECK_EQ((displacement & 0x3), 0);
    372       break;
    373     case kWord:
    374     case kSingle:
    375       opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
    376       if (X86_FPREG(r_dest)) {
    377         opcode = is_array ? kX86MovssRA : kX86MovssRM;
    378         DCHECK(X86_SINGLEREG(r_dest));
    379       }
    380       DCHECK_EQ((displacement & 0x3), 0);
    381       break;
    382     case kUnsignedHalf:
    383       opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
    384       DCHECK_EQ((displacement & 0x1), 0);
    385       break;
    386     case kSignedHalf:
    387       opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
    388       DCHECK_EQ((displacement & 0x1), 0);
    389       break;
    390     case kUnsignedByte:
    391       opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
    392       break;
    393     case kSignedByte:
    394       opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
    395       break;
    396     default:
    397       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
    398   }
    399 
    400   if (!is_array) {
    401     if (!pair) {
    402       load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    403     } else {
    404       if (rBase == r_dest) {
    405         load2 = NewLIR3(opcode, r_dest_hi, rBase,
    406                         displacement + HIWORD_OFFSET);
    407         load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    408       } else {
    409         load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    410         load2 = NewLIR3(opcode, r_dest_hi, rBase,
    411                         displacement + HIWORD_OFFSET);
    412       }
    413     }
    414     if (rBase == rX86_SP) {
    415       AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    416                               true /* is_load */, is64bit);
    417       if (pair) {
    418         AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
    419                                 true /* is_load */, is64bit);
    420       }
    421     }
    422   } else {
    423     if (!pair) {
    424       load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    425                      displacement + LOWORD_OFFSET);
    426     } else {
    427       if (rBase == r_dest) {
    428         load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
    429                         displacement + HIWORD_OFFSET);
    430         load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    431                        displacement + LOWORD_OFFSET);
    432       } else {
    433         load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    434                        displacement + LOWORD_OFFSET);
    435         load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
    436                         displacement + HIWORD_OFFSET);
    437       }
    438     }
    439   }
    440 
    441   return load;
    442 }
    443 
    444 /* Load value from base + scaled index. */
    445 LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
    446                      int r_index, int r_dest, int scale, OpSize size) {
    447   return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
    448                              r_dest, INVALID_REG, size, INVALID_SREG);
    449 }
    450 
    451 LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
    452                   int r_dest, OpSize size, int s_reg) {
    453   return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    454                              r_dest, INVALID_REG, size, s_reg);
    455 }
    456 
    457 LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
    458                       int r_dest_lo, int r_dest_hi, int s_reg) {
    459   return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    460                              r_dest_lo, r_dest_hi, kLong, s_reg);
    461 }
    462 
    463 LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
    464                                       int displacement, int r_src, int r_src_hi, OpSize size,
    465                                       int s_reg) {
    466   LIR *store = NULL;
    467   LIR *store2 = NULL;
    468   bool is_array = r_index != INVALID_REG;
    469   bool pair = false;
    470   bool is64bit = false;
    471   X86OpCode opcode = kX86Nop;
    472   switch (size) {
    473     case kLong:
    474     case kDouble:
    475       is64bit = true;
    476       if (X86_FPREG(r_src)) {
    477         opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
    478         if (X86_SINGLEREG(r_src)) {
    479           DCHECK(X86_FPREG(r_src_hi));
    480           DCHECK_EQ(r_src, (r_src_hi - 1));
    481           r_src = S2d(r_src, r_src_hi);
    482         }
    483         r_src_hi = r_src + 1;
    484       } else {
    485         pair = true;
    486         opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
    487       }
    488       // TODO: double store is to unaligned address
    489       DCHECK_EQ((displacement & 0x3), 0);
    490       break;
    491     case kWord:
    492     case kSingle:
    493       opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
    494       if (X86_FPREG(r_src)) {
    495         opcode = is_array ? kX86MovssAR : kX86MovssMR;
    496         DCHECK(X86_SINGLEREG(r_src));
    497       }
    498       DCHECK_EQ((displacement & 0x3), 0);
    499       break;
    500     case kUnsignedHalf:
    501     case kSignedHalf:
    502       opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
    503       DCHECK_EQ((displacement & 0x1), 0);
    504       break;
    505     case kUnsignedByte:
    506     case kSignedByte:
    507       opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
    508       break;
    509     default:
    510       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
    511   }
    512 
    513   if (!is_array) {
    514     if (!pair) {
    515       store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
    516     } else {
    517       store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
    518       store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
    519     }
    520     if (rBase == rX86_SP) {
    521       AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    522                               false /* is_load */, is64bit);
    523       if (pair) {
    524         AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
    525                                 false /* is_load */, is64bit);
    526       }
    527     }
    528   } else {
    529     if (!pair) {
    530       store = NewLIR5(opcode, rBase, r_index, scale,
    531                       displacement + LOWORD_OFFSET, r_src);
    532     } else {
    533       store = NewLIR5(opcode, rBase, r_index, scale,
    534                       displacement + LOWORD_OFFSET, r_src);
    535       store2 = NewLIR5(opcode, rBase, r_index, scale,
    536                        displacement + HIWORD_OFFSET, r_src_hi);
    537     }
    538   }
    539 
    540   return store;
    541 }
    542 
    543 /* store value base base + scaled index. */
    544 LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
    545                       int scale, OpSize size) {
    546   return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
    547                               r_src, INVALID_REG, size, INVALID_SREG);
    548 }
    549 
    550 LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
    551                                int r_src, OpSize size) {
    552     return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
    553                                 displacement, r_src, INVALID_REG, size,
    554                                 INVALID_SREG);
    555 }
    556 
    557 LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
    558                                    int r_src_lo, int r_src_hi) {
    559   return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    560                               r_src_lo, r_src_hi, kLong, INVALID_SREG);
    561 }
    562 
    563 }  // namespace art
    564