Home | History | Annotate | Download | only in src
      1 /* e_j1f.c -- float version of e_j1.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian (at) cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #include <sys/cdefs.h>
     17 __FBSDID("$FreeBSD$");
     18 
     19 #include "math.h"
     20 #include "math_private.h"
     21 
     22 static float ponef(float), qonef(float);
     23 
     24 static const float
     25 huge    = 1e30,
     26 one	= 1.0,
     27 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
     28 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
     29 	/* R0/S0 on [0,2] */
     30 r00  = -6.2500000000e-02, /* 0xbd800000 */
     31 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
     32 r02  = -1.5995563444e-05, /* 0xb7862e36 */
     33 r03  =  4.9672799207e-08, /* 0x335557d2 */
     34 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
     35 s02  =  1.8594678841e-04, /* 0x3942fab6 */
     36 s03  =  1.1771846857e-06, /* 0x359dffc2 */
     37 s04  =  5.0463624390e-09, /* 0x31ad6446 */
     38 s05  =  1.2354227016e-11; /* 0x2d59567e */
     39 
     40 static const float zero    = 0.0;
     41 
     42 float
     43 __ieee754_j1f(float x)
     44 {
     45 	float z, s,c,ss,cc,r,u,v,y;
     46 	int32_t hx,ix;
     47 
     48 	GET_FLOAT_WORD(hx,x);
     49 	ix = hx&0x7fffffff;
     50 	if(ix>=0x7f800000) return one/x;
     51 	y = fabsf(x);
     52 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
     53 		s = sinf(y);
     54 		c = cosf(y);
     55 		ss = -s-c;
     56 		cc = s-c;
     57 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
     58 		    z = cosf(y+y);
     59 		    if ((s*c)>zero) cc = z/ss;
     60 		    else 	    ss = z/cc;
     61 		}
     62 	/*
     63 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
     64 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
     65 	 */
     66 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
     67 		else {
     68 		    u = ponef(y); v = qonef(y);
     69 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
     70 		}
     71 		if(hx<0) return -z;
     72 		else  	 return  z;
     73 	}
     74 	if(ix<0x32000000) {	/* |x|<2**-27 */
     75 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
     76 	}
     77 	z = x*x;
     78 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
     79 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
     80 	r *= x;
     81 	return(x*(float)0.5+r/s);
     82 }
     83 
     84 static const float U0[5] = {
     85  -1.9605709612e-01, /* 0xbe48c331 */
     86   5.0443872809e-02, /* 0x3d4e9e3c */
     87  -1.9125689287e-03, /* 0xbafaaf2a */
     88   2.3525259166e-05, /* 0x37c5581c */
     89  -9.1909917899e-08, /* 0xb3c56003 */
     90 };
     91 static const float V0[5] = {
     92   1.9916731864e-02, /* 0x3ca3286a */
     93   2.0255257550e-04, /* 0x3954644b */
     94   1.3560879779e-06, /* 0x35b602d4 */
     95   6.2274145840e-09, /* 0x31d5f8eb */
     96   1.6655924903e-11, /* 0x2d9281cf */
     97 };
     98 
     99 float
    100 __ieee754_y1f(float x)
    101 {
    102 	float z, s,c,ss,cc,u,v;
    103 	int32_t hx,ix;
    104 
    105 	GET_FLOAT_WORD(hx,x);
    106         ix = 0x7fffffff&hx;
    107     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
    108 	if(ix>=0x7f800000) return  one/(x+x*x);
    109         if(ix==0) return -one/zero;
    110         if(hx<0) return zero/zero;
    111         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
    112                 s = sinf(x);
    113                 c = cosf(x);
    114                 ss = -s-c;
    115                 cc = s-c;
    116                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
    117                     z = cosf(x+x);
    118                     if ((s*c)>zero) cc = z/ss;
    119                     else            ss = z/cc;
    120                 }
    121         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
    122          * where x0 = x-3pi/4
    123          *      Better formula:
    124          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
    125          *                      =  1/sqrt(2) * (sin(x) - cos(x))
    126          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
    127          *                      = -1/sqrt(2) * (cos(x) + sin(x))
    128          * To avoid cancellation, use
    129          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
    130          * to compute the worse one.
    131          */
    132                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
    133                 else {
    134                     u = ponef(x); v = qonef(x);
    135                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
    136                 }
    137                 return z;
    138         }
    139         if(ix<=0x24800000) {    /* x < 2**-54 */
    140             return(-tpi/x);
    141         }
    142         z = x*x;
    143         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
    144         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
    145         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
    146 }
    147 
    148 /* For x >= 8, the asymptotic expansions of pone is
    149  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
    150  * We approximate pone by
    151  * 	pone(x) = 1 + (R/S)
    152  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
    153  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
    154  * and
    155  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
    156  */
    157 
    158 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    159   0.0000000000e+00, /* 0x00000000 */
    160   1.1718750000e-01, /* 0x3df00000 */
    161   1.3239480972e+01, /* 0x4153d4ea */
    162   4.1205184937e+02, /* 0x43ce06a3 */
    163   3.8747453613e+03, /* 0x45722bed */
    164   7.9144794922e+03, /* 0x45f753d6 */
    165 };
    166 static const float ps8[5] = {
    167   1.1420736694e+02, /* 0x42e46a2c */
    168   3.6509309082e+03, /* 0x45642ee5 */
    169   3.6956207031e+04, /* 0x47105c35 */
    170   9.7602796875e+04, /* 0x47bea166 */
    171   3.0804271484e+04, /* 0x46f0a88b */
    172 };
    173 
    174 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    175   1.3199052094e-11, /* 0x2d68333f */
    176   1.1718749255e-01, /* 0x3defffff */
    177   6.8027510643e+00, /* 0x40d9b023 */
    178   1.0830818176e+02, /* 0x42d89dca */
    179   5.1763616943e+02, /* 0x440168b7 */
    180   5.2871520996e+02, /* 0x44042dc6 */
    181 };
    182 static const float ps5[5] = {
    183   5.9280597687e+01, /* 0x426d1f55 */
    184   9.9140142822e+02, /* 0x4477d9b1 */
    185   5.3532670898e+03, /* 0x45a74a23 */
    186   7.8446904297e+03, /* 0x45f52586 */
    187   1.5040468750e+03, /* 0x44bc0180 */
    188 };
    189 
    190 static const float pr3[6] = {
    191   3.0250391081e-09, /* 0x314fe10d */
    192   1.1718686670e-01, /* 0x3defffab */
    193   3.9329774380e+00, /* 0x407bb5e7 */
    194   3.5119403839e+01, /* 0x420c7a45 */
    195   9.1055007935e+01, /* 0x42b61c2a */
    196   4.8559066772e+01, /* 0x42423c7c */
    197 };
    198 static const float ps3[5] = {
    199   3.4791309357e+01, /* 0x420b2a4d */
    200   3.3676245117e+02, /* 0x43a86198 */
    201   1.0468714600e+03, /* 0x4482dbe3 */
    202   8.9081134033e+02, /* 0x445eb3ed */
    203   1.0378793335e+02, /* 0x42cf936c */
    204 };
    205 
    206 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    207   1.0771083225e-07, /* 0x33e74ea8 */
    208   1.1717621982e-01, /* 0x3deffa16 */
    209   2.3685150146e+00, /* 0x401795c0 */
    210   1.2242610931e+01, /* 0x4143e1bc */
    211   1.7693971634e+01, /* 0x418d8d41 */
    212   5.0735230446e+00, /* 0x40a25a4d */
    213 };
    214 static const float ps2[5] = {
    215   2.1436485291e+01, /* 0x41ab7dec */
    216   1.2529022980e+02, /* 0x42fa9499 */
    217   2.3227647400e+02, /* 0x436846c7 */
    218   1.1767937469e+02, /* 0x42eb5bd7 */
    219   8.3646392822e+00, /* 0x4105d590 */
    220 };
    221 
    222 	static float ponef(float x)
    223 {
    224 	const float *p,*q;
    225 	float z,r,s;
    226         int32_t ix;
    227 	GET_FLOAT_WORD(ix,x);
    228 	ix &= 0x7fffffff;
    229         if(ix>=0x41000000)     {p = pr8; q= ps8;}
    230         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
    231         else if(ix>=0x4036db68){p = pr3; q= ps3;}
    232         else if(ix>=0x40000000){p = pr2; q= ps2;}
    233         z = one/(x*x);
    234         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    235         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
    236         return one+ r/s;
    237 }
    238 
    239 
    240 /* For x >= 8, the asymptotic expansions of qone is
    241  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
    242  * We approximate pone by
    243  * 	qone(x) = s*(0.375 + (R/S))
    244  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
    245  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
    246  * and
    247  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
    248  */
    249 
    250 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
    251   0.0000000000e+00, /* 0x00000000 */
    252  -1.0253906250e-01, /* 0xbdd20000 */
    253  -1.6271753311e+01, /* 0xc1822c8d */
    254  -7.5960174561e+02, /* 0xc43de683 */
    255  -1.1849806641e+04, /* 0xc639273a */
    256  -4.8438511719e+04, /* 0xc73d3683 */
    257 };
    258 static const float qs8[6] = {
    259   1.6139537048e+02, /* 0x43216537 */
    260   7.8253862305e+03, /* 0x45f48b17 */
    261   1.3387534375e+05, /* 0x4802bcd6 */
    262   7.1965775000e+05, /* 0x492fb29c */
    263   6.6660125000e+05, /* 0x4922be94 */
    264  -2.9449025000e+05, /* 0xc88fcb48 */
    265 };
    266 
    267 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
    268  -2.0897993405e-11, /* 0xadb7d219 */
    269  -1.0253904760e-01, /* 0xbdd1fffe */
    270  -8.0564479828e+00, /* 0xc100e736 */
    271  -1.8366960144e+02, /* 0xc337ab6b */
    272  -1.3731937256e+03, /* 0xc4aba633 */
    273  -2.6124443359e+03, /* 0xc523471c */
    274 };
    275 static const float qs5[6] = {
    276   8.1276550293e+01, /* 0x42a28d98 */
    277   1.9917987061e+03, /* 0x44f8f98f */
    278   1.7468484375e+04, /* 0x468878f8 */
    279   4.9851425781e+04, /* 0x4742bb6d */
    280   2.7948074219e+04, /* 0x46da5826 */
    281  -4.7191835938e+03, /* 0xc5937978 */
    282 };
    283 
    284 static const float qr3[6] = {
    285  -5.0783124372e-09, /* 0xb1ae7d4f */
    286  -1.0253783315e-01, /* 0xbdd1ff5b */
    287  -4.6101160049e+00, /* 0xc0938612 */
    288  -5.7847221375e+01, /* 0xc267638e */
    289  -2.2824453735e+02, /* 0xc3643e9a */
    290  -2.1921012878e+02, /* 0xc35b35cb */
    291 };
    292 static const float qs3[6] = {
    293   4.7665153503e+01, /* 0x423ea91e */
    294   6.7386511230e+02, /* 0x4428775e */
    295   3.3801528320e+03, /* 0x45534272 */
    296   5.5477290039e+03, /* 0x45ad5dd5 */
    297   1.9031191406e+03, /* 0x44ede3d0 */
    298  -1.3520118713e+02, /* 0xc3073381 */
    299 };
    300 
    301 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
    302  -1.7838172539e-07, /* 0xb43f8932 */
    303  -1.0251704603e-01, /* 0xbdd1f475 */
    304  -2.7522056103e+00, /* 0xc0302423 */
    305  -1.9663616180e+01, /* 0xc19d4f16 */
    306  -4.2325313568e+01, /* 0xc2294d1f */
    307  -2.1371921539e+01, /* 0xc1aaf9b2 */
    308 };
    309 static const float qs2[6] = {
    310   2.9533363342e+01, /* 0x41ec4454 */
    311   2.5298155212e+02, /* 0x437cfb47 */
    312   7.5750280762e+02, /* 0x443d602e */
    313   7.3939318848e+02, /* 0x4438d92a */
    314   1.5594900513e+02, /* 0x431bf2f2 */
    315  -4.9594988823e+00, /* 0xc09eb437 */
    316 };
    317 
    318 	static float qonef(float x)
    319 {
    320 	const float *p,*q;
    321 	float  s,r,z;
    322 	int32_t ix;
    323 	GET_FLOAT_WORD(ix,x);
    324 	ix &= 0x7fffffff;
    325 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
    326 	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
    327 	else if(ix>=0x4036db68){p = qr3; q= qs3;}
    328 	else if(ix>=0x40000000){p = qr2; q= qs2;}
    329 	z = one/(x*x);
    330 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
    331 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
    332 	return ((float).375 + r/s)/x;
    333 }
    334