Home | History | Annotate | Download | only in src
      1 
      2 /* -----------------------------------------------------------------------------------------------------------
      3 Software License for The Fraunhofer FDK AAC Codec Library for Android
      4 
      5  Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V.
      6   All rights reserved.
      7 
      8  1.    INTRODUCTION
      9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
     10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
     11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
     14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
     15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
     16 of the MPEG specifications.
     17 
     18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
     19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
     20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
     21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
     22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
     23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
     24 
     25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
     26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
     27 applications information and documentation.
     28 
     29 2.    COPYRIGHT LICENSE
     30 
     31 Redistribution and use in source and binary forms, with or without modification, are permitted without
     32 payment of copyright license fees provided that you satisfy the following conditions:
     33 
     34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
     35 your modifications thereto in source code form.
     36 
     37 You must retain the complete text of this software license in the documentation and/or other materials
     38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
     39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
     40 modifications thereto to recipients of copies in binary form.
     41 
     42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
     43 prior written permission.
     44 
     45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
     46 software or your modifications thereto.
     47 
     48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
     49 and the date of any change. For modified versions of the FDK AAC Codec, the term
     50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
     51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
     52 
     53 3.    NO PATENT LICENSE
     54 
     55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
     56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
     57 respect to this software.
     58 
     59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
     60 by appropriate patent licenses.
     61 
     62 4.    DISCLAIMER
     63 
     64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
     65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
     66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
     68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
     69 or business interruption, however caused and on any theory of liability, whether in contract, strict
     70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
     71 advised of the possibility of such damage.
     72 
     73 5.    CONTACT INFORMATION
     74 
     75 Fraunhofer Institute for Integrated Circuits IIS
     76 Attention: Audio and Multimedia Departments - FDK AAC LL
     77 Am Wolfsmantel 33
     78 91058 Erlangen, Germany
     79 
     80 www.iis.fraunhofer.de/amm
     81 amm-info (at) iis.fraunhofer.de
     82 ----------------------------------------------------------------------------------------------------------- */
     83 
     84 /*****************************  MPEG-4 AAC Encoder  **************************
     85 
     86    Author(s):   M. Werner, Tobias Chalupka
     87    Description: Block switching
     88 
     89 ******************************************************************************/
     90 
     91 /****************** Includes *****************************/
     92 
     93 #include "block_switch.h"
     94 #include "genericStds.h"
     95 
     96 
     97 #define LOWOV_WINDOW _LOWOV_WINDOW
     98 
     99 /**************** internal function prototypes ***********/
    100 
    101 static FIXP_DBL FDKaacEnc_GetWindowEnergy(const FIXP_DBL in[], const INT blSwWndIdx);
    102 
    103 static void FDKaacEnc_CalcWindowEnergy(
    104         BLOCK_SWITCHING_CONTROL *RESTRICT blockSwitchingControl,
    105         INT                      windowLen,
    106         const INT_PCM           *pTimeSignal
    107         );
    108 
    109 /****************** Constants *****************************/
    110 /*                                                LONG         START        SHORT         STOP         LOWOV                  */
    111 static const INT blockType2windowShape[2][5] = { {SINE_WINDOW, KBD_WINDOW,  WRONG_WINDOW, SINE_WINDOW, KBD_WINDOW},     /* LD */
    112                                                  {KBD_WINDOW,  SINE_WINDOW, SINE_WINDOW,  KBD_WINDOW,  WRONG_WINDOW} }; /* LC */
    113 
    114 /* IIR high pass coeffs */
    115 
    116 #ifndef SINETABLE_16BIT
    117 
    118 static const FIXP_DBL hiPassCoeff[BLOCK_SWITCHING_IIR_LEN]=
    119 {
    120   FL2FXCONST_DBL(-0.5095),FL2FXCONST_DBL(0.7548)
    121 };
    122 
    123 static const FIXP_DBL accWindowNrgFac = FL2FXCONST_DBL(0.3f);                   /* factor for accumulating filtered window energies */
    124 static const FIXP_DBL oneMinusAccWindowNrgFac = FL2FXCONST_DBL(0.7f);
    125 /* static const float attackRatio = 10.0; */                                    /* lower ratio limit for attacks */
    126 static const FIXP_DBL invAttackRatio = FL2FXCONST_DBL(0.1f);                    /* inverted lower ratio limit for attacks */
    127 
    128 /* The next constants are scaled, because they are used for comparison with scaled values*/
    129 /* minimum energy for attacks */
    130 static const FIXP_DBL minAttackNrg = (FL2FXCONST_DBL(1e+6f*NORM_PCM_ENERGY)>>BLOCK_SWITCH_ENERGY_SHIFT); /* minimum energy for attacks */
    131 
    132 #else
    133 
    134 static const FIXP_SGL hiPassCoeff[BLOCK_SWITCHING_IIR_LEN]=
    135 {
    136   FL2FXCONST_SGL(-0.5095),FL2FXCONST_SGL(0.7548)
    137 };
    138 
    139 static const FIXP_DBL accWindowNrgFac = FL2FXCONST_DBL(0.3f);                   /* factor for accumulating filtered window energies */
    140 static const FIXP_SGL oneMinusAccWindowNrgFac = FL2FXCONST_SGL(0.7f);
    141 /* static const float attackRatio = 10.0; */                                    /* lower ratio limit for attacks */
    142 static const FIXP_SGL invAttackRatio = FL2FXCONST_SGL(0.1f);                    /* inverted lower ratio limit for attacks */
    143 /* minimum energy for attacks */
    144 static const FIXP_DBL minAttackNrg = (FL2FXCONST_DBL(1e+6f*NORM_PCM_ENERGY)>>BLOCK_SWITCH_ENERGY_SHIFT); /* minimum energy for attacks */
    145 
    146 #endif
    147 
    148 /**************** internal function prototypes ***********/
    149 
    150 /****************** Routines ****************************/
    151 void FDKaacEnc_InitBlockSwitching(BLOCK_SWITCHING_CONTROL *blockSwitchingControl, INT isLowDelay)
    152 {
    153   FDKmemclear (blockSwitchingControl, sizeof(BLOCK_SWITCHING_CONTROL));
    154 
    155   if (isLowDelay)
    156   {
    157     blockSwitchingControl->nBlockSwitchWindows = 4;
    158     blockSwitchingControl->allowShortFrames    = 0;
    159     blockSwitchingControl->allowLookAhead      = 0;
    160   }
    161   else
    162   {
    163     blockSwitchingControl->nBlockSwitchWindows = 8;
    164     blockSwitchingControl->allowShortFrames    = 1;
    165     blockSwitchingControl->allowLookAhead      = 1;
    166   }
    167 
    168   blockSwitchingControl->noOfGroups            = MAX_NO_OF_GROUPS;
    169 
    170   /* Initialize startvalue for blocktype */
    171   blockSwitchingControl->lastWindowSequence    = LONG_WINDOW;
    172   blockSwitchingControl->windowShape           = blockType2windowShape[blockSwitchingControl->allowShortFrames][blockSwitchingControl->lastWindowSequence];
    173 
    174 }
    175 
    176 static const INT suggestedGroupingTable[TRANS_FAC][MAX_NO_OF_GROUPS] =
    177 {
    178     /* Attack in Window 0 */ {1,  3,  3,  1},
    179     /* Attack in Window 1 */ {1,  1,  3,  3},
    180     /* Attack in Window 2 */ {2,  1,  3,  2},
    181     /* Attack in Window 3 */ {3,  1,  3,  1},
    182     /* Attack in Window 4 */ {3,  1,  1,  3},
    183     /* Attack in Window 5 */ {3,  2,  1,  2},
    184     /* Attack in Window 6 */ {3,  3,  1,  1},
    185     /* Attack in Window 7 */ {3,  3,  1,  1}
    186 };
    187 
    188 /* change block type depending on current blocktype and whether there's an attack */
    189 /* assume no look-ahead */
    190 static const INT chgWndSq[2][N_BLOCKTYPES] =
    191 {
    192   /*             LONG WINDOW   START_WINDOW  SHORT_WINDOW  STOP_WINDOW,  LOWOV_WINDOW, WRONG_WINDOW */
    193   /*no attack*/ {LONG_WINDOW,  STOP_WINDOW,  WRONG_WINDOW, LONG_WINDOW,  STOP_WINDOW , WRONG_WINDOW },
    194   /*attack   */ {START_WINDOW, LOWOV_WINDOW, WRONG_WINDOW, START_WINDOW, LOWOV_WINDOW, WRONG_WINDOW }
    195 };
    196 
    197 /* change block type depending on current blocktype and whether there's an attack */
    198 /* assume look-ahead */
    199 static const INT chgWndSqLkAhd[2][2][N_BLOCKTYPES] =
    200 {
    201   /*attack         LONG WINDOW    START_WINDOW   SHORT_WINDOW   STOP_WINDOW   LOWOV_WINDOW, WRONG_WINDOW */  /* last attack */
    202   /*no attack*/ { {LONG_WINDOW,   SHORT_WINDOW,  STOP_WINDOW,   LONG_WINDOW,  WRONG_WINDOW, WRONG_WINDOW},   /* no attack   */
    203   /*attack   */   {START_WINDOW,  SHORT_WINDOW,  SHORT_WINDOW,  START_WINDOW, WRONG_WINDOW, WRONG_WINDOW} }, /* no attack   */
    204   /*no attack*/ { {LONG_WINDOW,   SHORT_WINDOW,  SHORT_WINDOW,  LONG_WINDOW,  WRONG_WINDOW, WRONG_WINDOW},   /* attack      */
    205   /*attack   */   {START_WINDOW,  SHORT_WINDOW,  SHORT_WINDOW,  START_WINDOW, WRONG_WINDOW, WRONG_WINDOW} }  /* attack      */
    206 };
    207 
    208 int FDKaacEnc_BlockSwitching(BLOCK_SWITCHING_CONTROL *blockSwitchingControl, const INT granuleLength, const int isLFE, const INT_PCM *pTimeSignal)
    209 {
    210     UINT i;
    211     FIXP_DBL enM1, enMax;
    212 
    213     UINT nBlockSwitchWindows = blockSwitchingControl->nBlockSwitchWindows;
    214 
    215     /* for LFE : only LONG window allowed */
    216     if (isLFE) {
    217 
    218       /* case LFE: */
    219       /* only long blocks, always use sine windows (MPEG2 AAC, MPEG4 AAC) */
    220       blockSwitchingControl->lastWindowSequence = LONG_WINDOW;
    221       blockSwitchingControl->windowShape    = SINE_WINDOW;
    222       blockSwitchingControl->noOfGroups     = 1;
    223       blockSwitchingControl->groupLen[0]    = 1;
    224 
    225       return(0);
    226     };
    227 
    228     /* Save current attack index as last attack index */
    229     blockSwitchingControl->lastattack = blockSwitchingControl->attack;
    230     blockSwitchingControl->lastAttackIndex = blockSwitchingControl->attackIndex;
    231 
    232     /* Save current window energy as last window energy */
    233     FDKmemcpy(blockSwitchingControl->windowNrg[0], blockSwitchingControl->windowNrg[1], sizeof(blockSwitchingControl->windowNrg[0]));
    234     FDKmemcpy(blockSwitchingControl->windowNrgF[0], blockSwitchingControl->windowNrgF[1], sizeof(blockSwitchingControl->windowNrgF[0]));
    235 
    236     if (blockSwitchingControl->allowShortFrames)
    237     {
    238       /* Calculate suggested grouping info for the last frame */
    239 
    240       /* Reset grouping info */
    241       FDKmemclear (blockSwitchingControl->groupLen, sizeof(blockSwitchingControl->groupLen));
    242 
    243       /* Set grouping info */
    244       blockSwitchingControl->noOfGroups = MAX_NO_OF_GROUPS;
    245 
    246       FDKmemcpy(blockSwitchingControl->groupLen, suggestedGroupingTable[blockSwitchingControl->lastAttackIndex], sizeof(blockSwitchingControl->groupLen));
    247 
    248       if (blockSwitchingControl->attack == TRUE)
    249           blockSwitchingControl->maxWindowNrg = FDKaacEnc_GetWindowEnergy(blockSwitchingControl->windowNrg[0], blockSwitchingControl->lastAttackIndex);
    250       else
    251           blockSwitchingControl->maxWindowNrg = FL2FXCONST_DBL(0.0);
    252 
    253     }
    254 
    255 
    256     /* Calculate unfiltered and filtered energies in subwindows and combine to segments */
    257     FDKaacEnc_CalcWindowEnergy(blockSwitchingControl, granuleLength>>(nBlockSwitchWindows==4? 2:3 ), pTimeSignal);
    258 
    259     /* now calculate if there is an attack */
    260 
    261     /* reset attack */
    262     blockSwitchingControl->attack = FALSE;
    263 
    264     /* look for attack */
    265     enMax = FL2FXCONST_DBL(0.0f);
    266     enM1 = blockSwitchingControl->windowNrgF[0][nBlockSwitchWindows-1];
    267 
    268     for (i=0; i<nBlockSwitchWindows; i++) {
    269         FIXP_DBL tmp = fMultDiv2(oneMinusAccWindowNrgFac, blockSwitchingControl->accWindowNrg);
    270         blockSwitchingControl->accWindowNrg = fMultAdd(tmp, accWindowNrgFac, enM1) ;
    271 
    272         if (fMult(blockSwitchingControl->windowNrgF[1][i],invAttackRatio) > blockSwitchingControl->accWindowNrg ) {
    273             blockSwitchingControl->attack = TRUE;
    274             blockSwitchingControl->attackIndex = i;
    275         }
    276         enM1 = blockSwitchingControl->windowNrgF[1][i];
    277         enMax = fixMax(enMax, enM1);
    278     }
    279 
    280 
    281     if (enMax < minAttackNrg) blockSwitchingControl->attack = FALSE;
    282 
    283     /* Check if attack spreads over frame border */
    284     if((blockSwitchingControl->attack == FALSE) && (blockSwitchingControl->lastattack == TRUE)) {
    285         /* if attack is in last window repeat SHORT_WINDOW */
    286         if ( ((blockSwitchingControl->windowNrgF[0][nBlockSwitchWindows-1]>>4) > fMult((FIXP_DBL)(10<<(DFRACT_BITS-1-4)), blockSwitchingControl->windowNrgF[1][1]))
    287            && (blockSwitchingControl->lastAttackIndex == (INT)nBlockSwitchWindows-1)
    288         )
    289         {
    290             blockSwitchingControl->attack = TRUE;
    291             blockSwitchingControl->attackIndex = 0;
    292         }
    293     }
    294 
    295 
    296     if(blockSwitchingControl->allowLookAhead)
    297     {
    298 
    299 
    300       blockSwitchingControl->lastWindowSequence =
    301         chgWndSqLkAhd[blockSwitchingControl->lastattack][blockSwitchingControl->attack][blockSwitchingControl->lastWindowSequence];
    302     }
    303     else
    304     {
    305       /* Low Delay */
    306       blockSwitchingControl->lastWindowSequence =
    307         chgWndSq[blockSwitchingControl->attack][blockSwitchingControl->lastWindowSequence];
    308     }
    309 
    310 
    311     /* update window shape */
    312     blockSwitchingControl->windowShape = blockType2windowShape[blockSwitchingControl->allowShortFrames][blockSwitchingControl->lastWindowSequence];
    313 
    314     return(0);
    315 }
    316 
    317 
    318 
    319 static FIXP_DBL FDKaacEnc_GetWindowEnergy(const FIXP_DBL in[], const INT blSwWndIdx)
    320 {
    321 /* For coherency, change FDKaacEnc_GetWindowEnergy() to calcluate the energy for a block switching analysis windows,
    322    not for a short block. The same is done FDKaacEnc_CalcWindowEnergy(). The result of FDKaacEnc_GetWindowEnergy()
    323    is used for a comparision of the max energy of left/right channel. */
    324 
    325   return in[blSwWndIdx];
    326 
    327 }
    328 
    329 static void FDKaacEnc_CalcWindowEnergy(BLOCK_SWITCHING_CONTROL *RESTRICT blockSwitchingControl, INT windowLen, const INT_PCM *pTimeSignal)
    330 {
    331     INT  i;
    332     UINT w;
    333 
    334     FIXP_SGL hiPassCoeff0 = hiPassCoeff[0];
    335     FIXP_SGL hiPassCoeff1 = hiPassCoeff[1];
    336 
    337     /* sum up scalarproduct of timesignal as windowed Energies */
    338     for (w=0; w < blockSwitchingControl->nBlockSwitchWindows; w++) {
    339 
    340         FIXP_DBL temp_windowNrg  = FL2FXCONST_DBL(0.0f);
    341         FIXP_DBL temp_windowNrgF = FL2FXCONST_DBL(0.0f);
    342         FIXP_DBL temp_iirState0  = blockSwitchingControl->iirStates[0];
    343         FIXP_DBL temp_iirState1  = blockSwitchingControl->iirStates[1];
    344 
    345         /* windowNrg = sum(timesample^2) */
    346         for(i=0;i<windowLen;i++)
    347         {
    348 
    349             FIXP_DBL tempUnfiltered, tempFiltred, t1, t2;
    350             /* tempUnfiltered is scaled with 1 to prevent overflows during calculation of tempFiltred */
    351 #if SAMPLE_BITS == DFRACT_BITS
    352             tempUnfiltered = (FIXP_DBL) *pTimeSignal++ >> 1;
    353 #else
    354             tempUnfiltered = (FIXP_DBL) *pTimeSignal++ << (DFRACT_BITS-SAMPLE_BITS-1);
    355 #endif
    356             t1 = fMultDiv2(hiPassCoeff1, tempUnfiltered-temp_iirState0);
    357             t2 = fMultDiv2(hiPassCoeff0, temp_iirState1);
    358             tempFiltred = (t1 - t2) << 1;
    359 
    360             temp_iirState0 = tempUnfiltered;
    361             temp_iirState1 = tempFiltred;
    362 
    363             /* subtract 2 from overallscaling (BLOCK_SWITCH_ENERGY_SHIFT)
    364              * because tempUnfiltered was already scaled with 1 (is 2 after squaring)
    365              * subtract 1 from overallscaling (BLOCK_SWITCH_ENERGY_SHIFT)
    366              * because of fMultDiv2 is doing a scaling by one */
    367             temp_windowNrg += fPow2Div2(tempUnfiltered) >> (BLOCK_SWITCH_ENERGY_SHIFT - 1 - 2);
    368             temp_windowNrgF += fPow2Div2(tempFiltred) >> (BLOCK_SWITCH_ENERGY_SHIFT - 1 - 2);
    369         }
    370         blockSwitchingControl->windowNrg[1][w]  = temp_windowNrg;
    371         blockSwitchingControl->windowNrgF[1][w] = temp_windowNrgF;
    372         blockSwitchingControl->iirStates[0]     = temp_iirState0;
    373         blockSwitchingControl->iirStates[1]     = temp_iirState1;
    374     }
    375 }
    376 
    377 
    378 static const UCHAR synchronizedBlockTypeTable[5][5] =
    379 {
    380   /*                  LONG_WINDOW   START_WINDOW  SHORT_WINDOW  STOP_WINDOW   LOWOV_WINDOW*/
    381   /* LONG_WINDOW  */ {LONG_WINDOW,  START_WINDOW, SHORT_WINDOW, STOP_WINDOW,  LOWOV_WINDOW},
    382   /* START_WINDOW */ {START_WINDOW, START_WINDOW, SHORT_WINDOW, SHORT_WINDOW, LOWOV_WINDOW},
    383   /* SHORT_WINDOW */ {SHORT_WINDOW, SHORT_WINDOW, SHORT_WINDOW, SHORT_WINDOW, WRONG_WINDOW},
    384   /* STOP_WINDOW  */ {STOP_WINDOW,  SHORT_WINDOW, SHORT_WINDOW, STOP_WINDOW,  LOWOV_WINDOW},
    385   /* LOWOV_WINDOW */ {LOWOV_WINDOW, LOWOV_WINDOW, WRONG_WINDOW, LOWOV_WINDOW, LOWOV_WINDOW},
    386 };
    387 
    388 int FDKaacEnc_SyncBlockSwitching (
    389       BLOCK_SWITCHING_CONTROL *blockSwitchingControlLeft,
    390       BLOCK_SWITCHING_CONTROL *blockSwitchingControlRight,
    391       const INT nChannels,
    392       const INT commonWindow )
    393 {
    394   UCHAR patchType = LONG_WINDOW;
    395 
    396   if( nChannels == 2 && commonWindow == TRUE)
    397   {
    398     /* could be better with a channel loop (need a handle to psy_data) */
    399     /* get suggested Block Types and synchronize */
    400     patchType = synchronizedBlockTypeTable[patchType][blockSwitchingControlLeft->lastWindowSequence];
    401     patchType = synchronizedBlockTypeTable[patchType][blockSwitchingControlRight->lastWindowSequence];
    402 
    403     /* sanity check (no change from low overlap window to short winow and vice versa) */
    404     if (patchType == WRONG_WINDOW)
    405       return -1; /* mixed up AAC-LC and AAC-LD */
    406 
    407     /* Set synchronized Blocktype */
    408     blockSwitchingControlLeft->lastWindowSequence  = patchType;
    409     blockSwitchingControlRight->lastWindowSequence = patchType;
    410 
    411     /* update window shape */
    412     blockSwitchingControlLeft->windowShape  = blockType2windowShape[blockSwitchingControlLeft->allowShortFrames][blockSwitchingControlLeft->lastWindowSequence];
    413     blockSwitchingControlRight->windowShape = blockType2windowShape[blockSwitchingControlLeft->allowShortFrames][blockSwitchingControlRight->lastWindowSequence];
    414   }
    415 
    416   if (blockSwitchingControlLeft->allowShortFrames)
    417   {
    418     int i;
    419 
    420     if( nChannels == 2 )
    421     {
    422       if (commonWindow == TRUE)
    423       {
    424         /* Synchronize grouping info */
    425         int windowSequenceLeftOld  = blockSwitchingControlLeft->lastWindowSequence;
    426         int windowSequenceRightOld = blockSwitchingControlRight->lastWindowSequence;
    427 
    428         /* Long Blocks */
    429         if(patchType != SHORT_WINDOW) {
    430           /* Set grouping info */
    431           blockSwitchingControlLeft->noOfGroups   = 1;
    432           blockSwitchingControlRight->noOfGroups  = 1;
    433           blockSwitchingControlLeft->groupLen[0]  = 1;
    434           blockSwitchingControlRight->groupLen[0] = 1;
    435 
    436           for (i = 1; i < MAX_NO_OF_GROUPS; i++)
    437           {
    438             blockSwitchingControlLeft->groupLen[i]  = 0;
    439             blockSwitchingControlRight->groupLen[i] = 0;
    440           }
    441         }
    442 
    443         /* Short Blocks */
    444         else {
    445           /* in case all two channels were detected as short-blocks before syncing, use the grouping of channel with higher maxWindowNrg */
    446           if( (windowSequenceLeftOld  == SHORT_WINDOW) &&
    447 	            (windowSequenceRightOld == SHORT_WINDOW) )
    448           {
    449             if(blockSwitchingControlLeft->maxWindowNrg > blockSwitchingControlRight->maxWindowNrg) {
    450 	            /* Left Channel wins */
    451 	            blockSwitchingControlRight->noOfGroups = blockSwitchingControlLeft->noOfGroups;
    452 	            for (i = 0; i < MAX_NO_OF_GROUPS; i++){
    453 	              blockSwitchingControlRight->groupLen[i] = blockSwitchingControlLeft->groupLen[i];
    454 	            }
    455             }
    456             else {
    457 	            /* Right Channel wins */
    458 	            blockSwitchingControlLeft->noOfGroups = blockSwitchingControlRight->noOfGroups;
    459 	            for (i = 0; i < MAX_NO_OF_GROUPS; i++){
    460 	              blockSwitchingControlLeft->groupLen[i] = blockSwitchingControlRight->groupLen[i];
    461 	            }
    462             }
    463           }
    464           else if ( (windowSequenceLeftOld  == SHORT_WINDOW) &&
    465                     (windowSequenceRightOld != SHORT_WINDOW) )
    466           {
    467             /* else use grouping of short-block channel */
    468             blockSwitchingControlRight->noOfGroups = blockSwitchingControlLeft->noOfGroups;
    469             for (i = 0; i < MAX_NO_OF_GROUPS; i++){
    470               blockSwitchingControlRight->groupLen[i] = blockSwitchingControlLeft->groupLen[i];
    471             }
    472           }
    473           else if ( (windowSequenceRightOld == SHORT_WINDOW) &&
    474 		                (windowSequenceLeftOld  != SHORT_WINDOW) )
    475           {
    476             blockSwitchingControlLeft->noOfGroups = blockSwitchingControlRight->noOfGroups;
    477             for (i = 0; i < MAX_NO_OF_GROUPS; i++){
    478               blockSwitchingControlLeft->groupLen[i] = blockSwitchingControlRight->groupLen[i];
    479             }
    480           } else {
    481             /* syncing a start and stop window ... */
    482             blockSwitchingControlLeft->noOfGroups  = blockSwitchingControlRight->noOfGroups  = 2;
    483             blockSwitchingControlLeft->groupLen[0] = blockSwitchingControlRight->groupLen[0] = 4;
    484             blockSwitchingControlLeft->groupLen[1] = blockSwitchingControlRight->groupLen[1] = 4;
    485           }
    486         } /* Short Blocks */
    487       }
    488       else {
    489         /* stereo, no common window */
    490         if (blockSwitchingControlLeft->lastWindowSequence!=SHORT_WINDOW){
    491           blockSwitchingControlLeft->noOfGroups  = 1;
    492           blockSwitchingControlLeft->groupLen[0] = 1;
    493           for (i = 1; i < MAX_NO_OF_GROUPS; i++)
    494           {
    495             blockSwitchingControlLeft->groupLen[i] = 0;
    496           }
    497         }
    498         if (blockSwitchingControlRight->lastWindowSequence!=SHORT_WINDOW){
    499           blockSwitchingControlRight->noOfGroups  = 1;
    500           blockSwitchingControlRight->groupLen[0] = 1;
    501           for (i = 1; i < MAX_NO_OF_GROUPS; i++)
    502           {
    503             blockSwitchingControlRight->groupLen[i] = 0;
    504           }
    505         }
    506       } /* common window */
    507     } else {
    508       /* Mono */
    509       if (blockSwitchingControlLeft->lastWindowSequence!=SHORT_WINDOW){
    510         blockSwitchingControlLeft->noOfGroups  = 1;
    511         blockSwitchingControlLeft->groupLen[0] = 1;
    512 
    513         for (i = 1; i < MAX_NO_OF_GROUPS; i++)
    514         {
    515           blockSwitchingControlLeft->groupLen[i] = 0;
    516         }
    517       }
    518     }
    519   } /* allowShortFrames */
    520 
    521 
    522   /* Translate LOWOV_WINDOW block type to a meaningful window shape. */
    523   if ( ! blockSwitchingControlLeft->allowShortFrames ) {
    524     if ( blockSwitchingControlLeft->lastWindowSequence != LONG_WINDOW
    525       && blockSwitchingControlLeft->lastWindowSequence != STOP_WINDOW )
    526     {
    527       blockSwitchingControlLeft->lastWindowSequence = LONG_WINDOW;
    528       blockSwitchingControlLeft->windowShape = LOL_WINDOW;
    529     }
    530   }
    531   if (nChannels == 2) {
    532     if ( ! blockSwitchingControlRight->allowShortFrames ) {
    533       if ( blockSwitchingControlRight->lastWindowSequence != LONG_WINDOW
    534         && blockSwitchingControlRight->lastWindowSequence != STOP_WINDOW )
    535       {
    536         blockSwitchingControlRight->lastWindowSequence = LONG_WINDOW;
    537         blockSwitchingControlRight->windowShape = LOL_WINDOW;
    538       }
    539     }
    540   }
    541 
    542   return 0;
    543 }
    544 
    545 
    546