Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // A simple example of using the Ceres minimizer.
     32 //
     33 // Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
     34 
     35 #include <vector>
     36 #include "ceres/ceres.h"
     37 #include "glog/logging.h"
     38 
     39 using ceres::CostFunction;
     40 using ceres::SizedCostFunction;
     41 using ceres::Problem;
     42 using ceres::Solver;
     43 using ceres::Solve;
     44 
     45 // A CostFunction implementing analytically derivatives for the
     46 // function f(x) = 10 - x.
     47 class QuadraticCostFunction
     48   : public SizedCostFunction<1 /* number of residuals */,
     49                              1 /* size of first parameter */> {
     50  public:
     51   virtual ~QuadraticCostFunction() {}
     52 
     53   virtual bool Evaluate(double const* const* parameters,
     54                         double* residuals,
     55                         double** jacobians) const {
     56     double x = parameters[0][0];
     57 
     58     // f(x) = 10 - x.
     59     residuals[0] = 10 - x;
     60 
     61     // f'(x) = -1. Since there's only 1 parameter and that parameter
     62     // has 1 dimension, there is only 1 element to fill in the
     63     // jacobians.
     64     //
     65     // Since the Evaluate function can be called with the jacobians
     66     // pointer equal to NULL, the Evaluate function must check to see
     67     // if jacobians need to be computed.
     68     //
     69     // For this simple problem it is overkill to check if jacobians[0]
     70     // is NULL, but in general when writing more complex
     71     // CostFunctions, it is possible that Ceres may only demand the
     72     // derivatives w.r.t. a subset of the parameter blocks.
     73     if (jacobians != NULL && jacobians[0] != NULL) {
     74       jacobians[0][0] = -1;
     75     }
     76 
     77     return true;
     78   }
     79 };
     80 
     81 int main(int argc, char** argv) {
     82   google::InitGoogleLogging(argv[0]);
     83 
     84   // The variable to solve for with its initial value. It will be
     85   // mutated in place by the solver.
     86   double x = 0.5;
     87   const double initial_x = x;
     88 
     89   // Build the problem.
     90   Problem problem;
     91 
     92   // Set up the only cost function (also known as residual).
     93   CostFunction* cost_function = new QuadraticCostFunction;
     94   problem.AddResidualBlock(cost_function, NULL, &x);
     95 
     96   // Run the solver!
     97   Solver::Options options;
     98   options.minimizer_progress_to_stdout = true;
     99   Solver::Summary summary;
    100   Solve(options, &problem, &summary);
    101 
    102   std::cout << summary.BriefReport() << "\n";
    103   std::cout << "x : " << initial_x
    104             << " -> " << x << "\n";
    105 
    106   return 0;
    107 }
    108