Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/dense_normal_cholesky_solver.h"
     32 
     33 #include <cstddef>
     34 
     35 #include "Eigen/Dense"
     36 #include "ceres/blas.h"
     37 #include "ceres/dense_sparse_matrix.h"
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/internal/scoped_ptr.h"
     40 #include "ceres/lapack.h"
     41 #include "ceres/linear_solver.h"
     42 #include "ceres/types.h"
     43 #include "ceres/wall_time.h"
     44 
     45 namespace ceres {
     46 namespace internal {
     47 
     48 DenseNormalCholeskySolver::DenseNormalCholeskySolver(
     49     const LinearSolver::Options& options)
     50     : options_(options) {}
     51 
     52 LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl(
     53     DenseSparseMatrix* A,
     54     const double* b,
     55     const LinearSolver::PerSolveOptions& per_solve_options,
     56     double* x) {
     57   if (options_.dense_linear_algebra_library_type == EIGEN) {
     58     return SolveUsingEigen(A, b, per_solve_options, x);
     59   } else {
     60     return SolveUsingLAPACK(A, b, per_solve_options, x);
     61   }
     62 }
     63 
     64 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingEigen(
     65     DenseSparseMatrix* A,
     66     const double* b,
     67     const LinearSolver::PerSolveOptions& per_solve_options,
     68     double* x) {
     69   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
     70 
     71   const int num_rows = A->num_rows();
     72   const int num_cols = A->num_cols();
     73 
     74   ConstColMajorMatrixRef Aref = A->matrix();
     75   Matrix lhs(num_cols, num_cols);
     76   lhs.setZero();
     77 
     78   event_logger.AddEvent("Setup");
     79 
     80   //   lhs += A'A
     81   //
     82   // Using rankUpdate instead of GEMM, exposes the fact that its the
     83   // same matrix being multiplied with itself and that the product is
     84   // symmetric.
     85   lhs.selfadjointView<Eigen::Upper>().rankUpdate(Aref.transpose());
     86 
     87   //   rhs = A'b
     88   Vector rhs = Aref.transpose() * ConstVectorRef(b, num_rows);
     89 
     90   if (per_solve_options.D != NULL) {
     91     ConstVectorRef D(per_solve_options.D, num_cols);
     92     lhs += D.array().square().matrix().asDiagonal();
     93   }
     94   event_logger.AddEvent("Product");
     95 
     96   LinearSolver::Summary summary;
     97   summary.num_iterations = 1;
     98   summary.termination_type = TOLERANCE;
     99   VectorRef(x, num_cols) =
    100       lhs.selfadjointView<Eigen::Upper>().llt().solve(rhs);
    101   event_logger.AddEvent("Solve");
    102   return summary;
    103 }
    104 
    105 LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
    106     DenseSparseMatrix* A,
    107     const double* b,
    108     const LinearSolver::PerSolveOptions& per_solve_options,
    109     double* x) {
    110   EventLogger event_logger("DenseNormalCholeskySolver::Solve");
    111 
    112   if (per_solve_options.D != NULL) {
    113     // Temporarily append a diagonal block to the A matrix, but undo
    114     // it before returning the matrix to the user.
    115     A->AppendDiagonal(per_solve_options.D);
    116   }
    117 
    118   const int num_cols = A->num_cols();
    119   Matrix lhs(num_cols, num_cols);
    120   event_logger.AddEvent("Setup");
    121 
    122   // lhs = A'A
    123   //
    124   // Note: This is a bit delicate, it assumes that the stride on this
    125   // matrix is the same as the number of rows.
    126   BLAS::SymmetricRankKUpdate(A->num_rows(),
    127                              num_cols,
    128                              A->values(),
    129                              true,
    130                              1.0,
    131                              0.0,
    132                              lhs.data());
    133 
    134   if (per_solve_options.D != NULL) {
    135     // Undo the modifications to the matrix A.
    136     A->RemoveDiagonal();
    137   }
    138 
    139   // TODO(sameeragarwal): Replace this with a gemv call for true blasness.
    140   //   rhs = A'b
    141   VectorRef(x, num_cols) =
    142       A->matrix().transpose() * ConstVectorRef(b, A->num_rows());
    143   event_logger.AddEvent("Product");
    144 
    145   const int info = LAPACK::SolveInPlaceUsingCholesky(num_cols, lhs.data(), x);
    146   event_logger.AddEvent("Solve");
    147 
    148   LinearSolver::Summary summary;
    149   summary.num_iterations = 1;
    150   summary.termination_type = info == 0 ? TOLERANCE : FAILURE;
    151 
    152   event_logger.AddEvent("TearDown");
    153   return summary;
    154 }
    155 }   // namespace internal
    156 }   // namespace ceres
    157