Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Interface definition for sparse matrices.
     32 
     33 #ifndef CERES_INTERNAL_SPARSE_MATRIX_H_
     34 #define CERES_INTERNAL_SPARSE_MATRIX_H_
     35 
     36 #include <cstdio>
     37 #include "ceres/linear_operator.h"
     38 #include "ceres/internal/eigen.h"
     39 #include "ceres/types.h"
     40 
     41 namespace ceres {
     42 namespace internal {
     43 
     44 // This class defines the interface for storing and manipulating
     45 // sparse matrices. The key property that differentiates different
     46 // sparse matrices is how they are organized in memory and how the
     47 // information about the sparsity structure of the matrix is
     48 // stored. This has significant implications for linear solvers
     49 // operating on these matrices.
     50 //
     51 // To deal with the different kinds of layouts, we will assume that a
     52 // sparse matrix will have a two part representation. A values array
     53 // that will be used to store the entries of the sparse matrix and
     54 // some sort of a layout object that tells the user the sparsity
     55 // structure and layout of the values array. For example in case of
     56 // the TripletSparseMatrix, this information is carried in the rows
     57 // and cols arrays and for the BlockSparseMatrix, this information is
     58 // carried in the CompressedRowBlockStructure object.
     59 //
     60 // This interface deliberately does not contain any information about
     61 // the structure of the sparse matrix as that seems to be highly
     62 // matrix type dependent and we are at this stage unable to come up
     63 // with an efficient high level interface that spans multiple sparse
     64 // matrix types.
     65 class SparseMatrix : public LinearOperator {
     66  public:
     67   virtual ~SparseMatrix();
     68 
     69   // y += Ax;
     70   virtual void RightMultiply(const double* x, double* y) const = 0;
     71   // y += A'x;
     72   virtual void LeftMultiply(const double* x, double* y) const = 0;
     73 
     74   // In MATLAB notation sum(A.*A, 1)
     75   virtual void SquaredColumnNorm(double* x) const = 0;
     76   // A = A * diag(scale)
     77   virtual void ScaleColumns(const double* scale) = 0;
     78 
     79   // A = 0. A->num_nonzeros() == 0 is true after this call. The
     80   // sparsity pattern is preserved.
     81   virtual void SetZero() = 0;
     82 
     83   // Resize and populate dense_matrix with a dense version of the
     84   // sparse matrix.
     85   virtual void ToDenseMatrix(Matrix* dense_matrix) const = 0;
     86 
     87   // Write out the matrix as a sequence of (i,j,s) triplets. This
     88   // format is useful for loading the matrix into MATLAB/octave as a
     89   // sparse matrix.
     90   virtual void ToTextFile(FILE* file) const = 0;
     91 
     92   // Accessors for the values array that stores the entries of the
     93   // sparse matrix. The exact interpreptation of the values of this
     94   // array depends on the particular kind of SparseMatrix being
     95   // accessed.
     96   virtual double* mutable_values() = 0;
     97   virtual const double* values() const = 0;
     98 
     99   virtual int num_rows() const = 0;
    100   virtual int num_cols() const = 0;
    101   virtual int num_nonzeros() const = 0;
    102 };
    103 
    104 }  // namespace internal
    105 }  // namespace ceres
    106 
    107 #endif  // CERES_INTERNAL_SPARSE_MATRIX_H_
    108