1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 31 #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARSE) 32 33 #include "ceres/sparse_normal_cholesky_solver.h" 34 35 #include <algorithm> 36 #include <cstring> 37 #include <ctime> 38 39 #include "ceres/compressed_row_sparse_matrix.h" 40 #include "ceres/cxsparse.h" 41 #include "ceres/internal/eigen.h" 42 #include "ceres/internal/scoped_ptr.h" 43 #include "ceres/linear_solver.h" 44 #include "ceres/suitesparse.h" 45 #include "ceres/triplet_sparse_matrix.h" 46 #include "ceres/types.h" 47 #include "ceres/wall_time.h" 48 49 namespace ceres { 50 namespace internal { 51 52 SparseNormalCholeskySolver::SparseNormalCholeskySolver( 53 const LinearSolver::Options& options) 54 : factor_(NULL), 55 cxsparse_factor_(NULL), 56 options_(options) { 57 } 58 59 SparseNormalCholeskySolver::~SparseNormalCholeskySolver() { 60 #ifndef CERES_NO_SUITESPARSE 61 if (factor_ != NULL) { 62 ss_.Free(factor_); 63 factor_ = NULL; 64 } 65 #endif 66 67 #ifndef CERES_NO_CXSPARSE 68 if (cxsparse_factor_ != NULL) { 69 cxsparse_.Free(cxsparse_factor_); 70 cxsparse_factor_ = NULL; 71 } 72 #endif // CERES_NO_CXSPARSE 73 } 74 75 LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( 76 CompressedRowSparseMatrix* A, 77 const double* b, 78 const LinearSolver::PerSolveOptions& per_solve_options, 79 double * x) { 80 switch (options_.sparse_linear_algebra_library_type) { 81 case SUITE_SPARSE: 82 return SolveImplUsingSuiteSparse(A, b, per_solve_options, x); 83 case CX_SPARSE: 84 return SolveImplUsingCXSparse(A, b, per_solve_options, x); 85 default: 86 LOG(FATAL) << "Unknown sparse linear algebra library : " 87 << options_.sparse_linear_algebra_library_type; 88 } 89 90 LOG(FATAL) << "Unknown sparse linear algebra library : " 91 << options_.sparse_linear_algebra_library_type; 92 return LinearSolver::Summary(); 93 } 94 95 #ifndef CERES_NO_CXSPARSE 96 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( 97 CompressedRowSparseMatrix* A, 98 const double* b, 99 const LinearSolver::PerSolveOptions& per_solve_options, 100 double * x) { 101 EventLogger event_logger("SparseNormalCholeskySolver::CXSparse::Solve"); 102 103 LinearSolver::Summary summary; 104 summary.num_iterations = 1; 105 const int num_cols = A->num_cols(); 106 Vector Atb = Vector::Zero(num_cols); 107 A->LeftMultiply(b, Atb.data()); 108 109 if (per_solve_options.D != NULL) { 110 // Temporarily append a diagonal block to the A matrix, but undo 111 // it before returning the matrix to the user. 112 CompressedRowSparseMatrix D(per_solve_options.D, num_cols); 113 A->AppendRows(D); 114 } 115 116 VectorRef(x, num_cols).setZero(); 117 118 // Wrap the augmented Jacobian in a compressed sparse column matrix. 119 cs_di At = cxsparse_.CreateSparseMatrixTransposeView(A); 120 121 // Compute the normal equations. J'J delta = J'f and solve them 122 // using a sparse Cholesky factorization. Notice that when compared 123 // to SuiteSparse we have to explicitly compute the transpose of Jt, 124 // and then the normal equations before they can be 125 // factorized. CHOLMOD/SuiteSparse on the other hand can just work 126 // off of Jt to compute the Cholesky factorization of the normal 127 // equations. 128 cs_di* A2 = cxsparse_.TransposeMatrix(&At); 129 cs_di* AtA = cxsparse_.MatrixMatrixMultiply(&At, A2); 130 131 cxsparse_.Free(A2); 132 if (per_solve_options.D != NULL) { 133 A->DeleteRows(num_cols); 134 } 135 event_logger.AddEvent("Setup"); 136 137 // Compute symbolic factorization if not available. 138 if (cxsparse_factor_ == NULL) { 139 if (options_.use_postordering) { 140 cxsparse_factor_ = 141 CHECK_NOTNULL(cxsparse_.BlockAnalyzeCholesky(AtA, 142 A->col_blocks(), 143 A->col_blocks())); 144 } else { 145 cxsparse_factor_ = 146 CHECK_NOTNULL(cxsparse_.AnalyzeCholeskyWithNaturalOrdering(AtA)); 147 } 148 } 149 event_logger.AddEvent("Analysis"); 150 151 // Solve the linear system. 152 if (cxsparse_.SolveCholesky(AtA, cxsparse_factor_, Atb.data())) { 153 VectorRef(x, Atb.rows()) = Atb; 154 summary.termination_type = TOLERANCE; 155 } 156 event_logger.AddEvent("Solve"); 157 158 cxsparse_.Free(AtA); 159 event_logger.AddEvent("Teardown"); 160 return summary; 161 } 162 #else 163 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( 164 CompressedRowSparseMatrix* A, 165 const double* b, 166 const LinearSolver::PerSolveOptions& per_solve_options, 167 double * x) { 168 LOG(FATAL) << "No CXSparse support in Ceres."; 169 170 // Unreachable but MSVC does not know this. 171 return LinearSolver::Summary(); 172 } 173 #endif 174 175 #ifndef CERES_NO_SUITESPARSE 176 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( 177 CompressedRowSparseMatrix* A, 178 const double* b, 179 const LinearSolver::PerSolveOptions& per_solve_options, 180 double * x) { 181 EventLogger event_logger("SparseNormalCholeskySolver::SuiteSparse::Solve"); 182 183 const int num_cols = A->num_cols(); 184 LinearSolver::Summary summary; 185 Vector Atb = Vector::Zero(num_cols); 186 A->LeftMultiply(b, Atb.data()); 187 188 if (per_solve_options.D != NULL) { 189 // Temporarily append a diagonal block to the A matrix, but undo it before 190 // returning the matrix to the user. 191 CompressedRowSparseMatrix D(per_solve_options.D, num_cols); 192 A->AppendRows(D); 193 } 194 195 VectorRef(x, num_cols).setZero(); 196 197 cholmod_sparse lhs = ss_.CreateSparseMatrixTransposeView(A); 198 cholmod_dense* rhs = ss_.CreateDenseVector(Atb.data(), num_cols, num_cols); 199 event_logger.AddEvent("Setup"); 200 201 if (factor_ == NULL) { 202 if (options_.use_postordering) { 203 factor_ = 204 CHECK_NOTNULL(ss_.BlockAnalyzeCholesky(&lhs, 205 A->col_blocks(), 206 A->row_blocks())); 207 } else { 208 factor_ = 209 CHECK_NOTNULL(ss_.AnalyzeCholeskyWithNaturalOrdering(&lhs)); 210 } 211 } 212 213 event_logger.AddEvent("Analysis"); 214 215 cholmod_dense* sol = ss_.SolveCholesky(&lhs, factor_, rhs); 216 event_logger.AddEvent("Solve"); 217 218 ss_.Free(rhs); 219 rhs = NULL; 220 221 if (per_solve_options.D != NULL) { 222 A->DeleteRows(num_cols); 223 } 224 225 summary.num_iterations = 1; 226 if (sol != NULL) { 227 memcpy(x, sol->x, num_cols * sizeof(*x)); 228 229 ss_.Free(sol); 230 sol = NULL; 231 summary.termination_type = TOLERANCE; 232 } 233 234 event_logger.AddEvent("Teardown"); 235 return summary; 236 } 237 #else 238 LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( 239 CompressedRowSparseMatrix* A, 240 const double* b, 241 const LinearSolver::PerSolveOptions& per_solve_options, 242 double * x) { 243 LOG(FATAL) << "No SuiteSparse support in Ceres."; 244 245 // Unreachable but MSVC does not know this. 246 return LinearSolver::Summary(); 247 } 248 #endif 249 250 } // namespace internal 251 } // namespace ceres 252 253 #endif // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARSE) 254