1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/message_pump_glib.h" 6 7 #include <fcntl.h> 8 #include <math.h> 9 10 #include <gtk/gtk.h> 11 #include <glib.h> 12 13 #include "base/eintr_wrapper.h" 14 #include "base/logging.h" 15 #include "base/threading/platform_thread.h" 16 17 namespace { 18 19 // We send a byte across a pipe to wakeup the event loop. 20 const char kWorkScheduled = '\0'; 21 22 // Return a timeout suitable for the glib loop, -1 to block forever, 23 // 0 to return right away, or a timeout in milliseconds from now. 24 int GetTimeIntervalMilliseconds(const base::TimeTicks& from) { 25 if (from.is_null()) 26 return -1; 27 28 // Be careful here. TimeDelta has a precision of microseconds, but we want a 29 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or 30 // 6? It should be 6 to avoid executing delayed work too early. 31 int delay = static_cast<int>( 32 ceil((from - base::TimeTicks::Now()).InMillisecondsF())); 33 34 // If this value is negative, then we need to run delayed work soon. 35 return delay < 0 ? 0 : delay; 36 } 37 38 // A brief refresher on GLib: 39 // GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize. 40 // On each iteration of the GLib pump, it calls each source's Prepare function. 41 // This function should return TRUE if it wants GLib to call its Dispatch, and 42 // FALSE otherwise. It can also set a timeout in this case for the next time 43 // Prepare should be called again (it may be called sooner). 44 // After the Prepare calls, GLib does a poll to check for events from the 45 // system. File descriptors can be attached to the sources. The poll may block 46 // if none of the Prepare calls returned TRUE. It will block indefinitely, or 47 // by the minimum time returned by a source in Prepare. 48 // After the poll, GLib calls Check for each source that returned FALSE 49 // from Prepare. The return value of Check has the same meaning as for Prepare, 50 // making Check a second chance to tell GLib we are ready for Dispatch. 51 // Finally, GLib calls Dispatch for each source that is ready. If Dispatch 52 // returns FALSE, GLib will destroy the source. Dispatch calls may be recursive 53 // (i.e., you can call Run from them), but Prepare and Check cannot. 54 // Finalize is called when the source is destroyed. 55 // NOTE: It is common for subsytems to want to process pending events while 56 // doing intensive work, for example the flash plugin. They usually use the 57 // following pattern (recommended by the GTK docs): 58 // while (gtk_events_pending()) { 59 // gtk_main_iteration(); 60 // } 61 // 62 // gtk_events_pending just calls g_main_context_pending, which does the 63 // following: 64 // - Call prepare on all the sources. 65 // - Do the poll with a timeout of 0 (not blocking). 66 // - Call check on all the sources. 67 // - *Does not* call dispatch on the sources. 68 // - Return true if any of prepare() or check() returned true. 69 // 70 // gtk_main_iteration just calls g_main_context_iteration, which does the whole 71 // thing, respecting the timeout for the poll (and block, although it is 72 // expected not to if gtk_events_pending returned true), and call dispatch. 73 // 74 // Thus it is important to only return true from prepare or check if we 75 // actually have events or work to do. We also need to make sure we keep 76 // internal state consistent so that if prepare/check return true when called 77 // from gtk_events_pending, they will still return true when called right 78 // after, from gtk_main_iteration. 79 // 80 // For the GLib pump we try to follow the Windows UI pump model: 81 // - Whenever we receive a wakeup event or the timer for delayed work expires, 82 // we run DoWork and/or DoDelayedWork. That part will also run in the other 83 // event pumps. 84 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main 85 // loop, around event handling. 86 87 struct WorkSource : public GSource { 88 base::MessagePumpForUI* pump; 89 }; 90 91 gboolean WorkSourcePrepare(GSource* source, 92 gint* timeout_ms) { 93 *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare(); 94 // We always return FALSE, so that our timeout is honored. If we were 95 // to return TRUE, the timeout would be considered to be 0 and the poll 96 // would never block. Once the poll is finished, Check will be called. 97 return FALSE; 98 } 99 100 gboolean WorkSourceCheck(GSource* source) { 101 // Only return TRUE if Dispatch should be called. 102 return static_cast<WorkSource*>(source)->pump->HandleCheck(); 103 } 104 105 gboolean WorkSourceDispatch(GSource* source, 106 GSourceFunc unused_func, 107 gpointer unused_data) { 108 109 static_cast<WorkSource*>(source)->pump->HandleDispatch(); 110 // Always return TRUE so our source stays registered. 111 return TRUE; 112 } 113 114 // I wish these could be const, but g_source_new wants non-const. 115 GSourceFuncs WorkSourceFuncs = { 116 WorkSourcePrepare, 117 WorkSourceCheck, 118 WorkSourceDispatch, 119 NULL 120 }; 121 122 } // namespace 123 124 125 namespace base { 126 127 struct MessagePumpForUI::RunState { 128 Delegate* delegate; 129 Dispatcher* dispatcher; 130 131 // Used to flag that the current Run() invocation should return ASAP. 132 bool should_quit; 133 134 // Used to count how many Run() invocations are on the stack. 135 int run_depth; 136 137 // This keeps the state of whether the pump got signaled that there was new 138 // work to be done. Since we eat the message on the wake up pipe as soon as 139 // we get it, we keep that state here to stay consistent. 140 bool has_work; 141 }; 142 143 MessagePumpForUI::MessagePumpForUI() 144 : state_(NULL), 145 context_(g_main_context_default()), 146 wakeup_gpollfd_(new GPollFD) { 147 // Create our wakeup pipe, which is used to flag when work was scheduled. 148 int fds[2]; 149 CHECK_EQ(pipe(fds), 0); 150 wakeup_pipe_read_ = fds[0]; 151 wakeup_pipe_write_ = fds[1]; 152 wakeup_gpollfd_->fd = wakeup_pipe_read_; 153 wakeup_gpollfd_->events = G_IO_IN; 154 155 work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource)); 156 static_cast<WorkSource*>(work_source_)->pump = this; 157 g_source_add_poll(work_source_, wakeup_gpollfd_.get()); 158 // Use a low priority so that we let other events in the queue go first. 159 g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE); 160 // This is needed to allow Run calls inside Dispatch. 161 g_source_set_can_recurse(work_source_, TRUE); 162 g_source_attach(work_source_, context_); 163 gdk_event_handler_set(&EventDispatcher, this, NULL); 164 } 165 166 MessagePumpForUI::~MessagePumpForUI() { 167 gdk_event_handler_set(reinterpret_cast<GdkEventFunc>(gtk_main_do_event), 168 this, NULL); 169 g_source_destroy(work_source_); 170 g_source_unref(work_source_); 171 close(wakeup_pipe_read_); 172 close(wakeup_pipe_write_); 173 } 174 175 void MessagePumpForUI::RunWithDispatcher(Delegate* delegate, 176 Dispatcher* dispatcher) { 177 #ifndef NDEBUG 178 // Make sure we only run this on one thread. GTK only has one message pump 179 // so we can only have one UI loop per process. 180 static base::PlatformThreadId thread_id = base::PlatformThread::CurrentId(); 181 DCHECK(thread_id == base::PlatformThread::CurrentId()) << 182 "Running MessagePumpForUI on two different threads; " 183 "this is unsupported by GLib!"; 184 #endif 185 186 RunState state; 187 state.delegate = delegate; 188 state.dispatcher = dispatcher; 189 state.should_quit = false; 190 state.run_depth = state_ ? state_->run_depth + 1 : 1; 191 state.has_work = false; 192 193 RunState* previous_state = state_; 194 state_ = &state; 195 196 // We really only do a single task for each iteration of the loop. If we 197 // have done something, assume there is likely something more to do. This 198 // will mean that we don't block on the message pump until there was nothing 199 // more to do. We also set this to true to make sure not to block on the 200 // first iteration of the loop, so RunAllPending() works correctly. 201 bool more_work_is_plausible = true; 202 203 // We run our own loop instead of using g_main_loop_quit in one of the 204 // callbacks. This is so we only quit our own loops, and we don't quit 205 // nested loops run by others. TODO(deanm): Is this what we want? 206 for (;;) { 207 // Don't block if we think we have more work to do. 208 bool block = !more_work_is_plausible; 209 210 more_work_is_plausible = RunOnce(context_, block); 211 if (state_->should_quit) 212 break; 213 214 more_work_is_plausible |= state_->delegate->DoWork(); 215 if (state_->should_quit) 216 break; 217 218 more_work_is_plausible |= 219 state_->delegate->DoDelayedWork(&delayed_work_time_); 220 if (state_->should_quit) 221 break; 222 223 if (more_work_is_plausible) 224 continue; 225 226 more_work_is_plausible = state_->delegate->DoIdleWork(); 227 if (state_->should_quit) 228 break; 229 } 230 231 state_ = previous_state; 232 } 233 234 bool MessagePumpForUI::RunOnce(GMainContext* context, bool block) { 235 // g_main_context_iteration returns true if events have been dispatched. 236 return g_main_context_iteration(context, block); 237 } 238 239 // Return the timeout we want passed to poll. 240 int MessagePumpForUI::HandlePrepare() { 241 // We know we have work, but we haven't called HandleDispatch yet. Don't let 242 // the pump block so that we can do some processing. 243 if (state_ && // state_ may be null during tests. 244 state_->has_work) 245 return 0; 246 247 // We don't think we have work to do, but make sure not to block 248 // longer than the next time we need to run delayed work. 249 return GetTimeIntervalMilliseconds(delayed_work_time_); 250 } 251 252 bool MessagePumpForUI::HandleCheck() { 253 if (!state_) // state_ may be null during tests. 254 return false; 255 256 // We should only ever have a single message on the wakeup pipe, since we 257 // are only signaled when the queue went from empty to non-empty. The glib 258 // poll will tell us whether there was data, so this read shouldn't block. 259 if (wakeup_gpollfd_->revents & G_IO_IN) { 260 char msg; 261 if (HANDLE_EINTR(read(wakeup_pipe_read_, &msg, 1)) != 1 || msg != '!') { 262 NOTREACHED() << "Error reading from the wakeup pipe."; 263 } 264 // Since we ate the message, we need to record that we have more work, 265 // because HandleCheck() may be called without HandleDispatch being called 266 // afterwards. 267 state_->has_work = true; 268 } 269 270 if (state_->has_work) 271 return true; 272 273 if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) { 274 // The timer has expired. That condition will stay true until we process 275 // that delayed work, so we don't need to record this differently. 276 return true; 277 } 278 279 return false; 280 } 281 282 void MessagePumpForUI::HandleDispatch() { 283 state_->has_work = false; 284 if (state_->delegate->DoWork()) { 285 // NOTE: on Windows at this point we would call ScheduleWork (see 286 // MessagePumpForUI::HandleWorkMessage in message_pump_win.cc). But here, 287 // instead of posting a message on the wakeup pipe, we can avoid the 288 // syscalls and just signal that we have more work. 289 state_->has_work = true; 290 } 291 292 if (state_->should_quit) 293 return; 294 295 state_->delegate->DoDelayedWork(&delayed_work_time_); 296 } 297 298 void MessagePumpForUI::AddObserver(Observer* observer) { 299 observers_.AddObserver(observer); 300 } 301 302 void MessagePumpForUI::RemoveObserver(Observer* observer) { 303 observers_.RemoveObserver(observer); 304 } 305 306 void MessagePumpForUI::DispatchEvents(GdkEvent* event) { 307 WillProcessEvent(event); 308 if (state_ && state_->dispatcher) { // state_ may be null during tests. 309 if (!state_->dispatcher->Dispatch(event)) 310 state_->should_quit = true; 311 } else { 312 gtk_main_do_event(event); 313 } 314 DidProcessEvent(event); 315 } 316 317 void MessagePumpForUI::Run(Delegate* delegate) { 318 RunWithDispatcher(delegate, NULL); 319 } 320 321 void MessagePumpForUI::Quit() { 322 if (state_) { 323 state_->should_quit = true; 324 } else { 325 NOTREACHED() << "Quit called outside Run!"; 326 } 327 } 328 329 void MessagePumpForUI::ScheduleWork() { 330 // This can be called on any thread, so we don't want to touch any state 331 // variables as we would then need locks all over. This ensures that if 332 // we are sleeping in a poll that we will wake up. 333 char msg = '!'; 334 if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) { 335 NOTREACHED() << "Could not write to the UI message loop wakeup pipe!"; 336 } 337 } 338 339 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 340 // We need to wake up the loop in case the poll timeout needs to be 341 // adjusted. This will cause us to try to do work, but that's ok. 342 delayed_work_time_ = delayed_work_time; 343 ScheduleWork(); 344 } 345 346 MessagePumpForUI::Dispatcher* MessagePumpForUI::GetDispatcher() { 347 return state_ ? state_->dispatcher : NULL; 348 } 349 350 void MessagePumpForUI::WillProcessEvent(GdkEvent* event) { 351 FOR_EACH_OBSERVER(Observer, observers_, WillProcessEvent(event)); 352 } 353 354 void MessagePumpForUI::DidProcessEvent(GdkEvent* event) { 355 FOR_EACH_OBSERVER(Observer, observers_, DidProcessEvent(event)); 356 } 357 358 // static 359 void MessagePumpForUI::EventDispatcher(GdkEvent* event, gpointer data) { 360 MessagePumpForUI* message_pump = reinterpret_cast<MessagePumpForUI*>(data); 361 message_pump->DispatchEvents(event); 362 } 363 364 } // namespace base 365