1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/message_pump_win.h" 6 7 #include <math.h> 8 9 #include "base/message_loop.h" 10 #include "base/metrics/histogram.h" 11 #include "base/win/wrapped_window_proc.h" 12 13 namespace base { 14 15 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow"; 16 17 // Message sent to get an additional time slice for pumping (processing) another 18 // task (a series of such messages creates a continuous task pump). 19 static const int kMsgHaveWork = WM_USER + 1; 20 21 //----------------------------------------------------------------------------- 22 // MessagePumpWin public: 23 24 void MessagePumpWin::AddObserver(Observer* observer) { 25 observers_.AddObserver(observer); 26 } 27 28 void MessagePumpWin::RemoveObserver(Observer* observer) { 29 observers_.RemoveObserver(observer); 30 } 31 32 void MessagePumpWin::WillProcessMessage(const MSG& msg) { 33 FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); 34 } 35 36 void MessagePumpWin::DidProcessMessage(const MSG& msg) { 37 FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); 38 } 39 40 void MessagePumpWin::RunWithDispatcher( 41 Delegate* delegate, Dispatcher* dispatcher) { 42 RunState s; 43 s.delegate = delegate; 44 s.dispatcher = dispatcher; 45 s.should_quit = false; 46 s.run_depth = state_ ? state_->run_depth + 1 : 1; 47 48 RunState* previous_state = state_; 49 state_ = &s; 50 51 DoRunLoop(); 52 53 state_ = previous_state; 54 } 55 56 void MessagePumpWin::Quit() { 57 DCHECK(state_); 58 state_->should_quit = true; 59 } 60 61 //----------------------------------------------------------------------------- 62 // MessagePumpWin protected: 63 64 int MessagePumpWin::GetCurrentDelay() const { 65 if (delayed_work_time_.is_null()) 66 return -1; 67 68 // Be careful here. TimeDelta has a precision of microseconds, but we want a 69 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or 70 // 6? It should be 6 to avoid executing delayed work too early. 71 double timeout = 72 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); 73 74 // If this value is negative, then we need to run delayed work soon. 75 int delay = static_cast<int>(timeout); 76 if (delay < 0) 77 delay = 0; 78 79 return delay; 80 } 81 82 //----------------------------------------------------------------------------- 83 // MessagePumpForUI public: 84 85 MessagePumpForUI::MessagePumpForUI() { 86 InitMessageWnd(); 87 } 88 89 MessagePumpForUI::~MessagePumpForUI() { 90 DestroyWindow(message_hwnd_); 91 UnregisterClass(kWndClass, GetModuleHandle(NULL)); 92 } 93 94 void MessagePumpForUI::ScheduleWork() { 95 if (InterlockedExchange(&have_work_, 1)) 96 return; // Someone else continued the pumping. 97 98 // Make sure the MessagePump does some work for us. 99 PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0); 100 } 101 102 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 103 // 104 // We would *like* to provide high resolution timers. Windows timers using 105 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup 106 // mechanism because the application can enter modal windows loops where it 107 // is not running our MessageLoop; the only way to have our timers fire in 108 // these cases is to post messages there. 109 // 110 // To provide sub-10ms timers, we process timers directly from our run loop. 111 // For the common case, timers will be processed there as the run loop does 112 // its normal work. However, we *also* set the system timer so that WM_TIMER 113 // events fire. This mops up the case of timers not being able to work in 114 // modal message loops. It is possible for the SetTimer to pop and have no 115 // pending timers, because they could have already been processed by the 116 // run loop itself. 117 // 118 // We use a single SetTimer corresponding to the timer that will expire 119 // soonest. As new timers are created and destroyed, we update SetTimer. 120 // Getting a spurrious SetTimer event firing is benign, as we'll just be 121 // processing an empty timer queue. 122 // 123 delayed_work_time_ = delayed_work_time; 124 125 int delay_msec = GetCurrentDelay(); 126 DCHECK_GE(delay_msec, 0); 127 if (delay_msec < USER_TIMER_MINIMUM) 128 delay_msec = USER_TIMER_MINIMUM; 129 130 // Create a WM_TIMER event that will wake us up to check for any pending 131 // timers (in case we are running within a nested, external sub-pump). 132 SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL); 133 } 134 135 void MessagePumpForUI::PumpOutPendingPaintMessages() { 136 // If we are being called outside of the context of Run, then don't try to do 137 // any work. 138 if (!state_) 139 return; 140 141 // Create a mini-message-pump to force immediate processing of only Windows 142 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking 143 // to get the job done. Actual common max is 4 peeks, but we'll be a little 144 // safe here. 145 const int kMaxPeekCount = 20; 146 int peek_count; 147 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { 148 MSG msg; 149 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) 150 break; 151 ProcessMessageHelper(msg); 152 if (state_->should_quit) // Handle WM_QUIT. 153 break; 154 } 155 // Histogram what was really being used, to help to adjust kMaxPeekCount. 156 DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count); 157 } 158 159 //----------------------------------------------------------------------------- 160 // MessagePumpForUI private: 161 162 // static 163 LRESULT CALLBACK MessagePumpForUI::WndProcThunk( 164 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { 165 switch (message) { 166 case kMsgHaveWork: 167 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage(); 168 break; 169 case WM_TIMER: 170 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage(); 171 break; 172 } 173 return DefWindowProc(hwnd, message, wparam, lparam); 174 } 175 176 void MessagePumpForUI::DoRunLoop() { 177 // IF this was just a simple PeekMessage() loop (servicing all possible work 178 // queues), then Windows would try to achieve the following order according 179 // to MSDN documentation about PeekMessage with no filter): 180 // * Sent messages 181 // * Posted messages 182 // * Sent messages (again) 183 // * WM_PAINT messages 184 // * WM_TIMER messages 185 // 186 // Summary: none of the above classes is starved, and sent messages has twice 187 // the chance of being processed (i.e., reduced service time). 188 189 for (;;) { 190 // If we do any work, we may create more messages etc., and more work may 191 // possibly be waiting in another task group. When we (for example) 192 // ProcessNextWindowsMessage(), there is a good chance there are still more 193 // messages waiting. On the other hand, when any of these methods return 194 // having done no work, then it is pretty unlikely that calling them again 195 // quickly will find any work to do. Finally, if they all say they had no 196 // work, then it is a good time to consider sleeping (waiting) for more 197 // work. 198 199 bool more_work_is_plausible = ProcessNextWindowsMessage(); 200 if (state_->should_quit) 201 break; 202 203 more_work_is_plausible |= state_->delegate->DoWork(); 204 if (state_->should_quit) 205 break; 206 207 more_work_is_plausible |= 208 state_->delegate->DoDelayedWork(&delayed_work_time_); 209 // If we did not process any delayed work, then we can assume that our 210 // existing WM_TIMER if any will fire when delayed work should run. We 211 // don't want to disturb that timer if it is already in flight. However, 212 // if we did do all remaining delayed work, then lets kill the WM_TIMER. 213 if (more_work_is_plausible && delayed_work_time_.is_null()) 214 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 215 if (state_->should_quit) 216 break; 217 218 if (more_work_is_plausible) 219 continue; 220 221 more_work_is_plausible = state_->delegate->DoIdleWork(); 222 if (state_->should_quit) 223 break; 224 225 if (more_work_is_plausible) 226 continue; 227 228 WaitForWork(); // Wait (sleep) until we have work to do again. 229 } 230 } 231 232 void MessagePumpForUI::InitMessageWnd() { 233 HINSTANCE hinst = GetModuleHandle(NULL); 234 235 WNDCLASSEX wc = {0}; 236 wc.cbSize = sizeof(wc); 237 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>; 238 wc.hInstance = hinst; 239 wc.lpszClassName = kWndClass; 240 RegisterClassEx(&wc); 241 242 message_hwnd_ = 243 CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0); 244 DCHECK(message_hwnd_); 245 } 246 247 void MessagePumpForUI::WaitForWork() { 248 // Wait until a message is available, up to the time needed by the timer 249 // manager to fire the next set of timers. 250 int delay = GetCurrentDelay(); 251 if (delay < 0) // Negative value means no timers waiting. 252 delay = INFINITE; 253 254 DWORD result; 255 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, 256 MWMO_INPUTAVAILABLE); 257 258 if (WAIT_OBJECT_0 == result) { 259 // A WM_* message is available. 260 // If a parent child relationship exists between windows across threads 261 // then their thread inputs are implicitly attached. 262 // This causes the MsgWaitForMultipleObjectsEx API to return indicating 263 // that messages are ready for processing (specifically mouse messages 264 // intended for the child window. Occurs if the child window has capture) 265 // The subsequent PeekMessages call fails to return any messages thus 266 // causing us to enter a tight loop at times. 267 // The WaitMessage call below is a workaround to give the child window 268 // sometime to process its input messages. 269 MSG msg = {0}; 270 DWORD queue_status = GetQueueStatus(QS_MOUSE); 271 if (HIWORD(queue_status) & QS_MOUSE && 272 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { 273 WaitMessage(); 274 } 275 return; 276 } 277 278 DCHECK_NE(WAIT_FAILED, result) << GetLastError(); 279 } 280 281 void MessagePumpForUI::HandleWorkMessage() { 282 // If we are being called outside of the context of Run, then don't try to do 283 // any work. This could correspond to a MessageBox call or something of that 284 // sort. 285 if (!state_) { 286 // Since we handled a kMsgHaveWork message, we must still update this flag. 287 InterlockedExchange(&have_work_, 0); 288 return; 289 } 290 291 // Let whatever would have run had we not been putting messages in the queue 292 // run now. This is an attempt to make our dummy message not starve other 293 // messages that may be in the Windows message queue. 294 ProcessPumpReplacementMessage(); 295 296 // Now give the delegate a chance to do some work. He'll let us know if he 297 // needs to do more work. 298 if (state_->delegate->DoWork()) 299 ScheduleWork(); 300 } 301 302 void MessagePumpForUI::HandleTimerMessage() { 303 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this)); 304 305 // If we are being called outside of the context of Run, then don't do 306 // anything. This could correspond to a MessageBox call or something of 307 // that sort. 308 if (!state_) 309 return; 310 311 state_->delegate->DoDelayedWork(&delayed_work_time_); 312 if (!delayed_work_time_.is_null()) { 313 // A bit gratuitous to set delayed_work_time_ again, but oh well. 314 ScheduleDelayedWork(delayed_work_time_); 315 } 316 } 317 318 bool MessagePumpForUI::ProcessNextWindowsMessage() { 319 // If there are sent messages in the queue then PeekMessage internally 320 // dispatches the message and returns false. We return true in this 321 // case to ensure that the message loop peeks again instead of calling 322 // MsgWaitForMultipleObjectsEx again. 323 bool sent_messages_in_queue = false; 324 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); 325 if (HIWORD(queue_status) & QS_SENDMESSAGE) 326 sent_messages_in_queue = true; 327 328 MSG msg; 329 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) 330 return ProcessMessageHelper(msg); 331 332 return sent_messages_in_queue; 333 } 334 335 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { 336 if (WM_QUIT == msg.message) { 337 // Repost the QUIT message so that it will be retrieved by the primary 338 // GetMessage() loop. 339 state_->should_quit = true; 340 PostQuitMessage(static_cast<int>(msg.wParam)); 341 return false; 342 } 343 344 // While running our main message pump, we discard kMsgHaveWork messages. 345 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) 346 return ProcessPumpReplacementMessage(); 347 348 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode)) 349 return true; 350 351 WillProcessMessage(msg); 352 353 if (state_->dispatcher) { 354 if (!state_->dispatcher->Dispatch(msg)) 355 state_->should_quit = true; 356 } else { 357 TranslateMessage(&msg); 358 DispatchMessage(&msg); 359 } 360 361 DidProcessMessage(msg); 362 return true; 363 } 364 365 bool MessagePumpForUI::ProcessPumpReplacementMessage() { 366 // When we encounter a kMsgHaveWork message, this method is called to peek 367 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The 368 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though 369 // a continuous stream of such messages are posted. This method carefully 370 // peeks a message while there is no chance for a kMsgHaveWork to be pending, 371 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to 372 // possibly be posted), and finally dispatches that peeked replacement. Note 373 // that the re-post of kMsgHaveWork may be asynchronous to this thread!! 374 375 bool have_message = false; 376 MSG msg; 377 // We should not process all window messages if we are in the context of an 378 // OS modal loop, i.e. in the context of a windows API call like MessageBox. 379 // This is to ensure that these messages are peeked out by the OS modal loop. 380 if (MessageLoop::current()->os_modal_loop()) { 381 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. 382 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || 383 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); 384 } else { 385 have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); 386 } 387 388 DCHECK(!have_message || kMsgHaveWork != msg.message || 389 msg.hwnd != message_hwnd_); 390 391 // Since we discarded a kMsgHaveWork message, we must update the flag. 392 int old_have_work = InterlockedExchange(&have_work_, 0); 393 DCHECK(old_have_work); 394 395 // We don't need a special time slice if we didn't have_message to process. 396 if (!have_message) 397 return false; 398 399 // Guarantee we'll get another time slice in the case where we go into native 400 // windows code. This ScheduleWork() may hurt performance a tiny bit when 401 // tasks appear very infrequently, but when the event queue is busy, the 402 // kMsgHaveWork events get (percentage wise) rarer and rarer. 403 ScheduleWork(); 404 return ProcessMessageHelper(msg); 405 } 406 407 //----------------------------------------------------------------------------- 408 // MessagePumpForIO public: 409 410 MessagePumpForIO::MessagePumpForIO() { 411 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); 412 DCHECK(port_.IsValid()); 413 } 414 415 void MessagePumpForIO::ScheduleWork() { 416 if (InterlockedExchange(&have_work_, 1)) 417 return; // Someone else continued the pumping. 418 419 // Make sure the MessagePump does some work for us. 420 BOOL ret = PostQueuedCompletionStatus(port_, 0, 421 reinterpret_cast<ULONG_PTR>(this), 422 reinterpret_cast<OVERLAPPED*>(this)); 423 DCHECK(ret); 424 } 425 426 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 427 // We know that we can't be blocked right now since this method can only be 428 // called on the same thread as Run, so we only need to update our record of 429 // how long to sleep when we do sleep. 430 delayed_work_time_ = delayed_work_time; 431 } 432 433 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, 434 IOHandler* handler) { 435 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler); 436 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1); 437 DPCHECK(port); 438 } 439 440 //----------------------------------------------------------------------------- 441 // MessagePumpForIO private: 442 443 void MessagePumpForIO::DoRunLoop() { 444 for (;;) { 445 // If we do any work, we may create more messages etc., and more work may 446 // possibly be waiting in another task group. When we (for example) 447 // WaitForIOCompletion(), there is a good chance there are still more 448 // messages waiting. On the other hand, when any of these methods return 449 // having done no work, then it is pretty unlikely that calling them 450 // again quickly will find any work to do. Finally, if they all say they 451 // had no work, then it is a good time to consider sleeping (waiting) for 452 // more work. 453 454 bool more_work_is_plausible = state_->delegate->DoWork(); 455 if (state_->should_quit) 456 break; 457 458 more_work_is_plausible |= WaitForIOCompletion(0, NULL); 459 if (state_->should_quit) 460 break; 461 462 more_work_is_plausible |= 463 state_->delegate->DoDelayedWork(&delayed_work_time_); 464 if (state_->should_quit) 465 break; 466 467 if (more_work_is_plausible) 468 continue; 469 470 more_work_is_plausible = state_->delegate->DoIdleWork(); 471 if (state_->should_quit) 472 break; 473 474 if (more_work_is_plausible) 475 continue; 476 477 WaitForWork(); // Wait (sleep) until we have work to do again. 478 } 479 } 480 481 // Wait until IO completes, up to the time needed by the timer manager to fire 482 // the next set of timers. 483 void MessagePumpForIO::WaitForWork() { 484 // We do not support nested IO message loops. This is to avoid messy 485 // recursion problems. 486 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; 487 488 int timeout = GetCurrentDelay(); 489 if (timeout < 0) // Negative value means no timers waiting. 490 timeout = INFINITE; 491 492 WaitForIOCompletion(timeout, NULL); 493 } 494 495 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { 496 IOItem item; 497 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { 498 // We have to ask the system for another IO completion. 499 if (!GetIOItem(timeout, &item)) 500 return false; 501 502 if (ProcessInternalIOItem(item)) 503 return true; 504 } 505 506 if (item.context->handler) { 507 if (filter && item.handler != filter) { 508 // Save this item for later 509 completed_io_.push_back(item); 510 } else { 511 DCHECK_EQ(item.context->handler, item.handler); 512 WillProcessIOEvent(); 513 item.handler->OnIOCompleted(item.context, item.bytes_transfered, 514 item.error); 515 DidProcessIOEvent(); 516 } 517 } else { 518 // The handler must be gone by now, just cleanup the mess. 519 delete item.context; 520 } 521 return true; 522 } 523 524 // Asks the OS for another IO completion result. 525 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { 526 memset(item, 0, sizeof(*item)); 527 ULONG_PTR key = NULL; 528 OVERLAPPED* overlapped = NULL; 529 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, 530 &overlapped, timeout)) { 531 if (!overlapped) 532 return false; // Nothing in the queue. 533 item->error = GetLastError(); 534 item->bytes_transfered = 0; 535 } 536 537 item->handler = reinterpret_cast<IOHandler*>(key); 538 item->context = reinterpret_cast<IOContext*>(overlapped); 539 return true; 540 } 541 542 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { 543 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) && 544 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) { 545 // This is our internal completion. 546 DCHECK(!item.bytes_transfered); 547 InterlockedExchange(&have_work_, 0); 548 return true; 549 } 550 return false; 551 } 552 553 // Returns a completion item that was previously received. 554 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { 555 DCHECK(!completed_io_.empty()); 556 for (std::list<IOItem>::iterator it = completed_io_.begin(); 557 it != completed_io_.end(); ++it) { 558 if (!filter || it->handler == filter) { 559 *item = *it; 560 completed_io_.erase(it); 561 return true; 562 } 563 } 564 return false; 565 } 566 567 void MessagePumpForIO::AddIOObserver(IOObserver *obs) { 568 io_observers_.AddObserver(obs); 569 } 570 571 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { 572 io_observers_.RemoveObserver(obs); 573 } 574 575 void MessagePumpForIO::WillProcessIOEvent() { 576 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); 577 } 578 579 void MessagePumpForIO::DidProcessIOEvent() { 580 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); 581 } 582 583 } // namespace base 584