Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/message_pump_win.h"
      6 
      7 #include <math.h>
      8 
      9 #include "base/message_loop.h"
     10 #include "base/metrics/histogram.h"
     11 #include "base/win/wrapped_window_proc.h"
     12 
     13 namespace base {
     14 
     15 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
     16 
     17 // Message sent to get an additional time slice for pumping (processing) another
     18 // task (a series of such messages creates a continuous task pump).
     19 static const int kMsgHaveWork = WM_USER + 1;
     20 
     21 //-----------------------------------------------------------------------------
     22 // MessagePumpWin public:
     23 
     24 void MessagePumpWin::AddObserver(Observer* observer) {
     25   observers_.AddObserver(observer);
     26 }
     27 
     28 void MessagePumpWin::RemoveObserver(Observer* observer) {
     29   observers_.RemoveObserver(observer);
     30 }
     31 
     32 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
     33   FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
     34 }
     35 
     36 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
     37   FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
     38 }
     39 
     40 void MessagePumpWin::RunWithDispatcher(
     41     Delegate* delegate, Dispatcher* dispatcher) {
     42   RunState s;
     43   s.delegate = delegate;
     44   s.dispatcher = dispatcher;
     45   s.should_quit = false;
     46   s.run_depth = state_ ? state_->run_depth + 1 : 1;
     47 
     48   RunState* previous_state = state_;
     49   state_ = &s;
     50 
     51   DoRunLoop();
     52 
     53   state_ = previous_state;
     54 }
     55 
     56 void MessagePumpWin::Quit() {
     57   DCHECK(state_);
     58   state_->should_quit = true;
     59 }
     60 
     61 //-----------------------------------------------------------------------------
     62 // MessagePumpWin protected:
     63 
     64 int MessagePumpWin::GetCurrentDelay() const {
     65   if (delayed_work_time_.is_null())
     66     return -1;
     67 
     68   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
     69   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
     70   // 6?  It should be 6 to avoid executing delayed work too early.
     71   double timeout =
     72       ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
     73 
     74   // If this value is negative, then we need to run delayed work soon.
     75   int delay = static_cast<int>(timeout);
     76   if (delay < 0)
     77     delay = 0;
     78 
     79   return delay;
     80 }
     81 
     82 //-----------------------------------------------------------------------------
     83 // MessagePumpForUI public:
     84 
     85 MessagePumpForUI::MessagePumpForUI() {
     86   InitMessageWnd();
     87 }
     88 
     89 MessagePumpForUI::~MessagePumpForUI() {
     90   DestroyWindow(message_hwnd_);
     91   UnregisterClass(kWndClass, GetModuleHandle(NULL));
     92 }
     93 
     94 void MessagePumpForUI::ScheduleWork() {
     95   if (InterlockedExchange(&have_work_, 1))
     96     return;  // Someone else continued the pumping.
     97 
     98   // Make sure the MessagePump does some work for us.
     99   PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
    100 }
    101 
    102 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    103   //
    104   // We would *like* to provide high resolution timers.  Windows timers using
    105   // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
    106   // mechanism because the application can enter modal windows loops where it
    107   // is not running our MessageLoop; the only way to have our timers fire in
    108   // these cases is to post messages there.
    109   //
    110   // To provide sub-10ms timers, we process timers directly from our run loop.
    111   // For the common case, timers will be processed there as the run loop does
    112   // its normal work.  However, we *also* set the system timer so that WM_TIMER
    113   // events fire.  This mops up the case of timers not being able to work in
    114   // modal message loops.  It is possible for the SetTimer to pop and have no
    115   // pending timers, because they could have already been processed by the
    116   // run loop itself.
    117   //
    118   // We use a single SetTimer corresponding to the timer that will expire
    119   // soonest.  As new timers are created and destroyed, we update SetTimer.
    120   // Getting a spurrious SetTimer event firing is benign, as we'll just be
    121   // processing an empty timer queue.
    122   //
    123   delayed_work_time_ = delayed_work_time;
    124 
    125   int delay_msec = GetCurrentDelay();
    126   DCHECK_GE(delay_msec, 0);
    127   if (delay_msec < USER_TIMER_MINIMUM)
    128     delay_msec = USER_TIMER_MINIMUM;
    129 
    130   // Create a WM_TIMER event that will wake us up to check for any pending
    131   // timers (in case we are running within a nested, external sub-pump).
    132   SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
    133 }
    134 
    135 void MessagePumpForUI::PumpOutPendingPaintMessages() {
    136   // If we are being called outside of the context of Run, then don't try to do
    137   // any work.
    138   if (!state_)
    139     return;
    140 
    141   // Create a mini-message-pump to force immediate processing of only Windows
    142   // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
    143   // to get the job done.  Actual common max is 4 peeks, but we'll be a little
    144   // safe here.
    145   const int kMaxPeekCount = 20;
    146   int peek_count;
    147   for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
    148     MSG msg;
    149     if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
    150       break;
    151     ProcessMessageHelper(msg);
    152     if (state_->should_quit)  // Handle WM_QUIT.
    153       break;
    154   }
    155   // Histogram what was really being used, to help to adjust kMaxPeekCount.
    156   DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
    157 }
    158 
    159 //-----------------------------------------------------------------------------
    160 // MessagePumpForUI private:
    161 
    162 // static
    163 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
    164     HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
    165   switch (message) {
    166     case kMsgHaveWork:
    167       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
    168       break;
    169     case WM_TIMER:
    170       reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
    171       break;
    172   }
    173   return DefWindowProc(hwnd, message, wparam, lparam);
    174 }
    175 
    176 void MessagePumpForUI::DoRunLoop() {
    177   // IF this was just a simple PeekMessage() loop (servicing all possible work
    178   // queues), then Windows would try to achieve the following order according
    179   // to MSDN documentation about PeekMessage with no filter):
    180   //    * Sent messages
    181   //    * Posted messages
    182   //    * Sent messages (again)
    183   //    * WM_PAINT messages
    184   //    * WM_TIMER messages
    185   //
    186   // Summary: none of the above classes is starved, and sent messages has twice
    187   // the chance of being processed (i.e., reduced service time).
    188 
    189   for (;;) {
    190     // If we do any work, we may create more messages etc., and more work may
    191     // possibly be waiting in another task group.  When we (for example)
    192     // ProcessNextWindowsMessage(), there is a good chance there are still more
    193     // messages waiting.  On the other hand, when any of these methods return
    194     // having done no work, then it is pretty unlikely that calling them again
    195     // quickly will find any work to do.  Finally, if they all say they had no
    196     // work, then it is a good time to consider sleeping (waiting) for more
    197     // work.
    198 
    199     bool more_work_is_plausible = ProcessNextWindowsMessage();
    200     if (state_->should_quit)
    201       break;
    202 
    203     more_work_is_plausible |= state_->delegate->DoWork();
    204     if (state_->should_quit)
    205       break;
    206 
    207     more_work_is_plausible |=
    208         state_->delegate->DoDelayedWork(&delayed_work_time_);
    209     // If we did not process any delayed work, then we can assume that our
    210     // existing WM_TIMER if any will fire when delayed work should run.  We
    211     // don't want to disturb that timer if it is already in flight.  However,
    212     // if we did do all remaining delayed work, then lets kill the WM_TIMER.
    213     if (more_work_is_plausible && delayed_work_time_.is_null())
    214       KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    215     if (state_->should_quit)
    216       break;
    217 
    218     if (more_work_is_plausible)
    219       continue;
    220 
    221     more_work_is_plausible = state_->delegate->DoIdleWork();
    222     if (state_->should_quit)
    223       break;
    224 
    225     if (more_work_is_plausible)
    226       continue;
    227 
    228     WaitForWork();  // Wait (sleep) until we have work to do again.
    229   }
    230 }
    231 
    232 void MessagePumpForUI::InitMessageWnd() {
    233   HINSTANCE hinst = GetModuleHandle(NULL);
    234 
    235   WNDCLASSEX wc = {0};
    236   wc.cbSize = sizeof(wc);
    237   wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
    238   wc.hInstance = hinst;
    239   wc.lpszClassName = kWndClass;
    240   RegisterClassEx(&wc);
    241 
    242   message_hwnd_ =
    243       CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
    244   DCHECK(message_hwnd_);
    245 }
    246 
    247 void MessagePumpForUI::WaitForWork() {
    248   // Wait until a message is available, up to the time needed by the timer
    249   // manager to fire the next set of timers.
    250   int delay = GetCurrentDelay();
    251   if (delay < 0)  // Negative value means no timers waiting.
    252     delay = INFINITE;
    253 
    254   DWORD result;
    255   result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
    256                                        MWMO_INPUTAVAILABLE);
    257 
    258   if (WAIT_OBJECT_0 == result) {
    259     // A WM_* message is available.
    260     // If a parent child relationship exists between windows across threads
    261     // then their thread inputs are implicitly attached.
    262     // This causes the MsgWaitForMultipleObjectsEx API to return indicating
    263     // that messages are ready for processing (specifically mouse messages
    264     // intended for the child window. Occurs if the child window has capture)
    265     // The subsequent PeekMessages call fails to return any messages thus
    266     // causing us to enter a tight loop at times.
    267     // The WaitMessage call below is a workaround to give the child window
    268     // sometime to process its input messages.
    269     MSG msg = {0};
    270     DWORD queue_status = GetQueueStatus(QS_MOUSE);
    271     if (HIWORD(queue_status) & QS_MOUSE &&
    272        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
    273       WaitMessage();
    274     }
    275     return;
    276   }
    277 
    278   DCHECK_NE(WAIT_FAILED, result) << GetLastError();
    279 }
    280 
    281 void MessagePumpForUI::HandleWorkMessage() {
    282   // If we are being called outside of the context of Run, then don't try to do
    283   // any work.  This could correspond to a MessageBox call or something of that
    284   // sort.
    285   if (!state_) {
    286     // Since we handled a kMsgHaveWork message, we must still update this flag.
    287     InterlockedExchange(&have_work_, 0);
    288     return;
    289   }
    290 
    291   // Let whatever would have run had we not been putting messages in the queue
    292   // run now.  This is an attempt to make our dummy message not starve other
    293   // messages that may be in the Windows message queue.
    294   ProcessPumpReplacementMessage();
    295 
    296   // Now give the delegate a chance to do some work.  He'll let us know if he
    297   // needs to do more work.
    298   if (state_->delegate->DoWork())
    299     ScheduleWork();
    300 }
    301 
    302 void MessagePumpForUI::HandleTimerMessage() {
    303   KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
    304 
    305   // If we are being called outside of the context of Run, then don't do
    306   // anything.  This could correspond to a MessageBox call or something of
    307   // that sort.
    308   if (!state_)
    309     return;
    310 
    311   state_->delegate->DoDelayedWork(&delayed_work_time_);
    312   if (!delayed_work_time_.is_null()) {
    313     // A bit gratuitous to set delayed_work_time_ again, but oh well.
    314     ScheduleDelayedWork(delayed_work_time_);
    315   }
    316 }
    317 
    318 bool MessagePumpForUI::ProcessNextWindowsMessage() {
    319   // If there are sent messages in the queue then PeekMessage internally
    320   // dispatches the message and returns false. We return true in this
    321   // case to ensure that the message loop peeks again instead of calling
    322   // MsgWaitForMultipleObjectsEx again.
    323   bool sent_messages_in_queue = false;
    324   DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
    325   if (HIWORD(queue_status) & QS_SENDMESSAGE)
    326     sent_messages_in_queue = true;
    327 
    328   MSG msg;
    329   if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
    330     return ProcessMessageHelper(msg);
    331 
    332   return sent_messages_in_queue;
    333 }
    334 
    335 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
    336   if (WM_QUIT == msg.message) {
    337     // Repost the QUIT message so that it will be retrieved by the primary
    338     // GetMessage() loop.
    339     state_->should_quit = true;
    340     PostQuitMessage(static_cast<int>(msg.wParam));
    341     return false;
    342   }
    343 
    344   // While running our main message pump, we discard kMsgHaveWork messages.
    345   if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
    346     return ProcessPumpReplacementMessage();
    347 
    348   if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
    349     return true;
    350 
    351   WillProcessMessage(msg);
    352 
    353   if (state_->dispatcher) {
    354     if (!state_->dispatcher->Dispatch(msg))
    355       state_->should_quit = true;
    356   } else {
    357     TranslateMessage(&msg);
    358     DispatchMessage(&msg);
    359   }
    360 
    361   DidProcessMessage(msg);
    362   return true;
    363 }
    364 
    365 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
    366   // When we encounter a kMsgHaveWork message, this method is called to peek
    367   // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
    368   // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
    369   // a continuous stream of such messages are posted.  This method carefully
    370   // peeks a message while there is no chance for a kMsgHaveWork to be pending,
    371   // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
    372   // possibly be posted), and finally dispatches that peeked replacement.  Note
    373   // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
    374 
    375   bool have_message = false;
    376   MSG msg;
    377   // We should not process all window messages if we are in the context of an
    378   // OS modal loop, i.e. in the context of a windows API call like MessageBox.
    379   // This is to ensure that these messages are peeked out by the OS modal loop.
    380   if (MessageLoop::current()->os_modal_loop()) {
    381     // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
    382     have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
    383                    PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
    384   } else {
    385     have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
    386   }
    387 
    388   DCHECK(!have_message || kMsgHaveWork != msg.message ||
    389          msg.hwnd != message_hwnd_);
    390 
    391   // Since we discarded a kMsgHaveWork message, we must update the flag.
    392   int old_have_work = InterlockedExchange(&have_work_, 0);
    393   DCHECK(old_have_work);
    394 
    395   // We don't need a special time slice if we didn't have_message to process.
    396   if (!have_message)
    397     return false;
    398 
    399   // Guarantee we'll get another time slice in the case where we go into native
    400   // windows code.   This ScheduleWork() may hurt performance a tiny bit when
    401   // tasks appear very infrequently, but when the event queue is busy, the
    402   // kMsgHaveWork events get (percentage wise) rarer and rarer.
    403   ScheduleWork();
    404   return ProcessMessageHelper(msg);
    405 }
    406 
    407 //-----------------------------------------------------------------------------
    408 // MessagePumpForIO public:
    409 
    410 MessagePumpForIO::MessagePumpForIO() {
    411   port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
    412   DCHECK(port_.IsValid());
    413 }
    414 
    415 void MessagePumpForIO::ScheduleWork() {
    416   if (InterlockedExchange(&have_work_, 1))
    417     return;  // Someone else continued the pumping.
    418 
    419   // Make sure the MessagePump does some work for us.
    420   BOOL ret = PostQueuedCompletionStatus(port_, 0,
    421                                         reinterpret_cast<ULONG_PTR>(this),
    422                                         reinterpret_cast<OVERLAPPED*>(this));
    423   DCHECK(ret);
    424 }
    425 
    426 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    427   // We know that we can't be blocked right now since this method can only be
    428   // called on the same thread as Run, so we only need to update our record of
    429   // how long to sleep when we do sleep.
    430   delayed_work_time_ = delayed_work_time;
    431 }
    432 
    433 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
    434                                          IOHandler* handler) {
    435   ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
    436   HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
    437   DPCHECK(port);
    438 }
    439 
    440 //-----------------------------------------------------------------------------
    441 // MessagePumpForIO private:
    442 
    443 void MessagePumpForIO::DoRunLoop() {
    444   for (;;) {
    445     // If we do any work, we may create more messages etc., and more work may
    446     // possibly be waiting in another task group.  When we (for example)
    447     // WaitForIOCompletion(), there is a good chance there are still more
    448     // messages waiting.  On the other hand, when any of these methods return
    449     // having done no work, then it is pretty unlikely that calling them
    450     // again quickly will find any work to do.  Finally, if they all say they
    451     // had no work, then it is a good time to consider sleeping (waiting) for
    452     // more work.
    453 
    454     bool more_work_is_plausible = state_->delegate->DoWork();
    455     if (state_->should_quit)
    456       break;
    457 
    458     more_work_is_plausible |= WaitForIOCompletion(0, NULL);
    459     if (state_->should_quit)
    460       break;
    461 
    462     more_work_is_plausible |=
    463         state_->delegate->DoDelayedWork(&delayed_work_time_);
    464     if (state_->should_quit)
    465       break;
    466 
    467     if (more_work_is_plausible)
    468       continue;
    469 
    470     more_work_is_plausible = state_->delegate->DoIdleWork();
    471     if (state_->should_quit)
    472       break;
    473 
    474     if (more_work_is_plausible)
    475       continue;
    476 
    477     WaitForWork();  // Wait (sleep) until we have work to do again.
    478   }
    479 }
    480 
    481 // Wait until IO completes, up to the time needed by the timer manager to fire
    482 // the next set of timers.
    483 void MessagePumpForIO::WaitForWork() {
    484   // We do not support nested IO message loops. This is to avoid messy
    485   // recursion problems.
    486   DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
    487 
    488   int timeout = GetCurrentDelay();
    489   if (timeout < 0)  // Negative value means no timers waiting.
    490     timeout = INFINITE;
    491 
    492   WaitForIOCompletion(timeout, NULL);
    493 }
    494 
    495 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
    496   IOItem item;
    497   if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
    498     // We have to ask the system for another IO completion.
    499     if (!GetIOItem(timeout, &item))
    500       return false;
    501 
    502     if (ProcessInternalIOItem(item))
    503       return true;
    504   }
    505 
    506   if (item.context->handler) {
    507     if (filter && item.handler != filter) {
    508       // Save this item for later
    509       completed_io_.push_back(item);
    510     } else {
    511       DCHECK_EQ(item.context->handler, item.handler);
    512       WillProcessIOEvent();
    513       item.handler->OnIOCompleted(item.context, item.bytes_transfered,
    514                                   item.error);
    515       DidProcessIOEvent();
    516     }
    517   } else {
    518     // The handler must be gone by now, just cleanup the mess.
    519     delete item.context;
    520   }
    521   return true;
    522 }
    523 
    524 // Asks the OS for another IO completion result.
    525 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
    526   memset(item, 0, sizeof(*item));
    527   ULONG_PTR key = NULL;
    528   OVERLAPPED* overlapped = NULL;
    529   if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
    530                                  &overlapped, timeout)) {
    531     if (!overlapped)
    532       return false;  // Nothing in the queue.
    533     item->error = GetLastError();
    534     item->bytes_transfered = 0;
    535   }
    536 
    537   item->handler = reinterpret_cast<IOHandler*>(key);
    538   item->context = reinterpret_cast<IOContext*>(overlapped);
    539   return true;
    540 }
    541 
    542 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
    543   if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
    544       this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
    545     // This is our internal completion.
    546     DCHECK(!item.bytes_transfered);
    547     InterlockedExchange(&have_work_, 0);
    548     return true;
    549   }
    550   return false;
    551 }
    552 
    553 // Returns a completion item that was previously received.
    554 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
    555   DCHECK(!completed_io_.empty());
    556   for (std::list<IOItem>::iterator it = completed_io_.begin();
    557        it != completed_io_.end(); ++it) {
    558     if (!filter || it->handler == filter) {
    559       *item = *it;
    560       completed_io_.erase(it);
    561       return true;
    562     }
    563   }
    564   return false;
    565 }
    566 
    567 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
    568   io_observers_.AddObserver(obs);
    569 }
    570 
    571 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
    572   io_observers_.RemoveObserver(obs);
    573 }
    574 
    575 void MessagePumpForIO::WillProcessIOEvent() {
    576   FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
    577 }
    578 
    579 void MessagePumpForIO::DidProcessIOEvent() {
    580   FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
    581 }
    582 
    583 }  // namespace base
    584