1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/synchronization/waitable_event.h" 6 7 #include "base/synchronization/condition_variable.h" 8 #include "base/synchronization/lock.h" 9 #include "base/message_loop.h" 10 11 // ----------------------------------------------------------------------------- 12 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't 13 // support cross-process events (where one process can signal an event which 14 // others are waiting on). Because of this, we can avoid having one thread per 15 // listener in several cases. 16 // 17 // The WaitableEvent maintains a list of waiters, protected by a lock. Each 18 // waiter is either an async wait, in which case we have a Task and the 19 // MessageLoop to run it on, or a blocking wait, in which case we have the 20 // condition variable to signal. 21 // 22 // Waiting involves grabbing the lock and adding oneself to the wait list. Async 23 // waits can be canceled, which means grabbing the lock and removing oneself 24 // from the list. 25 // 26 // Waiting on multiple events is handled by adding a single, synchronous wait to 27 // the wait-list of many events. An event passes a pointer to itself when 28 // firing a waiter and so we can store that pointer to find out which event 29 // triggered. 30 // ----------------------------------------------------------------------------- 31 32 namespace base { 33 34 // ----------------------------------------------------------------------------- 35 // This is just an abstract base class for waking the two types of waiters 36 // ----------------------------------------------------------------------------- 37 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled) 38 : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) { 39 } 40 41 WaitableEvent::~WaitableEvent() { 42 } 43 44 void WaitableEvent::Reset() { 45 base::AutoLock locked(kernel_->lock_); 46 kernel_->signaled_ = false; 47 } 48 49 void WaitableEvent::Signal() { 50 base::AutoLock locked(kernel_->lock_); 51 52 if (kernel_->signaled_) 53 return; 54 55 if (kernel_->manual_reset_) { 56 SignalAll(); 57 kernel_->signaled_ = true; 58 } else { 59 // In the case of auto reset, if no waiters were woken, we remain 60 // signaled. 61 if (!SignalOne()) 62 kernel_->signaled_ = true; 63 } 64 } 65 66 bool WaitableEvent::IsSignaled() { 67 base::AutoLock locked(kernel_->lock_); 68 69 const bool result = kernel_->signaled_; 70 if (result && !kernel_->manual_reset_) 71 kernel_->signaled_ = false; 72 return result; 73 } 74 75 // ----------------------------------------------------------------------------- 76 // Synchronous waits 77 78 // ----------------------------------------------------------------------------- 79 // This is a synchronous waiter. The thread is waiting on the given condition 80 // variable and the fired flag in this object. 81 // ----------------------------------------------------------------------------- 82 class SyncWaiter : public WaitableEvent::Waiter { 83 public: 84 SyncWaiter() 85 : fired_(false), 86 signaling_event_(NULL), 87 lock_(), 88 cv_(&lock_) { 89 } 90 91 bool Fire(WaitableEvent* signaling_event) { 92 base::AutoLock locked(lock_); 93 94 if (fired_) 95 return false; 96 97 fired_ = true; 98 signaling_event_ = signaling_event; 99 100 cv_.Broadcast(); 101 102 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on 103 // the blocking thread's stack. There is no |delete this;| in Fire. The 104 // SyncWaiter object is destroyed when it goes out of scope. 105 106 return true; 107 } 108 109 WaitableEvent* signaling_event() const { 110 return signaling_event_; 111 } 112 113 // --------------------------------------------------------------------------- 114 // These waiters are always stack allocated and don't delete themselves. Thus 115 // there's no problem and the ABA tag is the same as the object pointer. 116 // --------------------------------------------------------------------------- 117 bool Compare(void* tag) { 118 return this == tag; 119 } 120 121 // --------------------------------------------------------------------------- 122 // Called with lock held. 123 // --------------------------------------------------------------------------- 124 bool fired() const { 125 return fired_; 126 } 127 128 // --------------------------------------------------------------------------- 129 // During a TimedWait, we need a way to make sure that an auto-reset 130 // WaitableEvent doesn't think that this event has been signaled between 131 // unlocking it and removing it from the wait-list. Called with lock held. 132 // --------------------------------------------------------------------------- 133 void Disable() { 134 fired_ = true; 135 } 136 137 base::Lock* lock() { 138 return &lock_; 139 } 140 141 base::ConditionVariable* cv() { 142 return &cv_; 143 } 144 145 private: 146 bool fired_; 147 WaitableEvent* signaling_event_; // The WaitableEvent which woke us 148 base::Lock lock_; 149 base::ConditionVariable cv_; 150 }; 151 152 bool WaitableEvent::Wait() { 153 return TimedWait(TimeDelta::FromSeconds(-1)); 154 } 155 156 bool WaitableEvent::TimedWait(const TimeDelta& max_time) { 157 const Time end_time(Time::Now() + max_time); 158 const bool finite_time = max_time.ToInternalValue() >= 0; 159 160 kernel_->lock_.Acquire(); 161 if (kernel_->signaled_) { 162 if (!kernel_->manual_reset_) { 163 // In this case we were signaled when we had no waiters. Now that 164 // someone has waited upon us, we can automatically reset. 165 kernel_->signaled_ = false; 166 } 167 168 kernel_->lock_.Release(); 169 return true; 170 } 171 172 SyncWaiter sw; 173 sw.lock()->Acquire(); 174 175 Enqueue(&sw); 176 kernel_->lock_.Release(); 177 // We are violating locking order here by holding the SyncWaiter lock but not 178 // the WaitableEvent lock. However, this is safe because we don't lock @lock_ 179 // again before unlocking it. 180 181 for (;;) { 182 const Time current_time(Time::Now()); 183 184 if (sw.fired() || (finite_time && current_time >= end_time)) { 185 const bool return_value = sw.fired(); 186 187 // We can't acquire @lock_ before releasing the SyncWaiter lock (because 188 // of locking order), however, in between the two a signal could be fired 189 // and @sw would accept it, however we will still return false, so the 190 // signal would be lost on an auto-reset WaitableEvent. Thus we call 191 // Disable which makes sw::Fire return false. 192 sw.Disable(); 193 sw.lock()->Release(); 194 195 kernel_->lock_.Acquire(); 196 kernel_->Dequeue(&sw, &sw); 197 kernel_->lock_.Release(); 198 199 return return_value; 200 } 201 202 if (finite_time) { 203 const TimeDelta max_wait(end_time - current_time); 204 sw.cv()->TimedWait(max_wait); 205 } else { 206 sw.cv()->Wait(); 207 } 208 } 209 } 210 211 // ----------------------------------------------------------------------------- 212 // Synchronous waiting on multiple objects. 213 214 static bool // StrictWeakOrdering 215 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a, 216 const std::pair<WaitableEvent*, unsigned> &b) { 217 return a.first < b.first; 218 } 219 220 // static 221 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, 222 size_t count) { 223 DCHECK(count) << "Cannot wait on no events"; 224 225 // We need to acquire the locks in a globally consistent order. Thus we sort 226 // the array of waitables by address. We actually sort a pairs so that we can 227 // map back to the original index values later. 228 std::vector<std::pair<WaitableEvent*, size_t> > waitables; 229 waitables.reserve(count); 230 for (size_t i = 0; i < count; ++i) 231 waitables.push_back(std::make_pair(raw_waitables[i], i)); 232 233 DCHECK_EQ(count, waitables.size()); 234 235 sort(waitables.begin(), waitables.end(), cmp_fst_addr); 236 237 // The set of waitables must be distinct. Since we have just sorted by 238 // address, we can check this cheaply by comparing pairs of consecutive 239 // elements. 240 for (size_t i = 0; i < waitables.size() - 1; ++i) { 241 DCHECK(waitables[i].first != waitables[i+1].first); 242 } 243 244 SyncWaiter sw; 245 246 const size_t r = EnqueueMany(&waitables[0], count, &sw); 247 if (r) { 248 // One of the events is already signaled. The SyncWaiter has not been 249 // enqueued anywhere. EnqueueMany returns the count of remaining waitables 250 // when the signaled one was seen, so the index of the signaled event is 251 // @count - @r. 252 return waitables[count - r].second; 253 } 254 255 // At this point, we hold the locks on all the WaitableEvents and we have 256 // enqueued our waiter in them all. 257 sw.lock()->Acquire(); 258 // Release the WaitableEvent locks in the reverse order 259 for (size_t i = 0; i < count; ++i) { 260 waitables[count - (1 + i)].first->kernel_->lock_.Release(); 261 } 262 263 for (;;) { 264 if (sw.fired()) 265 break; 266 267 sw.cv()->Wait(); 268 } 269 sw.lock()->Release(); 270 271 // The address of the WaitableEvent which fired is stored in the SyncWaiter. 272 WaitableEvent *const signaled_event = sw.signaling_event(); 273 // This will store the index of the raw_waitables which fired. 274 size_t signaled_index = 0; 275 276 // Take the locks of each WaitableEvent in turn (except the signaled one) and 277 // remove our SyncWaiter from the wait-list 278 for (size_t i = 0; i < count; ++i) { 279 if (raw_waitables[i] != signaled_event) { 280 raw_waitables[i]->kernel_->lock_.Acquire(); 281 // There's no possible ABA issue with the address of the SyncWaiter here 282 // because it lives on the stack. Thus the tag value is just the pointer 283 // value again. 284 raw_waitables[i]->kernel_->Dequeue(&sw, &sw); 285 raw_waitables[i]->kernel_->lock_.Release(); 286 } else { 287 signaled_index = i; 288 } 289 } 290 291 return signaled_index; 292 } 293 294 // ----------------------------------------------------------------------------- 295 // If return value == 0: 296 // The locks of the WaitableEvents have been taken in order and the Waiter has 297 // been enqueued in the wait-list of each. None of the WaitableEvents are 298 // currently signaled 299 // else: 300 // None of the WaitableEvent locks are held. The Waiter has not been enqueued 301 // in any of them and the return value is the index of the first WaitableEvent 302 // which was signaled, from the end of the array. 303 // ----------------------------------------------------------------------------- 304 // static 305 size_t WaitableEvent::EnqueueMany 306 (std::pair<WaitableEvent*, size_t>* waitables, 307 size_t count, Waiter* waiter) { 308 if (!count) 309 return 0; 310 311 waitables[0].first->kernel_->lock_.Acquire(); 312 if (waitables[0].first->kernel_->signaled_) { 313 if (!waitables[0].first->kernel_->manual_reset_) 314 waitables[0].first->kernel_->signaled_ = false; 315 waitables[0].first->kernel_->lock_.Release(); 316 return count; 317 } 318 319 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter); 320 if (r) { 321 waitables[0].first->kernel_->lock_.Release(); 322 } else { 323 waitables[0].first->Enqueue(waiter); 324 } 325 326 return r; 327 } 328 329 // ----------------------------------------------------------------------------- 330 331 332 // ----------------------------------------------------------------------------- 333 // Private functions... 334 335 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset, 336 bool initially_signaled) 337 : manual_reset_(manual_reset), 338 signaled_(initially_signaled) { 339 } 340 341 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() { 342 } 343 344 // ----------------------------------------------------------------------------- 345 // Wake all waiting waiters. Called with lock held. 346 // ----------------------------------------------------------------------------- 347 bool WaitableEvent::SignalAll() { 348 bool signaled_at_least_one = false; 349 350 for (std::list<Waiter*>::iterator 351 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) { 352 if ((*i)->Fire(this)) 353 signaled_at_least_one = true; 354 } 355 356 kernel_->waiters_.clear(); 357 return signaled_at_least_one; 358 } 359 360 // --------------------------------------------------------------------------- 361 // Try to wake a single waiter. Return true if one was woken. Called with lock 362 // held. 363 // --------------------------------------------------------------------------- 364 bool WaitableEvent::SignalOne() { 365 for (;;) { 366 if (kernel_->waiters_.empty()) 367 return false; 368 369 const bool r = (*kernel_->waiters_.begin())->Fire(this); 370 kernel_->waiters_.pop_front(); 371 if (r) 372 return true; 373 } 374 } 375 376 // ----------------------------------------------------------------------------- 377 // Add a waiter to the list of those waiting. Called with lock held. 378 // ----------------------------------------------------------------------------- 379 void WaitableEvent::Enqueue(Waiter* waiter) { 380 kernel_->waiters_.push_back(waiter); 381 } 382 383 // ----------------------------------------------------------------------------- 384 // Remove a waiter from the list of those waiting. Return true if the waiter was 385 // actually removed. Called with lock held. 386 // ----------------------------------------------------------------------------- 387 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) { 388 for (std::list<Waiter*>::iterator 389 i = waiters_.begin(); i != waiters_.end(); ++i) { 390 if (*i == waiter && (*i)->Compare(tag)) { 391 waiters_.erase(i); 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 // ----------------------------------------------------------------------------- 400 401 } // namespace base 402