Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "crypto/hmac.h"
      6 
      7 #include <windows.h>
      8 #include <wincrypt.h>
      9 
     10 #include <algorithm>
     11 #include <vector>
     12 
     13 #include "base/logging.h"
     14 #include "crypto/scoped_capi_types.h"
     15 #include "crypto/third_party/nss/blapi.h"
     16 #include "crypto/third_party/nss/sha256.h"
     17 
     18 namespace crypto {
     19 
     20 namespace {
     21 
     22 // Implementation of HMAC-SHA-256:
     23 //
     24 // SHA-256 is supported in Windows XP SP3 or later.  We still need to support
     25 // Windows XP SP2, so unfortunately we have to implement HMAC-SHA-256 here.
     26 
     27 enum {
     28   SHA256_BLOCK_SIZE = 64  // Block size (in bytes) of the input to SHA-256.
     29 };
     30 
     31 // See FIPS 198: The Keyed-Hash Message Authentication Code (HMAC).
     32 void ComputeHMACSHA256(const unsigned char* key, size_t key_len,
     33                        const unsigned char* text, size_t text_len,
     34                        unsigned char* output, size_t output_len) {
     35   SHA256Context ctx;
     36 
     37   // Pre-process the key, if necessary.
     38   unsigned char key0[SHA256_BLOCK_SIZE];
     39   if (key_len > SHA256_BLOCK_SIZE) {
     40     SHA256_Begin(&ctx);
     41     SHA256_Update(&ctx, key, key_len);
     42     SHA256_End(&ctx, key0, NULL, SHA256_LENGTH);
     43     memset(key0 + SHA256_LENGTH, 0, SHA256_BLOCK_SIZE - SHA256_LENGTH);
     44   } else {
     45     memcpy(key0, key, key_len);
     46     memset(key0 + key_len, 0, SHA256_BLOCK_SIZE - key_len);
     47   }
     48 
     49   unsigned char padded_key[SHA256_BLOCK_SIZE];
     50   unsigned char inner_hash[SHA256_LENGTH];
     51 
     52   // XOR key0 with ipad.
     53   for (int i = 0; i < SHA256_BLOCK_SIZE; ++i)
     54     padded_key[i] = key0[i] ^ 0x36;
     55 
     56   // Compute the inner hash.
     57   SHA256_Begin(&ctx);
     58   SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE);
     59   SHA256_Update(&ctx, text, text_len);
     60   SHA256_End(&ctx, inner_hash, NULL, SHA256_LENGTH);
     61 
     62   // XOR key0 with opad.
     63   for (int i = 0; i < SHA256_BLOCK_SIZE; ++i)
     64     padded_key[i] = key0[i] ^ 0x5c;
     65 
     66   // Compute the outer hash.
     67   SHA256_Begin(&ctx);
     68   SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE);
     69   SHA256_Update(&ctx, inner_hash, SHA256_LENGTH);
     70   SHA256_End(&ctx, output, NULL, output_len);
     71 }
     72 
     73 }  // namespace
     74 
     75 struct HMACPlatformData {
     76   ~HMACPlatformData() {
     77     if (!raw_key_.empty()) {
     78       SecureZeroMemory(&raw_key_[0], raw_key_.size());
     79     }
     80 
     81     // Destroy the key before releasing the provider.
     82     key_.reset();
     83   }
     84 
     85   ScopedHCRYPTPROV provider_;
     86   ScopedHCRYPTKEY key_;
     87 
     88   // For HMAC-SHA-256 only.
     89   std::vector<unsigned char> raw_key_;
     90 };
     91 
     92 HMAC::HMAC(HashAlgorithm hash_alg)
     93     : hash_alg_(hash_alg), plat_(new HMACPlatformData()) {
     94   // Only SHA-1 and SHA-256 hash algorithms are supported now.
     95   DCHECK(hash_alg_ == SHA1 || hash_alg_ == SHA256);
     96 }
     97 
     98 bool HMAC::Init(const unsigned char* key, int key_length) {
     99   if (plat_->provider_ || plat_->key_ || !plat_->raw_key_.empty()) {
    100     // Init must not be called more than once on the same HMAC object.
    101     NOTREACHED();
    102     return false;
    103   }
    104 
    105   if (hash_alg_ == SHA256) {
    106     if (key_length < SHA256_LENGTH / 2)
    107       return false;  // Key is too short.
    108     plat_->raw_key_.assign(key, key + key_length);
    109     return true;
    110   }
    111 
    112   if (!CryptAcquireContext(plat_->provider_.receive(), NULL, NULL,
    113                            PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
    114     NOTREACHED();
    115     return false;
    116   }
    117 
    118   // This code doesn't work on Win2k because PLAINTEXTKEYBLOB and
    119   // CRYPT_IPSEC_HMAC_KEY are not supported on Windows 2000.  PLAINTEXTKEYBLOB
    120   // allows the import of an unencrypted key.  For Win2k support, a cubmbersome
    121   // exponent-of-one key procedure must be used:
    122   //     http://support.microsoft.com/kb/228786/en-us
    123   // CRYPT_IPSEC_HMAC_KEY allows keys longer than 16 bytes.
    124 
    125   struct KeyBlob {
    126     BLOBHEADER header;
    127     DWORD key_size;
    128     BYTE key_data[1];
    129   };
    130   size_t key_blob_size = std::max(offsetof(KeyBlob, key_data) + key_length,
    131                                   sizeof(KeyBlob));
    132   std::vector<BYTE> key_blob_storage = std::vector<BYTE>(key_blob_size);
    133   KeyBlob* key_blob = reinterpret_cast<KeyBlob*>(&key_blob_storage[0]);
    134   key_blob->header.bType = PLAINTEXTKEYBLOB;
    135   key_blob->header.bVersion = CUR_BLOB_VERSION;
    136   key_blob->header.reserved = 0;
    137   key_blob->header.aiKeyAlg = CALG_RC2;
    138   key_blob->key_size = key_length;
    139   memcpy(key_blob->key_data, key, key_length);
    140 
    141   if (!CryptImportKey(plat_->provider_, &key_blob_storage[0],
    142                       key_blob_storage.size(), 0, CRYPT_IPSEC_HMAC_KEY,
    143                       plat_->key_.receive())) {
    144     NOTREACHED();
    145     return false;
    146   }
    147 
    148   // Destroy the copy of the key.
    149   SecureZeroMemory(key_blob->key_data, key_length);
    150 
    151   return true;
    152 }
    153 
    154 HMAC::~HMAC() {
    155 }
    156 
    157 bool HMAC::Sign(const std::string& data,
    158                 unsigned char* digest,
    159                 int digest_length) {
    160   if (hash_alg_ == SHA256) {
    161     if (plat_->raw_key_.empty())
    162       return false;
    163     ComputeHMACSHA256(&plat_->raw_key_[0], plat_->raw_key_.size(),
    164                       reinterpret_cast<const unsigned char*>(data.data()),
    165                       data.size(), digest, digest_length);
    166     return true;
    167   }
    168 
    169   if (!plat_->provider_ || !plat_->key_)
    170     return false;
    171 
    172   if (hash_alg_ != SHA1) {
    173     NOTREACHED();
    174     return false;
    175   }
    176 
    177   ScopedHCRYPTHASH hash;
    178   if (!CryptCreateHash(plat_->provider_, CALG_HMAC, plat_->key_, 0,
    179                        hash.receive()))
    180     return false;
    181 
    182   HMAC_INFO hmac_info;
    183   memset(&hmac_info, 0, sizeof(hmac_info));
    184   hmac_info.HashAlgid = CALG_SHA1;
    185   if (!CryptSetHashParam(hash, HP_HMAC_INFO,
    186                          reinterpret_cast<BYTE*>(&hmac_info), 0))
    187     return false;
    188 
    189   if (!CryptHashData(hash, reinterpret_cast<const BYTE*>(data.data()),
    190                      static_cast<DWORD>(data.size()), 0))
    191     return false;
    192 
    193   DWORD sha1_size = digest_length;
    194   return !!CryptGetHashParam(hash, HP_HASHVAL, digest, &sha1_size, 0);
    195 }
    196 
    197 }  // namespace crypto
    198